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Abstract- In this paper, the influence of � -dominance on


Multi-objective Particle Swarm Optimization (MOPSO)


methods is studied. The most important role of � -
dominance is to bound the number of non-dominated so-


lutions stored in the archive (archive size), which has in-


fluences on computational time, convergence and diver-


sity of solutions. Here, � -dominance is compared with


the existing clustering technique for fixing the archive


size and the solutions are compared in terms of com-


putational time, convergence and diversity. A new di-


versity metric is also suggested. The results show that


the � -dominance method can find solutions much faster


than the clustering technique with comparable and even


in some cases better convergence and diversity.


1 Introduction


Archiving is studied in many Multi-objective Optimization


(MO) methods. In the context of Evolutionary MO meth-


ods, archiving is called elitism and is used in several meth-


ods like Rudolph’s Elitist MOEA, Elitist NSGA-II, SPEA,


PAES (see [2] for all) and SPEA2 [17]. In these methods,


the non-dominated (best) solutions of each generation are


kept in an external population, called archive. Therefore


the archive must be updated in each generation. The time


needed for updating the archive depends on the archive size,


population size and the number of objectives and increases


extremely when increasing the values of these three fac-


tors [10]. There are a few studies on data structures for


storing the archive as a non-dominated set e.g., in [12, 6].


These data structures also take lots of time, when increas-


ing the archive size. Indeed it is reasonable to fix the size of


the archive to avoid the large number of comparisons during


updating. There are several methods, like clustering, trun-


cation in SPEA2 and crowding techniques to fix the archive


size. These methods must also keep good diversity of so-


lutions, which tends to make them the most expensive part


in the updating procedure. Here, we propose to use the idea


of � -dominance in [13, 9] to fix the size of the archive to a


certain amount. This size depends on � . By increasing � ,
the archive size decreases. We use this method to obtain the


approximate Pareto-front and compare the method with the


existing MOPSO method which uses a clustering technique.


The � -dominance method has influence on the convergence


and diversity of solutions, while reducing the computational


time. In some cases the computational time is much less


than 100 times that of the clustering technique. The com-


parison is done in terms of computational time, convergence


and diversity of solutions. There are several metrics for


comparing convergence and diversity of solutions. Here we


suggest a new idea for a diversity metric (Sigma method),


which is inspired from [11]. In [11], we have proposed the


Sigma method for finding the local guides in MOPSO. The


idea of this method can be used to find a good diversity


metric for different test functions, however, for some func-


tions other diversity metrics are also suggested [8]. We also


study using an initial archive instead of an empty one. This


has more influences in MOPSO techniques than other MO


methods. The empty archive is filled in the first generation


by the non-dominated solutions in the initial population and


these archive members will be the local guides for the parti-


cles in the population. But if they are not in well distributed


positions, we will lose the diversity of solutions just after


one generation, therefore there is the need to have an initial


well distributed archive.


In this paper, the definitions of domination, and � -
domination are studied in Section 2. In Section 3 the


MOPSO method is briefly reviewed and in Section 4 the


combination of MOPSO and � -dominance, the results on


different test functions and comparison with clustering tech-


nique are studied. Finally we conclude the paper in Sec-


tion 5.


2 Definitions


A multi-objective optimization problem is of the form


������������	�
����������������������������������� ��!"����#��$ (1)


subject to ��&%&' , involving � conflicting objective func-


tions ��(*),+,-/.0+ that we want to minimize simultane-


ously. The decision vectors
��213�4�5�6���#�7����������� - �98 belong


to the feasible region
';:<+=-


. The feasible region is formed


by constraint functions.


We denote the image of the feasible region by > :?+ !
and


call it a feasible objective region. The elements of > are


called objective vectors and they consist of objective (func-


tion) values
��@����A�B1C�D��������5�����6������������������ �6!E����A��� .


Definition 1: Domination A decision vector ��5�F%G' is


said to dominate a decision vector ��A�H%/' (denoted ��5��I
��#� ) iff:


- The decision vector ��5� is not worse than ��A� in all ob-


jectives, i.e., � ( ����5���KJ<� ( ����L����MA�@1CN����������9� .







