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Abstract. This paper proposes a new multiobjective evolutionary approach�
the dynamic archive evolution strategy (DAES) to investigate the adaptive bal-
ance between proximity and diversity. In DAES, a novel dynamic external ar-
chive is proposed to store elitist individuals as well as relatively better individu-
als through archive increase scheme and archive decrease scheme. Additionally, 
a combinatorial operator that inherits merits from Gaussian mutation of prox-
imity exploration and Cauchy mutation of diversity preservation is elaborately 
devised. Meanwhile, a complete nondominance selection ensures maximal 
pressure of proximity exploitation while a corresponding fitness assignment en-
sures the similar pressure of diversity preservation. By graphical presentation 
and performance metrics on three prominent benchmark functions, DAES is 
found to outperform three state-of-the-art multiobjective evolutionary algo-
rithms to some extent in terms of finding a near-optimal, well-extended and 
uniformly diversified Pareto optimal front. 

1.   Introduction 

A formal notion of multiobjective optimization is given by Fonseca and Fleming in 
[1]. Without loss of generality, consider the following multiobjective optimization 
with n decision variables x and m (m>1) objectives y: 
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where x is called decision vector, X decision space, y objective vector and Y objective 
space; f defines the mapping function. The scenario considered in this paper involves 
an arbitrary optimization with objectives, which are all to be minimized and all 
equally important. It means that the objectives cannot be combined into a single scalar 
objective to be optimized, so the sets of solutions exist such that each solution in this 
set is equally preferable. The following four concepts are of importance: 

1. Pareto dominance: A solution x0 is said to dominate (Pareto optimal) another 
solution x1 (denoted x0f  x1) if and only if: 

0 1 0 1{1, , } : ( ) ( ) ( {1, , } : ( ) ( ))i i k ki m f f k m f f∀ ∈ ≤ ∧ ∃ ∈ <L Lx x x x . 
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2. Pareto optimal: A solution x0 is said to be nondominated (Pareto optimal) if 
and only if: 1 1 0:¬∃ ∈ fx X x x . 

3. Pareto optimal set: The set PS of all Pareto optimal solutions: 
0 1 1 0{ | : }SP = ¬∃ ∈ fx x X x x . 

4. Pareto optimal front: The set PF of all objective function values correspond-
ing to the solutions in PS: 1{ ( ) ( ( ), , ( )) | }mF SP f f P= = ∈Lf x x x x . 

The optimal result for such multiobjective optimization is no other than the Pareto 
optimal set PS. However, the size of this set may be infinite, and it is impossible to 
find this set by using a finite number of solutions. In this case, a representative subset 
of PS is desired. Generally, the characteristic of multiobjective evolutionary algo-
rithms (MOEAs) is to search the decision space by maintaining a finite population of 
individuals (corresponding to the points in the decision space), which work according 
to the procedures that resemble the principles of natural selection and evolution. Be-
cause we only consider the subset of all the final nondominated individuals resulted 
from a MOEA, we call such subset an approximation set and denote it by S, and we 
call the corresponding objective set a resulting final Pareto optimal front and denote 
it by PFfinal. Ideally; we are interested in finding an S of finite size, which contains a 
selection of individuals from such that the individuals in PFfinal are diversified as 
possible. Unfortunately, we usually have no access to PF on beforehand. We have to 
get close to PF but in such a way that PFfinal we found is as diversified as possible 
without compromising as much as possible the proximity of PFfinal with respect to PF. 
Thus, the concept of proximity and diversity should be outlined. Regarding this diver-
sity, it is of importance to note that it depends on the mapping function whether a 
good diversity of the individuals in the decision space is also a good diversity of the 
individuals in the objective space correspondingly. However, it is common practice to 
search for a good diversity of the individuals in the objective space because decision 
makers will ultimately have to pick a single individual as final solution according to 
its objective vector values. Therefore, it is often best to present a wide variety of 
tradeoff individuals for the specified goals in constructing MOEAs. 

