Strategies for Finding Good Local Guides in Multi-objective Particle
Swarm Optimization (MOPSO)

Sanaz Mostaghim?!, Jiirgen Teich?
! Electrical Engineering Department
Paderborn University, Paderborn, Germany
mostaghimQdate.upb.de
2 Computer Science Department
Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
teich@in formatik.uni-erlangen.de

Abstract - In multi-objective particle swarm opti-
mization (MOPSO) methods, selecting the best local
guide (the global best particle) for each particle of the
population from a set of Pareto-optimal solutions has
a great impact on the convergence and diversity of
solutions, especially when optimizing problems with
high number of objectives. This paper introduces the
Sigma method as a new method for finding best lo-
cal guides for each particle of the population. The
Sigma method is implemented and is compared with
another method, which uses the strategy of an ex-
isting MOPSO method for finding the local guides.
These methods are examined for different test func-
tions and the results are compared with the results of
a multi-objective evolutionary algorithm (MOEA).

I. INTRODUCTION

During the past decades, stochastic iterative search
methods have been investigated for solving optimization
problems. Through cooperation and competition among
the potential solutions, these techniques often can find
optima very quickly when applied to complex optimiza-
tion problems. The most commonly used population-
based evolutionary computation techniques are moti-
vated from the evolution of nature (i.e., evolutionary
algorithms). Different from evolutionary computation
techniques, a new evolutionary computation technique
called Particle Swarm Optimization (PSO), is motivated
from the simulation of social behavior. PSO was origi-
nally designed and developed by Eberhart and Kennedy
[5]. A PSO consists of a population of particles, which
on the contrary to evolutionary algorithms, survive up
to the last generation. The particles search the variable
space by moving with a special speed towards the best
global particle (guide) by using their experience from the
past generations.

Recently, investigators are paying more and more in-
terest on PSO to solve multi-objective problems [1], [3],
[4], [7]. Changing a PSO to a multi-objective PSO
(MOPSO) requires a redefinition of what a guide is in
order to obtain a front of optimal solutions. In MOPSO,

the Pareto-optimal solutions should be used to determine
the guide for each particle. But selecting the guide (the
best local guide) from the set of Pareto-optimal solutions
for each particle of the population [3] is very difficult yet
an important problem for attaining convergence and di-
versity of solutions. In this paper, we propose a new
method, called Sigma method for selecting the best lo-
cal guide for each particle. The implementation results
show that by using the Sigma method in a MOPSO, we
can achieve a very good convergence and diversity of so-
lutions. Also, we compare this method with an existing
MOPSO which has the same structure as our implemen-
tation, but with using the idea of [3] for finding the best
local guides. In this paper, another comparative study
of a multi-objective evolutionary algorithm called SPEA2
[10] with the new Sigma method is also given. This paper
has the following structure: We describe the structure of
a PSO and a MOPSO in Section II. In Section III we
investigate other MOPSO methods and their techniques
on finding the best local guide for each particle, then
we explain our suggestion in the remainder of the Sec-
tion. In Section IV, the experiments and comparisons
are described and a discussion concludes the paper in
Section V.

A. Multi-objective optimization

A multi-objective optimization problem is of the form

subject to £ € S, involving m(> 2) conflicting objective
functions f; : R — R that we want to minimize simul-
taneously. The decision vectors & = (x1,T2, -, on)7
belong to the feasible region S C R™. The feasible region
is formed by constraint functions.

We denote the image of the feasible region by Z C R™
and call it a feasible objective region. The elements of Z
are called objective vectors and they consist of objective

(function) values f(Z) = (f1(Z), f2(Z),- -, fm(T)).
A decision vector #; € S is said to dominate a decision
vector 2 € S (denoted ¥y < Fo) iff:

- The decision vector Z; is not worse than F5 in all
objectives, or f;(¥1) < fi(Z2) Vi=1,--- m.

- The decision vector Z; is strictly better than Z5 in
at least one objective, or f;(Z1) < fi(#2) for at least
onet=1,---,m.

and ¥ weakly dominates T2 (denoted ¥; < &o) iff:

- The decision vector ¥ is not worse than #» in all
objectives, or f;(#1) < fi(Z2) Vi=1,---,m.