- The decision vector ���� is strictly better than ���� in at


least one objective, or
���
	 ������� ����	 ������ for at least


one ��������������� .


Definition 2: Weak Domination A decision vector �� �
weakly dominates �� � (denoted �� ��� �� � ) iff:


- The decision vector ���� is not worse than �� � in all ob-


jectives, i.e.,
� � 	 �����"! � � 	 ��#��� $ �%�&�'�(�(���
� .


Definition 3: Pareto Optimal Front A decision vector


����*),+ is called Pareto-optimal if there does not exist an-


other ����-).+ that dominates it. An objective vector is


called Pareto-optimal if the corresponding decision vector


is Pareto-optimal.


Let /103254 be a set of vectors. The Pareto Optimal


Front /76809/ contains all vectors �� � ) / , which are not


dominated by any vector �� � ) / :


/ 6;: ��< ����;) /8=�> ����?) / : �����@ �����A (2)


Definition 4: B -domination A decision vector ��C�D)E+ is


said to B -dominate a decision vector �� �F)G+ for some B5HJI
(denoted �� � @LK �� � ) iff:


-
���
	 �� � �NM 	 �POEB �"! ����	 �� � ��$ ���&������(���� .


-
� � 	 �����NM 	 ��O B �P� � � 	 ������ for at least one �Q�-���������� .


Figure 1 shows the concept of B -domination. By considering


this definition, the domination areas increase by increasing


the objective values. For smaller values of objectives the


dominating area is smaller than for larger objective values.
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Figure 1: Domination and B -domination


Definition 5: B -approximate Pareto Front Let /X0 2Y4
be a set of vectors and BZH[I . The B -approximate Pareto


Front / K 0\/ contains all vectors �� � ) / , which are not


B -dominated by any vector �� � ) / :


$ �� ��) / :'] �� � such that ����L@ K ���� (3)


We have to note that the set / K is not unique, but contains


just certain amount of vectors, depending on the B value.


This has been studied in [13, 9]. For any finite B and any set


/ with objective vectors � ! � � !_^ � $ � ) <'���(�(�(�`��� A ,
there exists a set / K containing:


= / K =��badc 	fehg�i ^
ejg�i 	 �PO B �


� 4Lk �`l (4)


Here, we consider that B is the same for all objectives.


3 MOPSO Methods


Figure 2 shows the algorithm of a Multi-objective Optimiza-


tion method, which we use here for Multi Objective Particle


Swarm Optimization technique. MOPSO methods are stud-


ied in [1, 6, 11, 14]. In this algorithm m denotes the gener-


ation index, n%o the population, and p;o the archive at gen-


eration m . In Step 2 the population n o is initialized, which


contains the initial particles, their positions ��
�
o and their ini-


tial velocities �q
�
o . The external archive p o is also initial-


ized in this step, which is empty. The function r qts evu s m�w in


Step 3, evaluates the particles in the population nQo and the


function x"y#z s m w 	 n o � p o � updates the archive and stores the


non-dominated solutions among n o and p o in the archive.


BEGIN


Step 1: m��{I ;


Step 2: Initialize population nQo and archive pLo
Step 3: Evaluate n%o
Step 4: p ov| � : � x"y�z s m w 	 n o � p o �
Step 5: n ov| � : �~}Fw���w(� s m w 	 n o � p o �
Step 6: m � m O{�
Step 7: Unless a m w�������� s m � g �8����� m w���� g � is met,


goto Step 3


END


Figure 2: Typical structure of an archive-based MOPSO.


Step 5 is the most critical Step in MOPSO techniques.


In this step the velocity and position of each particle � is


updated as below:


q ��
� ov| � � � q
���� o O�� ��F� 	 y


��
� o%� � ��
� o � OE� �(�;� 	 y
� � ��N� o � � ��N� o �


� ��
� ov| � � � ���� o O q ��N� oj| � (5)


where � �����(�(��(��� , � is the inertia weight of the particle,


� � and � � are two positive constants, and � � and � � are ran-


dom values in the range c I �(� l .
According to Equation 5, each particle has to change its po-


sition ��
�
o towards the position of a local guide �y


� � �o which


must be selected from the updated set of non-dominated so-


lutions stored in the archive p ov| � . How to select the local


guide from the archive has a great impact on convergence


and diversity of the solutions and is studied in [1, 6, 7, 11].