During the past decade, various MOEAs have been proposed and applied [1]. A 
representative collection of these influential algorithms includes the Nondominated 
Sorting Genetic Algorithm (NSGA) and NSGA2 by Srinivas and Deb et al [2] [3], the 
Strength Pareto Evolutionary Algorithm (SPEA) and SPEA2 by Zitzler et al [4] [5], 
the Pareto Archived Evolution Strategy (PAES) and the memetic PAES (M-PAES)by 
Knowles and Corne [6] [7] etc. Although these MOEAs differ from each other, they 
share the common purpose � searching for a near-optimal, well-extended and uni-
formly diversified PFfinal for a given multiobjective optimization. However, this ulti-
mate goal is far from being accomplished by the existing MOEAs as documented in 
the literature, e.g., [1],[5]. In one respect, most of multiobjective optimizations are 
very complicated and have their own inherent characters and variabilities, so compu-
tational resources are required to be homogenously distributed in a high-dimensional 
decision space. On the other hand, those fitter individuals generally have strong ten-
dencies to restrict searching efforts within local areas because of the genetic drift 
phenomenon [8], which results in the loss of diversity. This highlighted the hot issue 
how to improve the algorithm�s robustness and how to balance proximity and diver-
sity during searching process. However, the latter issue we considered in this paper 
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has not been attended yet. Although in some elitism-based MOEAs, several tech-
niques have been adopted such as crowded comparison [3], amalgamation strategy 
[4], archive truncation [5] and preselection scheme [9] etc, the manipulation of bal-
ance choice remains manual and presetting. Therefore, either the pressure for prox-
imity or for diversity should be autonomously regulated by the current and historical 
search. 

The present work proposed a novel dynamic archive evolution strategy (DAES) 
inherited from evolution strategy (ES) [10] to investigate the adaptive balance be-
tween the proximity and diversity. A special aspect of importance in which ES differs 
from most other EAs is that it has a long self-adaptive mechanism by usually includ-
ing strategy parameters that can adaptively guide the search to explore and exploit the 
local and global topology of the decision space. DAES hold such mechanism too and 
have developed some new features. The prominent innovation of DAES is the dy-
namic external archive with its form, purpose and managing scheme. Other tech-
niques served for exploration and exploitation have also been designed and work 
cooperatively to guarantee satisfactory results.  

The remainder of this paper is organized as follows. In section 2, we introduce 
some basic rationale used to balance proximity and diversity in exploration stages and 
exploitation stages respectively by summarizing some prominent state-of-the-art 
MOEAs. Section 3 describes DAES arithmetic in detail. The empirical results and 
comparisons between DAES and SPEA2 [5], NSGA2 [3], M-PAES [7] on three 
prominent benchmark functions are presented in Section 4. Eventually, we conclude 
the paper with some remarks and future researches in the last section. 

2   How to balance proximity and diversity in DAES 

2.1   Role of the external archive 

In order to obtain new and diverse nondominated individuals, especially when the set 
of nondominated individuals have approached PF, the concept of elitism that the best 
individuals of the current population are copied into the next population is accepted to 
be a very important role for improving the results obtained by some MOEAs [4]. 
Alternatively, an external archive may be more commonly used that contains nondo-
minated individuals, and the current population and the external archive are separated 
and managed by exchanging individuals between them. It also helps allow preserving 
the good individuals that are hard to be generated in the exploration stage. 

In the evolutionary process, there are such individuals that they are not ensured 
nondominated responding to the current population, but are relatively better to their 
parents. Since these individuals may still hold some useful information, they should 
be wisely kept for a certain generation for further exploration and exploitation. How-
ever, if under the complete nondominance selection we intend to apply in the exploi-
tation stage, they will definitely lose opportunity to survive into the next population 
due to their absence of qualification to be stored in the archive. So we need changing 
the role of the archive by some means. Furthermore, the archive size is highly sensi-
tive to manage selected individuals. If the size is too small, there will not be enough 
schemas to exploit, resulting in a premature or non-uniformly PFfinal. Otherwise, an 
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excessive size will not be desirable since it may require unnecessarily large computa-
tion resources and even confuse search guide into stagnancy. Therefore, a dynamic 
size adjusted autonomously by the online characteristics of the proximity and diver-
sity information of the archive will be more efficient and effective than a constant 
size. As a result, the archive should be endued with the responsibility of saving elitist 
individuals as well as relatively better individuals and a dynamic size of it is prefer-
able. The archive increase scheme and the archive decrease scheme are designed 
concurrently in order to manage the archive in the probability sense. 