A decision vector Z; € S is called Pareto-optimal if there
does not exist another Z» € S that dominates it. Fi-
nally, an objective vector is called Pareto-optimal if the
corresponding decision vector is Pareto-optimal.

II. PARTICLE SWARM OPTIMIZATION

A particle swarm optimization (PSO) method is a pop-
ulation based optimization technique and can be formu-
lated as follows: A set of N particles may be considered
as a population P; in the generation t. Each particle
i has a position defined by # = {x%,z},--- 2%} and a
velocity defined by & = {vi,v,---,vi} in the variable
space S. In generation ¢ + 1, the velocity and position of
each particle ¢ is updated as below:

Vs wojy + e R (05 — j0) + 2 Ra(pf] — 5,)
Tiapr = Tty @)
where j =1,---,n, w is the inertia weight of the particle,

¢ and ¢y are two positive constants, and R; and R, are
random values in the range [0, 1].

In Equation 2, p,"Y is the position of the global best
particle in the population which guides the particles to
move towards the optimum. P} is the best position that
particle ¢ could find so far. Indeed, it is like a memory
for the particle 7 and is updated in each generation. In
a PSO, the performance of each particle is measured ac-
cording to a pre-defined fitness function, which is related
to the problem to be solved. The inertia weight w is em-
ployed to control the impact of the previous history of
velocities on the current velocity, thus to influence the
trade-off between global and local exploration abilities of
the particles [8].

A. Multi-objective particle swarm optimization

The important part in multi-objective particle swarm op-
timization (MOPSO) is to determine the best global par-
ticle g, for each particle i of the population. In single-
objective PSO the global best particle is determined eas-
ily by selecting the particle which has the best position.
Since in multi-objective optimization problems there is
a set of Pareto-optimal solutions as the optimum solu-
tions, each particle of the population should select one

of the Pareto-optimals as its global best particle, which
we call it the best local guide. Figure 1 shows a structure
of a MOPSO with elitism, where ¢ denotes the gener-
ation index, P; the population, and A; the archive at
generation ¢. In this method, elitism is also considered,
since not to loose the non-dominated solutions during
generations. In Figure 1, the function Evaluate, evalu-
ates the particles in the population P; and the function
Update(P;, A;) compares whether members of the cur-
rent population P, are non-dominated with respect to the
members of the actual archive A; and how and which of
such candidates should be considered for insertion into
the archive and which should be removed. Thereby, an
archive is called domination-free if no two points in the
archive do dominate each other. Obviously, during exe-
cution of the function Update, dominated points must be
deleted in order to keep the archive domination-free. Se-
lecting the global best particle for each particle ¢ is done
in FindGlobal Best(Ayy1,#,') function. In this function
each particle has to change its position #i towards the
position of a local guide which must be selected from
the updated set of Pareto-optimal solutions stored in the
archive Ayy1. This function will be discussed in the next
section. In Step 5-c, p* of the particle i is updated. p*
is like a memory for the particle ¢ and keeps the non-
dominated (best) position of the particle by comparing
the new position Z,% ; in the objective space with 7 (P} is
the last non-dominated (best) position of the particle 4).
The steps of an elitist MOPSO are iteratively repeated
until a termination criterion is met such as a maximum
number of generations or when there has been no change
in the set of non-dominated solutions found for a given
number of generations. The output of an elitist MOPSO
method is the set of non-dominated solutions stored in
the final archive.

III. FINDING GOOD LOCAL GUIDES

As mentioned before, there exist already several
MOPSO methods [4], [1], [3], [7]- In each of these meth-
ods (apart from the differences in the main algorithm),
there is also a suggestion for finding the best local
guides. In most of these methods, there is an inspiration
of multi-objective evolutionary algorithms (MOEA). In
this section, we discuss briefly some of these methods,
their advantages and disadvantages, then we introduce
a new method for finding the best local best guides.