In this equation, �y
�


is like a memory for the particle � and


keeps the non-dominated (best) position of the particle by


comparing the new position ��
�
oj| � in the objective space with


�y
�
o ( �y


�
o is the last non-dominated (best) position of the par-


ticle � ).
At the end of this step, a turbulence factor is added to the


positions of the particles. This is done by adding a random


value to the current position of each particle:


� ��N� ov| � � � ��
� ov| � O ���*� ��
� ov| � (6)


Where � � ) c � �'�� l is a random value added to the updated


position of each particle with a probability.


The steps of the MOPSO algorithm are iteratively repeated


until a termination criterion is met such as a maximum num-


ber of generations or when there has been no change in the







set of non-dominated solutions found for a given number of


generations. The output of the MOPSO method is the set of


non-dominated solutions stored in the final archive.


4 Archiving


As it is explained in Section 3, an external archive is used


to keep non-dominated solutions found in each generation.


The archive members must be updated in each generation


by the function Update (Step 4, Figure 2). The Update


function compares whether members of the current popu-


lation ��� are non-dominated with respect to the members


of the actual archive ��� and how and which of such can-


didates should be considered for insertion into the archive


and which should be removed. Thereby, an archive is called


domination-free if no two points in the archive do domi-


nate each other. Obviously, during execution of the func-


tion ���	��
��� , dominated solutions must be deleted in order


to keep the archive domination-free. Several data structures


are proposed for storing the non-dominated solutions in the


archive [6, 12] in order to reduce the computational time of


the method. In this section, we are trying to focus on two


properties of the archive and their influences on the results


of the method: The size of archive and the initial archive


members.


4.1 Archive Size and � -dominance


In most of multi-objective optimization (MO) methods the


archive must contain a certain amount of solutions, while


keeping a good diversity of solutions. In some of MO meth-


ods (e.g., [17]) the archive must have a fixed size and in the


case that the number of non-dominated solutions is less than


the fixed size, some particles of the population are selected


at random to be inserted in the archive. In the case that the


size of the set of non-dominated solutions becomes higher


than the fixed size, truncation or clustering techniques are


applied. In [16, 11], the archive size has an upper bound and


as soon as the number of non-dominated solutions becomes


higher than the archive size, truncation techniques are used.


However, we have to note that by increasing the size of the


archive the computational time increases. In [10], the com-


putational time of the different test functions with different


number of objectives and archive sizes, for different pop-


ulation sizes are discussed. By increasing the number of


objectives and population size and archive size, the compu-


tational time of the method increases extremely.


Here, we propose to use the concept of � -domination


instead of domination when updating the archive i.e., in-


stead of comparing the particles using domination criterion,


we compare them using the � -dominance criterion. There-


fore, the size of the archive will have an upper bound of���������������� �����! �"$#&%('*) �,+ , where - is the upper bound of the objec-


tive values. It is obvious that the size of the archive depends


on the � value. Hence by using this � -dominance we can


keep the size of the archive limited and we can reduce the


computational time. Applying the � -dominance in MOPSO


techniques also has influence on the convergence and diver-


sity of the results that will be discussed later.


4.2 Initial Archive


In the MOPSO methods the initial archive is empty. So in


the first generation the non-dominated solutions of the ini-


tial population are stored in the archive and the particles of


the population should select their best local guide among


these archive members. Selecting the first local guides from


the archive has a great impact on the diversity of solutions


in the next generations especially in methods explained


in [6, 11]. Hence the diversity of solutions depends on the


first non-dominated solutions. But if the initial archive is not


empty and contains some well-distributed non-dominated


solutions, the solutions converge faster than before, while


keeping a good diversity. Figure 3 left shows the initial pop-


ulation and the non-dominated particles among them which


are stored in the empty archive. In this figure, particles se-


f1f1


f2


initial archive member
particle


f2


non−dominated particles


Figure 3: Influence of the initial archive


lect one of these archive members as the local guide by us-


ing Sigma method [11] and one can imagine that after one


generation particles will move towards the left part of the


space. In Figure 3 right, the initial archive is not empty, but


it has some members which dominate all the particles in the


population. This time in the next generation the particles


will obtain a better diversity than in the left figure.