2.2   Exploration of proximity and diversity 

It is of importance to have an exploration operator that is capable of producing new 
nondominated individuals and diversifying them to guide the search towards PF. 
Based on an appropriate selection of parents, a competent exploration operator is 
expected to be able to produce offspring in which good features of the selected par-
ents are inherited, which does not differ much from the rationale in single objective 
EAs essentially. Since excessive proximity without adequate diversity will inevitably 
lead to premature convergence or local optimum while excessive diversity without 
adequate proximity will always confuse the search guide into stagnancy, it is neces-
sary to deal with them equally and adaptively. 

An interesting and relatively new field is the combinatorial operator, which at-
tempts to model the regularities of parent structure by means of combination of sev-
eral operators. In this way different operators are cooperated with to develop each 
merit and eliminate each weakness, where heuristic method is also applied. An exam-
ple is taken in the fastEP for single optimization in which Gaussian and Cauchy muta-
tions are combined to produce offspring from the same parent and the better ones are 
chosen into the next population [11]. Algorithms that use the similar approaches have 
obtained an increasing amount of attention over the last few years, and certainly have 
obtained promising results on a large variety of problems [12],[13]. These approaches 
are also constructive and beneficial for multiobjective optimization as well [14]. By 
doing that, the exploration has been shown to be more effectively stimulated [15]. 
Inspired by this idea, DAES appropriately combines the following three operators: 
discrete recombination, Gaussian mutation and Cauchy mutation. Therein, Gaussian 
mutation mainly severs for the proximity while Cauchy mutation for the diversity 
according to status of the parents offered to them and the offspring generated by them. 

2.3   Exploitation of proximity and diversity 

It is also essential to have a competent exploitation scheme that is capable of selecting 
a diverse set of individuals close to the set of nondominated individuals as possible. 
Since we can only indicate how diverse we are but cannot indicate how close to PF we 
are to, the best we can do is to find individuals that are not dominated by any other 
individuals and are widely diversified in order to ensure pressure on both proximity 
selection and diversity preservation. Therefore, the exploitation stage is usually split 
into two steps: proximity selection first and diversity preservation later, and the later 
should never precede the former. So a straightforward way to obtain strong pressure 
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toward the proximity is a complete nondominance selection in which all dominated 
individuals are neglected and only nondominated individuals have the opportunity to 
survive and reproduce in each generation [16]. This approach is considered cautious 
because it easily leads to premature convergence or local optimum unless other strong 
diversity preservation is accompanied with. Another class such as the concept of 
domination count [14] and domination rank [3] are introduced for proximity selection 
while crowded comparison [3] serves for diversity preservation. Although these ap-
proaches performed successfully in some situation, the problem caused by inappropri-
ate exploitation scheme was still not completely resolved. Here in DAES, we pro-
posed an exploitation scheme that is also separated into two sides respectively, but 
these incompatible sides are designed to work in mutual benefit. A complete nondo-
minance selection derived from [16] ensures maximal pressure for the proximity 
selection while a fitness assignment determined by dominance and population infor-
mation ensures maximal diversity preservation. Particulars will be discussed in the 
following Section. 

3   Arithmetic of DAES 

A few items that are of major importance to implement an adaptive balance between 
the proximity and diversity can be outlined when constructing our DAES.  
• The external archive should be used to save elitist individuals as well as relatively 

better individuals, and a dynamic size of it is preferable. 
• The update scheme of the archive should be devised to accompany dynamic size 

including the archive increase scheme and the archive decrease scheme. 
• The exploration operator should produce better offspring than either of its parents. 
• Survive of the better individuals should be automatically done based on both the 

proximity selection and the diversity preservation. 
The global pseudocode of DAES is shown in Fig.1 based on these considerations. 

function result = DAES ( µ, λ, age_min, size_min )
    Generate initial population P of µ random individuals and evaluate;
    Copy nondominated member of P in the external archive G;
    Initialize generation counter t zero;
    do  //exploration stage
        Reset the current intermediate population H empty;
        Set offspring counter r zero;
        do  //generate λ offspring
            Pick individuals a and b ( not dominated by a ) from P¡È G randomly;
            c = ProduceOffspring ( a, b, P, G );  //via our exploration operator
            IncreaseArchive ( c, a, b, G, size_min );  Add c into H;   r = r + 1;
        while ( r  < λ )
        DecreaseArchive ( G, age_min, G, λ );   //below is exploitation stage
        AssignFitness ( H );  //via our fitness assignment scheme
        Sort H in descending order of fitness;
        Pick the first µ  members into the next population P( t+1);  t = t + 1;
    while ( terminal criterion is not satisfied )
    Set result the unique nondominated subset of P( t )¡È G;  return result;
end function.  