Hu and Eberhart’s MOPSO [4]: Hu and Eber-
hart present a MOPSO that uses a dynamic
neighborhood strategy. In their method explained
for two-objective optimization, the best local guide
p 59 for the particle ¢ is found in the objective

MOPSO Algorithm
BEGIN
Input: Optimization problem.
Output: Non-dominated solutions in archive (A)

Stepl: t=0
Step 2: Initialization:
Initialize population P;:
For i =1to N,
Initialize %, 7, = 0 and ;! = 7}
End;
Initialize the archive A; := {};
Step 3: Evaluate(P;);
Step 4: Ai41 := Update(Py, At);
Step 5: P11 := Generate(Py, At):
For i =1 to N,
a) p,"? := FindGlobal Best(Ayy1,T,});
b) For j=1ton
U;-’t+1 = wv}’t + Ry (p;-,t — :c;-’t)—k
: Ra(p7 = 25,0);
Thpq =T, T
End;

End;
Step 6: Unless a termination criterion is met:
t=1t+ 1 and goto Step 3.
END

Fig. 1. Multi-objective PSO algorithm.

space as follows: First the distance of particle i to
other particles is calculated in terms of the first
objective value which is called fixed objective. Then
k local neighbors based on the calculated distances
are found. The local optima among the neighbors
in terms of the second objective value is the best
local guide ' *9 for the particle i. In this method,
selecting the fized objective must be done by having
a priori knowledge about the objective functions
and one-dimensional optimization is used to deal
with multiple objectives. Therefore, selecting
the best local guides depends on just one of the
objectives.

Coello and Lechuga’s MOPSO [1]: Coello and
Lechuga propose a MOPSO which has the same
structure as in Figure 1. In this method the objec-
tive space is divided to hypercubes, before selecting
the best local guide p 9 for each particle i, like as
if putting a grid on the objective space. In the next
step, a fitness value is assigned to each hypercube
depending on the number of elite particles that lie
in it. The more the elite particles are in a hypercube
the less is its fitness value. Then roulette-wheel

selection is applied on the hypercubes and one of
them is selected. At the end, §%9 is a random
particle selected from the selected hypercube.
Therefore, the best local guide is selected by using
the roulette-wheel selection method, which is a
random selection. Indeed, it is possible that a par-
ticle doesn’t select a suitable guide as its local guide.

Fieldsend and Singh’s MOPSO [3]: Fieldsend

and Singh present a MOPSO, which uses an un-
constraint archive. In their method, a different
data structure (called dominated tree) for storing
the elite particles facilitates the choice of a best
local guide for each particle of the population. By
using this special archive, they address to find the
best local guide, which considers all the objective.
In their method, they store the non-dominated
solutions in the archive called dominated tree. The
dominated tree consists of a list of L = [|A|/m]
composite points ordered by a weak dominance
relation, where |A| is the archive size:

T={0L 22X X} (3)

In the dominated tree, each composite point is a vec-
tor of m elements and each element is constructed as
follows: The first composite point ¢; is constructed
by finding the particle y,,, € A with maximum first
coordinates; this value forms the first coordinate of
the composite point: ¢1,1 = maz (Yym,1), for ym € A.
The particle y,,, is now associated with ¢; and is not
considered anymore. Likewise the second coordinate
of ¢; is given by the maximum second coordinates
of the remaining points in A: ¢12 = maz (Ym,2),
for y,, € A. This procedure is repeated to construct
subsequent composite points until all elements of A
are associated in the tree. In general, the dth coor-
dinate of ith composite point is given by:

¢i,d = maz(Ym,qd) (4)

Figure 2 shows this method for a two-objective ex-
ample, where ¢, - - -, ¢4 are composite points. In this
method the selection of the best local guide for a
particle in the population is based upon its close-
ness (in objective space) to a particle in the archive.
The best local guide for a particle ¢ is that archive
member of the composite point c; contributing the
vertex which is less than or equal to the correspond-
ing objective in ¢. This is also shown in Figure 2. In
the case that a composite point has more than one
vertex less or equal to particle 4, one of the vertices
that meets the condition is selected at random (for
more details see [3]).

m Archive—-membe
o) Ol o Particle

Fig. 2. Choosing the best local guide among the archive
members for each particle in the population. Fieldsend
and Singh‘s method [3].