Now, the question is how to find a good initial archive.


The initial archive can be found in different ways. The first


possibility is to run the MOPSO with an empty archive for


a large population and a few generations. The large popu-


lation gives us a good diversity and a few generations (e.g.,


5 generations) develops the population just to a little con-


vergence. Another possibility is to use the results of a short


MOEA (Multi-Objective Evolutionary Algorithm) method.


Here, short means a MOEA with a few individuals and a


few generations (e.g., 10 individuals and 10 generations).


We know that MOEA can give us some good solutions with


a very good diversity after a few generations. Short MOEAs


has also been used in combination with other methods like


subdivision methods [15].


5 . -dominance and MOPSO


In this section we apply the � -dominance in the MOPSO


method and then compare it with MOPSO using the clus-


tering technique. Both of these methods use the Sigma







method [11] for finding the best local guides. The clus-


tering technique is explained in [16] and is also used in


MOPSO in [11]. Here, we also use an initial archive for


each test function. The initial archives are the results of a


short MOPSO using the Sigma method. The short MOP-


SOs have a bigger population size than the usual MOPSO


and are run for a few generations. In this section, we study


the influence of � -dominance on the computational time,


convergence and diversity of solutions and compare the con-


vergence and diversity of solutions. For comparing the di-


versity of solutions, we also suggest a new diversity metric.


5.1 Diversity Metric


We can consider the position of each solution in 2- and 3-


objective spaces by polar coordinates ( � and
�
) and spherical


( � , � and � ) coordinates respectively. Inspired from these


coordinates, we can formulate the diversity of solutions by


a well distribution in terms of their angles
�


for 2-objective


spaces and
�


and � for 3-objective spaces. However, for


higher dimensional objective spaces, we can not define a


coordinate axes which gives us a simple distribution like in


polar or spherical coordinates. Therefore, we suggest to use


the concept of the Sigma method, which we have introduced


in [11] for calculating the local guides in MOPSO. Here, we


explain briefly the Sigma method and how one can use it to


calculate the diversity of solutions.


Sigma Method [11] In this method, a value ��� is assigned


to each solution with coordinates �	��
� ��� ����� ��� so that all the


solutions which are on the line ����������
 have the same


value of � . Therefore, � is defined as follows:


� � � �
�� � ��� �
�� � �� (7)


Figure 4 shows the values of � for different lines. Indeed �
states the angle between the line � � � �"!�# $�&%'# $ � 
 and the axis�(
 .
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Figure 4: Sigma method for 2- and 3-objective spaces.


In the general case, � is a vector of )	* �,+ elements, where- is the dimension of the objective space. In this case, each


element of .� is the combination of two coordinates in terms


of the Equation (7). For example for three coordinates of� 
 , � � and �(/ , it is defined as follows:


.�0�
12 � �
 � � ��� �� � � �/� �/ � � �



3465
�	� �
 � � �� � � �/ � (8)


Different values of .� for different values of ��
 , �7� and � /
are shown in Figure 4. In the general case, when a point has


the same position in each dimension (e.g., ��
8�6�7�9�:� / in


3 dimensional space), .�;� .< .
We have to note that the objective functions must contain


positive values, otherwise we have to transform them into


the positive regions and when the objectives are not in the


same ranges scaled sigma values [11] are used.


Sigma Diversity Metric Figure 5 shows the idea of us-


ing the Sigma method as a diversity metric for 2-objective


spaces. As it is shown, = �?> lines with different sigma val-


ues are drawn from the origin. These lines are called refer-


ence lines and have the angle
�@ �BA � � to the �(
 axis, whereC � < � > �BDEDBD�� = . We consider = �F> reference lines for


computing the diversity of an archive with the size of G HIG
( G HIGJ�K= �L> ). In the next step, the sigma value of each
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Figure 5: 2-objective Sigma Diversity Metric. Black points


are the solutions of a 2-objective test function and the lines


are reference lines.


reference line should be computed, which we call reference


sigma value. In the case that all of the G HIG solutions are well


distributed, they should be spread in many different regions.