Fig. 1. Global pseudocode of DAES 
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It should be noted that the heart of DAES involves two populations: the current 
population P and the external archive G. In detail, P works similar to the single objec-
tive ES; but G serves a binary purpose � storage of elitist individuals as well as rela-
tively better individuals found during the run, and the cooperative role of one-side 
parent in producing offspring. In the beginning of each generation, parents are ran-
domly selected from P and G (the later selected parent side should not be dominated 
by the former in order to accelerate prepotency), and λ offspring will be produced 
within a loop in the exploration stage while the archive increase scheme is performed 
simultaneously. After the current intermediate population H has been filled with the λ 
offspring, the archive decrease scheme starts, and subsequently, the individuals of H 
are sorted in descending order of the assigned fitness to select the first µ individuals 
with higher fitness into the next population. These sequences of instructions are re-
peated until terminal criterion is satisfied.  

3.1   Code representation 

In DAES, the real number representation is used instead of the binary string imple-
mentation. Since many problems in the real-world are expressed in real variables, 
faster computation can be obtain without conversions between different representa-
tions. It is characterized that DAES borrow a ternary group representation from [17], 
where an individual was denoted by (x, σ, θ) group. That is, x = (x1, x2, �, xn) is the 
original decision vector, corresponding to a point in the decision space, and σ =(σ1, 
σ2,�, σn) is the standard deviation used to instruct mutation, and θ =(θ1,2, θ1,3,�,θ1,n, 
θ2,3,�, θ(n-1), n) is the rotation angle used to change orientation of the mutation associ-
ated with all possible pairs of the decision vectors. Both σ and θ are called strategy 
parameters. It is very similar to a hillclimber algorithm with a self-adaptive step σ and 
angle θ. In other words, all components are submitted to the evolutionary process by 
applying the exploration operator and the exploitation scheme on them. Thus, an 
appropriate adjustment and diversity of parameters can be automatically modified in 
demand, and this modification just corresponds to the local regulation. 

3.2   Archive increase scheme 

Generally, if an MOEA has an external archive with fixed size, a replacement scheme 
is always applied. In this scheme, in order to keep archive size unchanged, a new-
added individual will replace one members of archive if it is considered to be better 
than the other individual. However, this scheme brings up a problem that some of the 
replaced individuals may still be very valuable and have not been well explored or 
exploited yet before they are replaced. Although some approaches such as amalgama-
tion strategy in [4] and preselection scheme in [9] have been introduced, the problem 
caused by the replacement scheme is still not completely resolved. Therefore, DAES 
adopts two independent schemes�the increase scheme and the decrease scheme. The 
first scheme only focuses on pure population increment and ensures that each individ-
ual survives enough generations so that it can contribute its valuable schemas. Mean-
while an archive decrease scheme is also enforced to prevent the population size from 
growing excessively. The second scheme will be discussed in the next subsection. 
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Because we used the archive to store elitist individuals as well as relatively better 
individuals that obtain progress responding to their parents, the dominated individuals 
also have the opportunity to survive in the archive. This eliminates the disadvantage 
in [16] where dominated individuals are completely discarded and none of their useful 
information is under consideration. Therefore, we adopt the diffusion scheme in parti-
cle swarm optimization (PSO) [18] to guide archive increase scheme� an individual 
shares its information with the leading individuals in order to locate its moving direc-
tion. This idea is inspired by its significant performance. In DAES, if a newborn off-
spring is better than either of its parents in the proximity or the diversity (indicated by 
dominance or location of less crowded region [6]), it has the priority to be added into 
the archive; otherwise, it will be drastically discarded. Since the property of age is a 
crucial factor for the archive decrease scheme, we initialize age of new individual to 
be one when it is added for the first time. As a result, this scheme will guarantee that a 
new-added individual in the archive will have higher proximity or diversity than at 
least one of its parents, which helps DAES provide both elitist individuals and rela-
tively better individuals participating in the exploration and exploitation stages so as 
to cover all the unexplored regions in the objective space. Fig. 2 describes the pseu-
docode of the archive increase scheme. 

subprocedure IncreaseArchive ( offspring, par1, par2, ex_ar, size_min )
    if ( size of ex_ar is less than size_min ) {
        Add offspring into ex_ar;   Set age of offspring one; //initialize age }
    else
        if ( offspring dominates par1 or par2 ); {  //apply dominance
            Add offspring into ex_ar;  Set age of offspring one; }
        else if ( offspring in a less crowded region of ex_ar than par1 or par2 )  {
            Add offspring into ex_ar;  Set age of offspring one; }
end subprocedure.  