The way that the local guides are selected in Fieldsend
and Singh’s MOPSO is said to be better than the method
proposed by Coello and Lechuga [3]. However, they have
both tested their algorithms for two-objective test func-
tions. Considering higher dimensional objective spaces,
Fieldsend and Singh’s MOPSO tries just to guide the
particles to special members of the archive, where the
aim of PSO is to let the particles to fly towards the best
solutions. This problem can also be seen in Figure 2 for
a two-objective space. The particles which have both of
their objective values more than ¢; must still select one
of the archive members making the composite point ¢y,
where for most of them other guides coming from com-
posite points ¢z or c3 are more suitable.

A. Sigma method

In this Section we propose a new method called Sigma
method for finding the best local guide for each particle.
Before explaining the method in finding the best local
guides, we discuss the basic idea of the Sigma method in
its general form first. Later, we will explain how we can
find the best local guide for each particle of the popula-
tion in the objective space.

In our method, we assign a value o; to each point with
coordinates (f1,;, f2,;) so that all the points which are on
the line fo = af; have the same value of ¢. So, we can
define o as follows:

fi— 13
TR+ ©
According to Equation 5, all the points on the line fo =
afi have the same o values: o; = (1 — a?)/(1 + a?).
Figure 3 shows the values of ¢ for different lines. For the
point with the coordinate (f1,, f2,i), if fi,; = f2; then
o = 0. In the case that fo; = 0, 0 = 1 and in the case

fi,i =0, 0 = —1. Therefore, when a > 1, ¢ is negative
and when a < 1, ¢ has a positive value. Indeed o states
the angle between the line fy = ﬁ f1 and the axis f;.

Fig. 3. Sigma method for a two-objective space.

In the general case, let o be a vector of (g‘) elements,

where m is the dimension of the objective space. In this
case, each element of & is the combination of two coordi-
nates in terms of the Equation 5. For example for three
coordinates of f1, fo and f3, it is defined as below:

-1
F=| B |/E+E+) (6)
- f

Different values of & for different values of fi, fo and
fs are shown in Figure 4. In the general case, when
a point has the same position in each dimension (e.g.,
fi = f2 = f3 in 3 dimensional space), & = 0.

0
505

Fig. 4. Sigma method for a three-objective space.

A.1 Finding the best local guides using the Sigma method

Using the basic idea of Sigma method and by consider-
ing the objective space, finding the best local guide (,"?)
among the archive members for the particle 7 of popula-
tion is as follows: In the first step, we assign the value o;
to each particle j in the archive. In the second step, o; for
particle i of the population is calculated. Then we calcu-
late the distance between the o; and o;, Vj =1,---,|A|.
Finally, the particle k in the archive which its o has the
minimum distance to o; is selected as the best local guide
for the particle i. Therefore, particle 5,9 = z* is the best
local guide for particle i. In other words, each particle
that has a closer sigma value to the sigma value of the
archive member, must select that archive member as the
best local guide. In the case of two dimensional objective
space, closer means the difference between the sigma val-
ues and in the case of m-dimensional objective space, it
means the m-euclidian distance between the sigma val-
ues. Figure 5 shows how we can find the best local guide
among the archive members for each particle of the pop-
ulation for a two-dimensional objective space.

m Archive-member
OParticle

g
Fig. 5. Finding the best local guide for each particle of the
population using the Sigma method.

The reason for selecting particle k from the archive
members as the best local guide is that o has the clos-
est distance to o; among the archive members. When
two o values are close to each other, it means that the
two particles are on two lines (e.g., fo = af; for two-
dimensional space) which are close to each other (there
is just a small angle between them). When comparing
our approach to the method proposed by Fieldsend and
Singh [3] (see Figure 2), the Sigma method lets the par-
ticles to fly directly towards the Pareto-optimal front,
where [3] blocks the particles and guides them towards
those archive members which are in the special positions
in the objective space.

The algorithm of the Sigma method is shown in Fig-
ure 6. There, the function Sigma calculates the value of

¢ and calcdist computes the euclidian distance between
its inputs. In this algorithm, i; denotes the objective
value of the jth element of the archive A.

FindGlobalBest Algorithm
BEGIN
Input: A, Tt
Output: § ©9

Step 1: Calculate the o for the members of A:
For j =1 to |A],
o; = Sigma(y)
End;
Step 2: Calculate o; for the particle 2:
o; = Sigma(f(i‘i));
dist = calcdist(o1,0;);
For j =2 to |A],
tempdist = calcdist(oj,0;);
If tempdist < dist,
dist = tempdist;
g9=17
End;
End;
END

Fig. 6. The algorithm of the Sigma method for finding the
best local guide *7 for the particle ¢ of the population.

