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1. Introduction

This paper illustrates the application of a multicriteria optimization technique
1o the synthesis of broadband microwave absorbtive coatings. In the past, a variety
of techniques has been developed for the synthesis of multilayer absorbers, e.g.,
Salisbury [1], graded index, Jaumann [2], and Dallenbach screens. Recently,
Pesque et al. have proposed an optimal control and a simulated annealing technique
(3], and Michielssen er al. [4] described a synthesis procedure which utilizes the
genetic algorithm. The latter technique seems to overcome some of the drawbacks
of the simulated annealing algorithm proposed in [3}, and easily lends itself to
multicriteria optimization, as illustrated in the present paper. For many
applications, the problem of designing a coating involves a trade-off between
conflicting goals, namely those of minimizing the total coating thickness ¢ while
achieving maximum absorption. This paper proposes a continuation of the work
presented in [4], by incorporating, within the genetic algorithm, a mechanism for
investigating the trade-off between coating thickness and absorption, by using the
concepts of Pareto-optimality.

2. Formulation

Given a predefined set of Ny, available materials with frequency dependent
permittivities &(f) and permeabilities g;(f) (i=1,..,Nm), the design of a multilayered
coating (Fig. 1) requires the determination of the choice of a material for each layer
and its thickness. To quantify the absorption characteristics of a coating, an
objective function R is defined as the maximum of its reflection coefficient over a
range of frequencies (f7.2,../Nf} and incident angles {61,62,..,0n9} of interest.
Given a restriction on the total coating thickness, the optimal choice for the design
parameters leads to a coating which minimizes R , or, alternatively, to a coating
with minimum total thickness for a desired R. The thickness ¢ and reflectivity R of
an arbitrarily constructed coating may be represented in a (t,R) graph as illustrated
in Figure 2. The manifold of feasible designs is bounded by a trade-off curve
which characterizes the Pareto-optimal designs. In the present context, a coating is
referred to as Pareto-optimal, or non-dominated, provided that any perturbation of
its design parameters results in a coating with an increased thickness and/or
reflectivity R. The goal of the design method presented in this paper is to use the
genetic algorithm to determine (i) the optimal trade-off curve for a given database of
materials and objective function R, and, (ii) the design parameters of the coatings
which characterize this curve.

Genetic algorithms [5] are iterative optimization procedures that start with a
randomly selected population of potential solutions, and gradually evolve toward
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better solutions through the application of genetic operators. These genetic
operators are derived from the processes of procreation observed in nature. Their
repetitive application to a population of potential solutions results in an optimization
process that resembles natural evolution. Genetic algorithms differ from other
optimization techniques in several respects. First, genetic algorithms typically
operate on a discretized and coded representation of the parameters which are to be
optimized, rather than the parameters themselves. For the purpose of designing
absorbing coatings from a given database of materials, a suitable bitwise
representation of a coating, often referred to as a chromosome or a sequence, is
obtained through discretization of its design parameters. Given the number of
available materials, the maximum thickness of an individual layer, the required
thickness resolution and the maximum number of layers N in a coating, a multilayer
can be represented uniquely by a finite sequence of bits as illustrated in Figure 1.
Second, the genetic operators which guide the population of potential solutions
induce probabilistic, rather than deterministic transitions. The probabilistic nature
of these operators greatly enhances the capabilities of the algorithm to search for a
global rather than local objective function maximum. Third, genetic algorithms
operate on a population of potential solutions, rather than a single solution
candidate. Implementation of the advanced crowding operator in conjunction with
schemes geared toward multicriteria optimization allows the algorithm to converge
to a population of distinct Pareto-optimal solutions, rather than to a single optimal
solution.

A flow chart of the genetic algorithm is shown in Figure 3. The three genetic
operators governing the iterative search are often referred to as the selection,
crossover and mutation operators. Through the repeated application of these
operators, a randomly selected initial population of potential design sequences P, is
transformed into an equally large populations P;in an iterative manner.
Consecutive populations will increasingly contain better sequences and eventually
converge to the optimal population Py, consisting of Pareto-optimal sequences.
The selection operator implements the principle of the survival of the fittest. This
operator generates new populations by statistically phasing out weak designs which
do not fit the design objective. The cross-over operator generates new populations
of designs by mating parent sequences generated by the selection operator and by
combining their genetic information. The mutation operator modifies existing
sequences by arbitrarily mutating their genetic content, and thereby safeguards the
algorithm against premature convergence to a local extremum.

3. Numerical Results.

Using a database containing 16 different materials ( the database for the
material parameters is not reproduced here because of space limitations, but may be
found in [4] ), including lossless and lossy dielectrics, lossy magnetics and
materials with a relaxation type characteristic, a set of Pareto-optimal designs is
generated for operation in the frequency range of 2-8 GHz. The initial population
consists of 1000 design candidates which consist of a maximum of 5 layers. The
algorithm converges, after approximatély 100 iterations, towards a set of Pareto-
optimal designs, the (¢,R) trade-off curve of which is shown in Figure 4. In the
process of generating the trade-off curve, the algorithm naturally generates and
stores the design parameters of its respective coatings. To verify the Pareto-
optimality of these coatings, their design parameters are randomly perturbed. For
all cases tested, the (¢,R) characteristics of these perturbed coatings lie above the
optimal (#,R) curve, and hence the perturbed designs are not Pareto-optimal. This
trade-off curve entirely describes the absorbtion characteristics of the database for a
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given frequency range, and a specified maximum for the number of layers in the
coating.
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Figure 1 : Structure under investigation and coding procedure.
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Figure 2 : Non-dominated, Pareto-optimal designs and inferior designs in t-R
space.
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Figure 3 : Flow chart of the Genetic Algorithm.
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Figure 4 : Optimal design curve obtained using GA.
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