Fig. 2. Pseudocode of the archive increase scheme 

3.3   Archive decrease scheme 

An archive decrease scheme is necessary to prevent the archive from growing without 
bound. In DAES, whether an individual will be removed from the archive or not de-
pends on its age and fitness. The initial age is one, and it will grow generation by 
generation as long as it survives in the archive. To ensure that an removed individual 
has a lowest fitness value and has been adequately explored and exploited, the scheme  
removes individuals in each generation according to the following principles:  
• In order to keep balance of the archive in the probability sense, there are λ trials to 

remove relatively worse individuals in each decrease scheme because λ offspring 
have been produced and correspondingly there are λ trials to add relatively better 
individuals in each increase scheme. This means that there are at most λ individuals 
can be removed if we perform the decrease scheme once. Fig.3 shows an example. 

• We only remove the individuals with lowest fitness (either positive value or zero 
value) and whose ages are larger than the prespecified age threshold age_min. 
From the example in Fig.3, the archive is different after decrease due to their dif-
ferent age, fitness and age threshold when λ is 4. Fig. 4 describes this pseudocode. 
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individuals before decrease

current fitness

current age

individuals after decrease
(minimal age is 4)

individuals after decrease
(minimal age is 5)

(1) (2) (3) (4) (5)

(1) (2)

(1) (2) (3)

2 0 0 0 0

4 2 5 6 7

(1) (2) (3) (4) (5)

(1) (2) (3)

(1) (2) (3)

2 1 0 0 0

4 2 5 6 7

(1) λ = 4 (2) λ = 2

(1) (2) (3) (4) (5)

(1) (2)

(1) (2) (3)

2 1 1 1 1

4 2 5 6 7

(3) λ = 3
 

Fig. 3. Illustration of the decrease scheme: (1) There are 4 trials to remove the worse individu-
als, so the last three individuals (all zero fitness) are removed where minimal age is 4; (2) Only 
two worst individuals (all zero fitness) are removed and an individual whose age is larger than 
age threshold exist. (3) The worst individuals (positive fitness) are removed.  

subprocedure DecreaseArchive ( ex_ar, size_min, age_min, offspring_num )
    if ( size of ex_ar is larger than size_min ) {
        for ( each member m of ex_ar )  Increase age of m by one;
        Initialize remover counter r zero;
        AssignFitness ( ex_ar );  //assign fitness for direct remove
        do  //remove dominated members from ex_ar within offspring_num trials
            if ( find a member m1 with fitness 0 and age > age_min ) {
                Remove m1 from ex_ar;  Decrease size of ex_ar by one; }
            else { if ( find a member m2 whose age > age_min ) {
                   Remove m2 from ex_ar;  Decrease size of ex_ar by one; }} r = r + 1;
        while ( r  < offspring_num ¡Ä  size of ex_ar is larger than size_min ); }
end subprocedure.  

Fig. 4. Pseudocode of the archive decrease scheme 

3.4   Exploration operator 

In DAES, exploration includes recombination and mutation. Basically, recombination 
works choosing parents with uniform probability, and characteristics of parents are 
mixed to create one offspring. DAES employs the discrete recombination [19] that is 
commonly used in ES, and has also produced good results with real-coded MOEAs. 
Each component of offspring inherits from one of the parents randomly. If parent-1 is 
(x(1), σ(1), θ(1)) and parent-2 (x(2), σ(2), θ(2)), then we produce one offspring as 

1 1 1 1 1 1 1

1 1 1,2 1,3 1, 2,3 ( 1),( , , ) (( , , ), ( , , ), ( , , , , , , ))n nq qq q q q q q q
n n n n nx x σ σ θ θ θ θ θ −

′ ′ ′ = L L L Lx σ θσ θσ θσ θ
 

(2) 

where, qi is chosen between 1 and 2 with probability 0.5. Notice that recombination is 
performed independently on the decision vectors as well as on the strategy parameters. 