IV. EXPERIMENTS

In this section first we will explain how we have imple-
mented the Sigma method, then we present experiments
based on some test functions. Finally, we present com-
parative results with respect to other existing methods.

A. Sigma method in MOPSO

The Sigma method is implemented as part of the
MOPSO algorithm as described in Figures 1 and 6.
In the case that the objectives are not in the same
range, o may be calculated as below for a two-objective
optimization problem:

5 = Eaf1)? = (Kif>) (7)
(K2f1)? + (K1f2)?

where K1, Ky are the maximum values of the first and
second objective values of the particles in the population,
respectively (Figure 5). In our implementation, we have
also added a turbulence factor [3] to the updated position
of each particle in the population. This parameter is like
the mutation operator in evolutionary algorithms and is
done by adding a random value to the current position
of each particle. We have implemented the turbulence
factor as below:

:c;t + Rr x;t (8)

Where Ry is a random value in [0, 1] which is added to
the updated position of each particle with a probability.

B. Test functions

We have used different test functions for testing and com-
paring the Sigma method with other methods. These
test functions are two- and three-objective optimization
problems selected from [9], [2] and are shown in Table I.

TABLE 1
TEST FUNCTIONS

Test Function

1 g($2a’wn):1+9(27:2w1)/(n_1)

h‘(flag) =1- V fl/g
fi(z1) =z
f2(i) = g($2,"',$n)-h(f1,g)

2 g(mza5$n):1+9(2?=2z1)/(n_1)

h({h;)) =1-+/f1/9—(f1/9)sin(107f1)
fi(z1) = =1
f2(f) :g(a;Z;"'amn)‘h’(flag)—i_l

3 g(z2,---,zn) =1+ 10(n — 1)(22;2 z; — 10 cos(4mz;))

h(f1,9) =1-+/f1/9

fi(z1) ==
f2(Z) = g(z2, -+, 2n)-h(f1,9)
4 f1(Z) = (1 + z2) cos(z17/2) cos(zam/2)

f2(%)
f3(Z)

(1 + x2) cos(z1m/2) sin(za7m/2)
(14 z2) sin(z17/2)

In Table I, z; € [0,1] for the test functions 1,2 and 4,
and 21 € [0,1] and z; € [—5,5],¢ # 1 for the test function
3. In the two-objective test functions, n = 30 and in the
three-objective test function, n = 3.

C. Parameter settings

In our implementation, we use w = 0.4 and R; and R
as random values in the range [0,1]. The probability of
adding the turbulence factor is set to be 0.01 and 0.05 in
different test functions. Population size is chosen N =
300 and is run for 100 and 500 generations. The size of
the archive is set to 50 for the two-objective test functions
and to 100 for the three-objective test function. In the
case that the archive size increases the maximum defined
size, clustering is applied on the elite particles in the
archive [9]. The initial population consists of uniformly
distributed particles in the variable space.

D. Experimental results and comparison

In this section we present results of using the Sigma
method, then we compare this algorithm with two other

methods. The first method, which we call D-tree method
has the same structure as Figure 1. In this method,
the function FindGlobalBest is implemented as intro-
duced by Fieldsend and Singh [3]. The second method
is MOGA which is the implementation of the Strength
Pareto Evolutionary Algorithm (SPEA2) method [10].
Figures 7 and 8(a)-(c) show the results of the Sigma
method, the D-tree method and MOGA applied on the
test functions 1 and 2. Both of these test functions
are convex functions, where the first one is continuous
and the second one has discontinuities in the Pareto-
optimal front. In these cases, the population size is set
to NV = 300, the number of generations to 100, archive
size to 50. For the MOPSO methods, the turbulence
probability is 0.01 and for the MOGA method the prob-
ability of mutation is 0.01 whereas the crossover prob-
ability is set to 0.8. Figures 7 and 8(d) show the re-