For higher dimensional spaces, the reference lines are


also defined by lines passing the origin. In order to find the


angles between the lines and each coordinate axis, it is eas-


ier to find reference points located on the reference lines.


Hence in an
-


dimensional space, the coordinate of each


reference point is a vector of
-


elements. Algorithm 1 cal-


culates the coordinates of the reference points. For example


we obtain � > � < ��� � > ��M ��NJ�BA O ����� � > �&M ��NJ�BA / ��� , for - �6P and=Q��R . Indeed in this Algorithm, the first coordinate of


point
C


is kept constant ( ��
� � � > ) and the other coordinates


are changing. However for obtaining the whole reference


points, the algorithm must be repeated - times, each time







one of the coordinates must be kept constant. In our exam-


ple in the second ( � th) run we keep the second coordinate


constant and obtain
�������	�
������������ �����	�	��������������� ���
���	�


. The


Algorithm 1 Calculate coordinates of reference points


Require: � ���
Ensure:


��� �
! "#�$�&%'! "���('(�('�$�&)*! "��'�,+.-0/1� �$2��'(�(�(��	��3546�	�
-7/8�
for 9 � /:�


to
�;46�


do


for 9 % / �
to


� 4<�
do(	('(


for 9 )>=.� / �
to


� 46�
do� � ! " /1�


�?% ! "@/A�B� ! " � ������C 9 �'D 2 � �� � ! " /A�B�$! " ��������C 9 %	D 2 ���(�(�(
�?)*! "@/E� ��! "F��������C 9 )>=.�	D?2B�G�
-�/H-�I:�


end for


end for


end for


I = i


number of reference points produced by Algorithm 1 de-


pends on
�


and � . In 2-objective spaces, the number of ref-


erence lines is equal to
� IH�


. In higher dimensional spaces�
is the number of regions which are separated by refer-


ence lines on the plane generated by only two of coordinate


axes. For example in Figure 6, on the plane generated by
� �


and
� �


axes, there are four regions separated by reference


lines. In higher dimensional spaces, the number of refer-


ence points made by Algorithm 1 is more than the required


number of reference lines. Because by repeating the algo-


rithm some points lie on the same reference line. In the pre-


vious example, the points
��� � � �����	� �F�#�


and
� � � ���	� �J�'�'�	�


, and��� � � ����� � � �K�
and


� � ����� � � �
���	�
are on the same lines. There-


fore, the number of reference lines can be calculated after


finding the sigma value (vector) of each reference point.


The points located on a reference line will have the same


sigma vectors and the number of reference lines is the num-


ber of non-repeated reference sigma vectors. Table 1 shows


Figure 6: Reference lines in 3-objective space (
�L/HM


).


the number of reference lines for different values of
�


in 3-


objective spaces. A binary Flag is also kept beside each ref-


Table 1: Number of reference lines obtained from different�
values for 3-objective spaces


�
number of ref. N


4 25 0.15


6 67 0.1


8 133 0.1


10 223 0.1


12 337 0.1


14 475 0.05


16 637 0.05


18 823 0.05


20 1033 0.05


erence sigma vector, which is
�


at the beginning. the Flag of


each reference sigma vector can only turn to
�
, when at least


one solution has a sigma vector equal or with a distance 1


less than N to it. A counter O counts the reference lines with


Flags equal to
�


and the diversity metric P becomes:


P / O
number of reference lines


(9)


The value of N depends on the test function, however it


should decrease when increasing the number of reference


lines. Table 1 shows an example on choosing N for 3-


objective test functions.