Generally, mutation is more emphasized than recombination in ES. It is typically 
implemented as Gaussian distribution around the generated individual being mutated. 
A new individual is produced via Gaussian mutation as 

, , ,

exp( (0,1) (0,1));
(0,1); , {1, , }, ;

(0, ( , ))

i i i

i j i j i j

N N
N i j n j i

cov

σ σ τ τ
θ θ γ

′′ ′ ′= +
′′ ′= + ∀ ∈ >
′′ ′ ′′ ′′= +

L
x x N σ θσ θσ θσ θ  

(3) 
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where, τ′, τ and γ are parameters. N(0, 1) denotes to generate a random scalar charac-
terized by Gaussian distribution with zero mean and deviation one, and additional 
subscripts denote independent regeneration for each element respectively. N(0, cov) 
denotes a vector function which returns a random vector distribution that is Gaussian 
distributed with zero mean and covariance matrix cov-1. The rotations along with the 
variances are used to fill the covariance matrix and the variances form diagonal of the 
covariance matrix as 

, , ,; , , {1, , },i i i i j i jc c i j n j iσ θ′ ′= = ∀ ∈ >L
 

(4) 

Recently, a new type of mutation using Cauchy distribution was inspired in [11] 
and [12], which all claimed that Cauchy mutation outperformed Gaussian one on 
diversity preservation and search efficiency. Cauchy probability density function is 

2 2( ) ( ( ) )f x xβ π β α= + −    0, 0, xα β> > −∞ < < ∞ (5) 

represented as C(α, β), where α and β are two parameters. We may produce a new 
individual via Cauchy mutation as 

, , ,

exp( (0,1) (0,1));
(0,1); , {1, , }, ;

(0, ( , ))

i i i

i j i j i j

C C
C i j n j i

cov

σ σ τ τ
θ θ γ

′′ ′ ′= +
′′ ′= + ∀ ∈ >
′′ ′ ′′ ′′= +

L
x x C σ θσ θσ θσ θ  

(6) 

where C(0,·) denotes to yield random scalar or vector submitted to Cauchy distribu-
tion with respective parameters. The similar denotations are omitted here. We plot 
two distributions in Fig.5 by applying the same parameters. We can investigate that 
Cauchy distribution is symmetrical and long-tailed, and in the other word, it has a 
lower extremum in middle and a slower horizontal decline than Gaussian one, and the 
horizontal decline is getting smaller as it departs from the middle.  

Cauchy   C(0,1)
Gaussian N(0,1)

0.4

0.3

0.2

0.1

0
-8 -6 -4 -2 0 2 4 6 8  

Fig. 5. Cauchy and Gaussian Distributions (with the same parameters) 

Therefore probabilistically speaking, Cauchy distribution is more expanded, and it 
allows larger mutations and in this way producing more diversified individuals and 
covering more major space. The opposite, Gaussian mutation is accomplished in 
accurate search of its nearest space for the proximity exploration. If we take measures 
to develop the respective merits from two mutations, it sounds possible to provide 
higher performance on both proximity and diversity, Fig.6 shows the measures that 
will be taken to realize our idea. Coupling the recombination and mutation, DAES 
produces an offspring completely as pseudocode in Fig.7 describes. 
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f1

f2

( a )

( b )

(1)
f1

( b )

( a )

(2)
f1

( a )

( b )

(3)  
Fig. 6. Illustration of measures for exploration operator: (1) a dominates b, so a is chosen; (2) b 
dominates a, so b is chosen; (3) incomparable, b is located in a more crowded region, a is chosen 

function offspring = ProduceOffspring ( par1, par2, cur_pop, ex_ar )
    Produce G_offspring with Gaussian mutation; // via Eq.(2) & Eq.(3)
    Produce C_offspring with Cauchy mutation;  //via Eq.(2) & Eq.(6)
    // compare two offspring and decide which one is accepted
    if ( G_offspring dominates C_offspring )  offspring = G_offspring;
    else if ( C_offspring dominates G_offspring ) offspring = C_offspring;
    else  //incomparable, so the crowded location is applied
         if ( G_offspring in a less crowded region of cur_pop¡È ex_ar than C_offspring )
            offspring = G_offspring;
        else  offspring = C_offspring;
    return offspring;
end function.