(a) Sigma method (b) D-tree method

1
3 i
08", o8l
- -,
o6 ., 06l
0.4 0.4
- e
02 Tl 02
0 0
o 02 04 06 08 1 o 02 04 06 08 1
f f1
(c) MOGA (d) Comparison
1 E
It X Sigma
< + D-tree
08f%, 08 T mooa
06 - 06
o &
0.4 e 04
: =
~ %X»
02 - 0.2 o
. s&m
0 ; 0
o 02 04 06 08 1 o 02 04 06 08 1
f f1
Fig. 7. Comparison of the Sigma method (a), the D-tree

method (b) and MOGA (c) applied on test function 1.

sults at the same time of comparison. As it is shown in
these figures, the Sigma method has a better diversity
and convergence than the D-tree method and MOGA.
Convergence of the solutions can be tested by a quan-
titative comparison when using the C metric [9]. Al-
though because of the differences in the diversity of the
obtained results the C metric is not a proper quantita-
tive metric for comparing [6], we try to use this metric
to make Figures 7 and 8(d) more clear. For test function
1, C(MOGA, Sigma)= 0 and C(Sigma, MOGA)= 0.26
and it means that non of the solutions of the MOGA can
weakly dominate the solutions of the Sigma method. For
test function 2, C(MOGA, Sigma)= 0.24 and C(Sigma,
MOGA)= 0.1. Here, we conclude that the results are

(a) Sigma method

kY 15 \
5,

(b) D-tree method

15

S y [SH] A
4

05 ' . 05

0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

f1 f1
(c) MOGA (d) Comparison
2
. x Sigma
+ D-tree

+ MOGA

Y “
15 1 15
b
&1 . &1 %
1S % X

05 . 05
«

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

fl fl

Fig. 8. Comparison of the Sigma method (a), D-tree method
(b) and MOGA (c) applied on test function 2.

incomparable in terms of convergence, however we can
observe that the result of the Sigma method has a better
diversity than MOGA.

Figure 9 shows the results on test function 3. This
test function has 21° local optima and finding the global
Pareto-front is very difficult for each of the three meth-
ods. In this case, we have increased the turbulence prob-
ability to 0.05 and the number of generations to 500.
As it is shown in Figure 9(d), the Sigma method can
find better solutions than MOGA and D-tree method.
Figures 10(a)-(c) show the results of the methods ap-

(a) Sigma method (b) D-tree method

11 17
Y 165/
105 'y
™ 16
10 155
o . o
95 e 15
145
9
14
‘~ .
8.5 135
0 0.1 0.2 0.3 0.4 0 0.02 0.04 0.06 0.08
fl f1
(c) MOGA (d) Comparison
30 35
291 30t...,. -
25 o - o
28 "
20
& 27 &
LN 15 ‘Tﬂ»
% N 10w -
tel x Sigma
25 ¥ . 5 + D-tree
- MOGA
24 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
f1 f1

Fig. 9. Comparison of the Sigma method (a), D-tree method
(b) and MOGA (c) applied on test function 3.

plied on test function 4. Here, we have chosen popula-
tion size of 300 and 500 as the number of generations.
For obtaining a better result from MOGA, we have also
increased the Mutation probability to 0.1. As we can
observe, MOGA can find solutions with a very good con-
vergence as compared to both of the MOPSO methods.
Comparing the Sigma method with the D-tree method,
the Sigma method can find more solutions on the front.
Considering diversity, the solutions of the MOPSO meth-
ods have better diversity than MOGA. In test function

(a) Sigma method

o e
Y, A~ . <

Fig. 10. Comparison of the Sigma method (a), the D-tree
method (b) and MOGA (c) applied on test function 4.

4, when f1(2%) + f2(2?) + f3(z7) = 1 it means that parti-
cle j is on the Pareto-optimal front. So we can calculate
err which can be defined among the archive members as
follows:

1- (f1(.Z"7) + f2($j) + f3($j))= Vi=1,---, |A|

Hence we can calculate the histogram which is the
amount of points which have a certain err. The points
which have err = 0 are on the Pareto-optimal front. Fig-
ures 11(a)-(c) show the histograms of err applied on the
results of Sigma method, D-tree method and MOGA.

err =

The Sigma method and MOGA can find solutions with
err = 0, where the D-tree method can not find. If we
set a comparison line on err = 0.5, MOGA finds more
solutions than the Sigma method and the D-tree method
with err < 0.5. Comparing the Sigma method and the
D-tree method, the Sigma method can find more solu-
tions than the D-tree method with err < 0.5. However,
we can observe that the sigma method can find solutions
with a very good diversity and better than MOGA.

(a) Histogram (Sigma)

Il

0.5 1 15

N
S

Number of particles
o i
5 &

@

sl

o
)

(b) Histogram (D-tree)

20

Number of particles
s
5

H n o 0
0 05 1 15

(c) Histogram (MOGA)

Number of particles
o
5

E=—=
s
=
e
=)

0 05 1 15

Fig. 11. Histograms of err for the results in Figures 10(a)-(c).

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new method called Sigma
method in MOPSO for finding the best local guides in
order to converge fast towards a Pareto-optimal front
of high diversity. As our experiments has shown, this
method can find solutions with very good diversity and
convergence. However, we have to say that for getting
good results of a MOPSO we had to increase the num-
ber of particles in the population. Because for find-
ing the best local guide which is the most important
part in PSO (for searching the variable space), we need
enough distributed solutions in the objective space. We
have also added the turbulence parameter to do some
abrupt changes in the population. Comparing the Sigma,
method with the proposed method for finding the best lo-
cal guides by Fieldsend and Singh [3], the Sigma method
can find solutions with better convergence and diver-
sity for two- and three-objective test functions. Com-

pared to SPEA2 which is an evolutionary algorithm, the
Sigma method can find solutions with better convergence
and diversity for two-objective test functions. However,
for three-objective test functions, the Sigma method can
not find solutions with better convergence than SPEA2
but with a better diversity. These results are all for
the recorded number of generations and population size,
however all of these methods can find solutions with good
convergence and diversity after a large amount of genera-
tions. We have to note that since the Sigma method can
only work on the positive values of the objective space,
all the test functions must have positive objective val-
ues. This must be done by having an approximate priori
knowledge about the test functions.

In the future we would like to investigate and com-
pare different clustering methods when using the Sigma
method. As the Sigma method can give us a very good
diversity of solutions, we would also like to investigate the
influence of the parameters, especially for higher dimen-
sional objective spaces to achieve a better convergence.

References

[1] C. A. Coello Coello and M. S. Lechuga. Mopso: A proposal
for multiple objective particle swarm optimization. In IEEE
Proceedings, World Congress on Computational Intelligence
(CEC2002), pages 1051-1056, 2002.

[2] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scal-
able multi-objective optimization test problems. In IEEE
Proceedings, World Congress on Computational Intelligence
(CEC2002), 2002.

[3] J. E. Fieldsend and S. Singh. A multi-objective algorithm
based upon particle swarm optimisation, an efficient data
structure and turbulence. In The 2002 U.K. Workshop on
Computational Intelligence, pages 34-44, U.K., 2002.

[4] X. Hu and R. Eberhart. Multiobjective optimization using
dynamic neighborhood particle swarm optimization. In IEEE
Proceedings, World Congress on Computational Intelligence
(CEC2002), pages 1677-1681, 2002.

[5] James Kennedy and Russell C. Eberhart. Swarm Intelligence.
Morgan Kaufmann, 2001.

[6] J. Knowles and D. Corne. On metrics for comparing non-
dominated sets. In IEEE Proceedings, World Congress on
Computational Intelligence (CEC2002), pages 711-716, 2002.

[71 K. E. Parsopoulos and M. N. C. Vrahatis. Particle swarm
optimization method in multiobjective problems. In of the
2002 ACM Symposium on Applied Computing (SAC), pages
603-607, 2002.

[8] Y. Shi and R. C. Eberhart. Parameter Selection in Particle
Swarm Optimization. Evolutionary Programming, 591-600,
1998.

[9] E. Zitzler. Evolutionary Algorithms for Multiobjective Opti-
mization: Methods and Applications. TIK-Schriftenreihe Nr.
30, Diss ETH No. 13398, Shaker Verlag, Germany, Swiss Fed-
eral Institute of Technology (ETH) Zurich, 1999.

[10] E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving
the strength pareto evolutionary algorithm for multiobjective
optimization. In EUROGEN 2001, Evolutionary Methods for
Design Optimisation and Control with Applications to Indus-
trial Problems, 2001.