 
Fig. 7. Pseudocode of exploration operator 

3.5   Fitness assignment scheme 

Since fitness assignment scheme is crucially accompanied with the complete nondo-
minance selection, we use fitness value as an indicator to distinguish dominated and 
nondominated individuals. It should be devised to meet the following requirements. 
• The dominated individuals must share the lowest fitness than nondominated ones 

due to their absence of qualification for survival into next generation. 
• The fitness of nondominated individuals must indicate their properties; so much 

better individuals of them can be filtered into the next step after competition. 
• The individuals far away from the center of the current nondominated set must be 

assigned a higher fitness so as to share a higher probability of survival, which con-
tributes to the diversity preservation and reducing the risk of premature convergence. 
Therefore, for all the dominated individual of the intermediate population or the ar-

chive, we assigned their fitness the same zero; but for any nondominated individual, the 
average Euclid distance in the objective space between it and other m nearest individu-
als is equal to evaluate its contribution to the diversity preservation, defined as 

1
( ) min { } ,m

l lobjl
F j m H

=
= − ∈∑ x x , x x  (7) 

where, j denotes the nondominated individual, x is the decision vector of j and function 
||·||obj calculates the Euclid distance in the objective space between two individuals.  
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4   Comparison study 

In order to validate the proposed DAES and quantitatively compare its performance 
with other advanced MOEAs, three recently designed benchmark functions [20] de-
scribed in Table.1 are tested by three existed algorithms � SPEA2 [5], NSGA2 [3], 
M-PAES [7] and the proposed DAES in this comparison study, and each algorithm 
runs 50 times independently for each function to obtain statistical results. Since the 
comparison focuses on minimizing the proximity of PFfinal as well as on maximizing 
the diversity of PFfinal, we have to consider both the online performance and offline 
performance of each algorithm, and the nondominated set in the final population and 
the archive was taken as the output of an optimization run. Table.2 lists the general 
parameters setting of four algorithms for all runs, referred to literatures, e.g., [4], [5]. 
Then we use two methods: (1) graphical presentation for visual inspection and (2) the 
performance metric to show quantitative inspection. 

Table 1. Three benchmark functions. All PF is formed with g = 1. n is the number of decision vector 

No Function n Boundary Characters 
T1 

1 1 2 1

2

( ) ; ( ) (1 / )
1 9 ( ) /( 1)n

ii

f x f g f g
g x n

=

= = −
= + −∑

#

#

x x  
30 [0,1]n continuous 

convex 

T2 2
1 1 2 1

2

( ) ; ( ) (1 / )
1 9 ( ) /( 1)n

ii

f x f g f g
g x n

=

= = −
= + −∑

#

#

x x  30 [0,1]n continuous 
concave 

T3 
1 1 2 1 1 1

2

( ) ; ( ) (1 / ( / ) sin(10 ))
1 9 ( ) /( 1)n

ii

f x f g f g f g f
g x n

π

=

= = − −
= + −∑

#

#

x x  
30 [0,1]n discrete 

Table 2. General parameters setting of four algorithms 

Common Parameters DAES SPEA2 NSGA2 M-PAES 
Chromosome length - 15×dec_num 15×dec_num(3) 15×dec_num 
Population size 20 80 100 1 
Archive size 60(1) 20 0(2) 100 
Offspring per generation 60 10 10 10 
Crossover rate - 0.7 0.7 - 
Individuals perform mutation 1 1 1 10 
Number of binary bit flipped - 1 1 1 
Maximum generation 10,000 10,000 10,000 10,000 
(1) It is the minimal size of the archive. 
(2) Instead of using archive, NSGA2 combines the populations from two consecutive generations. 
(3) dec_num represents the number of decision variables. 

4.1   Graphical presentation 

The first method is the graphical presentation. We unify the outcomes of each bench-
mark function from each algorithm, and all the nondominated individuals are plotted as 
shown in Fig.8 and Fig.9 in company with its true PF (called PFtrue in this section). 
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Fig. 8. Graphical presentation based on T1 (left) and T2 (right) 
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Fig. 9. Graphical presentation based on T3 (left) and enlarged rectangle of T3 from left (right) 

For continuous function T1 and T2, the lines plotted by the solutions of DAES are 
much closer to the front than all its competitors. Besides, the solution distribution also 
varied. DAES distributes its solutions symmetrically in both middle and tail without 
obvious difference, which more than seventy percent of solutions of the latter three 
algorithms are crowded within thirty percent of region in the tail. This asymmetric 
distribution makes it difficult for decision making on middle compromise solutions. 
The results of function T3 from either of the algorithms are a bit close. Both show less 
perfect than what has achieved in continuous functions. To show the discrepancy, we 
enlarged the region of the closest proximity between 0.8 and 0.9 of f1 and displayed it 
on the right. It also demonstrates that DAES distributes their solutions closer to PFtrue 
and more diversely than the others do. As a result, DAES  is superior and the pre-
dominance decreases from continuous functions to discrete function to some extent. 

4.2   Performance metrics 

We use three indicators to benchmark the comparison. The first indicator is the general 
distance (GD) [21] that can show how far PFfinal are away from PFtrue, calculated by 
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1/
1 1 2 21

( ) min( ( ) ( ) ( ) ( ) ),N p p i j i j
i ii j

GD d N d f f f f
=

= − + −∑# x x x x  (8) 

where N is the number of nondominated individuals in PFfinal , p = 2, and di is the 
Euclidean distance in the objective space between each of these individuals and a 
closest point on PFtrue. A smaller value of GD is preferable. 

Because if another desire to measure diversity of solutions. We adopt the spacing 
(SP) to measure the range variance of neighboring individuals, defined as 

2

1 1
( ) ( 1), ( ) /N

ii

N
ii

SP d d N d d N
= =

− − =∑ ∑#  
(9) 

A zero value of SP indicates the ideal diversity that all nondominated individuals are 
equidistantly and uniformly spaced, and a smaller value of SP is preferable. 

Moreover, the C value [20] is also included to compare the dominance relationship 
between two algorithms. It maps the ordered pair (Xi, Xj) to interval [0, 1], defined as 

( , ) { ( : )}i j j i jX X X X X∈ ∧ ∃ ∈ ∨ =# fC y x x y x y
 

(10)

where Xi and Xj denote PFfinal from algorithm i and algorithm j respectively. The value 
C(Xi, Xj) = 1 means that all individuals in Xj are dominated by, or equal to, individuals 
in Xi. The opposite, C(Xi, Xj) = 0, represents the situation when none of the points in 
Xj are covered by the set Xi. Both should be considered independently. 

Here, box plots [22] are used to visualize the distribution of these indicator samples. 
The box plots concerning the three indicators are shown in Fig.10-12 respectively. 
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Fig. 10. Box plots based on metrics of the general distance (GD) of three functions 
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Fig.11. Box plots based on metrics of the spacing (SP) of three functions 
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Fig. 12. Box plots based on the metric of C value of three functions 

It is revealed that DAES is completely superior to all other algorithms on metrics 
of GD and SP. As far as C values is concerned, DAES covers all its competitors ex-
cept for a few occasions, however, none of the other algorithms covers any of DAES� 
solutions. Consequently, the inspection of performance metrics shows the similar 
trend as the graphical presentation has discovered. 

5   Conclusions 

In this paper, we have proposed a novel DAES. It can be characterized as: (1) appropri-
ately handling the relationship between nondominated and dominated individuals by 
using a dynamic external archive to store elitist individuals as well as relatively better 
individuals; (2) adaptively increasing or decreasing the external archive; (3) effectively 
improving the competence of exploration operator to provide new nondominated indi-
viduals and diversify them well by means of a combinatorial operator; (4) powerfully 
ensuring maximal pressure on proximity selection via a complete nondominance selec-
tion and ensuring maximal diversity preservation via a fitness assignment determined by 
dominance and population diversity information; and (5) converging to a near-optimal, 
well-extended and uniformly diversified Pareto optimal front. From comparison study, 
DAES has shown its potential in producing statistically superior results to SPEA2, 
NSGA2 and M-PAES on three prominent benchmark functions. So we suggest that 
DAES be a potential candidate in solving complicated problems. 

However, as the benchmark functions used in this paper are still far from covering 
all the challenging characteristics of multiobjective optimization, a more profound 
study by applying DAES in dealing with other real-world problems is absolutely 
necessary in the future work. Additionally, there is no special design built in DAES to 
handle strong constraints. In near future, DAES will be revised to deal with those 
multiobjective optimization with strong and complicated constraints. 
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