The Sigma diversity metric is easy to implement and is


very efficient in computing the diversity of solutions in high


dimensional spaces. The 2-objective Sigma diversity met-


ric seems to have some similarities to Entropy approach [5],


Sparsity measurement [3] and [8], especially when measur-


ing the diversity of very convex (or non-convex) objective


fronts. But in comparison to them, it is very easy to cal-


culate the diversity of solutions in high dimensional spaces


using the sigma diversity metric. The Sigma diversity met-


ric like the Sigma method can also be scaled for different


ranges of the objective values. However, the objective val-


ues must contain just the positive values, and the negative


values must be transfered to the positive part (i.e., upper


right quadrant of a circle in two dimensions). This is possi-


ble without loss of generality


5.2 Test Functions


The test functions are 2- and 3-objective optimization prob-


lems selected from [16], [4] and are shown in Table 2.


In Table 2, Q "SRUT � ���'V
. For test functions


� �
and


� %
,�W/AX �


and for test functions
� �


and
��Y


,
�Z/AX


.


5.2.1 Parameter Settings


The tests are done for 120 particles in the population and


300 generations with the turbulence factor of 0.01 and iner-


tia weight of 0.4. Initial archives are obtained by running a


MOPSO with population size 100 and 200 generations for


test functions
� �


and
� %


and population size 500 and 10 gen-


erations for test functions
� �


and
� Y


.


1Euclidian distance







Table 2: Test Functions: ���
��� Function


1 �����
	������������������������� �� � 	 �
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5.2.2 Results


The MOPSO is run for different U values using the U -
dominance technique. Then it is run again by using the


clustering technique. In the clustering technique, the max-


imum archive size is set to the archive size obtained by the


U -dominance.


Tables 3 and 4 show the results of 2- and 3-objective test


functions. In these tables, V is the MOPSO using the U -
dominance and W is the MOPSO using the clustering tech-


nique, size is the archive size, ��X and ��Y are the CPU times


needed to run each MOPSO on a 500 MHz Ultra-SPARC-


IIe SUN Workstation, Z X:Y refers to the number of solu-


tions in W that are weakly dominated by V and [ is the


Sigma diversity metric values (in percent). All the values


recorded in Tables 3 and 4 are average values from five dif-


ferent runs with different initial populations.
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Figure 7: Influence of U on CPU time ( � : Clustering, \ :


U -dominance).


Table 3: Results of 2-objective test functions (time in mil-


liseconds). V : MOPSO using U -dominance and W : MOPSO


using the clustering technique. ( ] : the clustering can just


find 616 solutions)


test function �;�
U size � X � Y Z X�Y Z YLX [ X [ Y
0.1 16 3041 33429 4 0 87 87


0.05 26 3312 37006 4 0 80 80


0.025 48 3305 144151 1 1 93 91


0.01 109 3754 204412 13 12 77 74


0.005 204 4401 318432 80 13 93 87


0.001 517 6331 23294 398 13 93 93


0.0001 941 8083 6096 ^ 828 7 97 93


0 616 6096 - - - - -


test function � J
0.025 20 3127 86329 0 9 50 45


0.01 40 3229 11807 3 5 30 28


0.0075 52 3300 12270 0 11 27 30


0.005 71 3358 15102 6 14 34 48


0.0025 123 3635 11509 80 2 43 53


0.001 170 3909 55498 33 54 51 60


0.0005 220 4353 78289 32 65 59 58


0.00025 249 4416 40306 179 7 61 61


0.0001 507 5868 41203 460 2 55 51


0 730 7560 - - - - -


Table 4: Results of 3-objective test functions (time in mil-


liseconds). V : MOPSO using U -dominance and W : MOPSO


using the clustering technique.


test function � M
U size � X � Y Z X:Y Z YLX [ X [ Y
0.1 68 2968 164954 16 0 77 91


0.07 113 3368 254867 17 0 83 83


0.06 130 3740 321244 12 0 86 93


0.05 176 4188 555989 19 2 91 93


0.04 219 5191 510482 25 1 98 98


0.03 351 6979 1161747 34 8 70 83


0.02 660 12126 3277912 73 7 92 93


0.015 956 16694 6154627 135 11 98 97


0 10692 172782 - - - - -


test function ��_
0.1 30 2839 165275 3 0 32 28


0.05 76 3275 298039 1 0 23 29


0.04 84 3505 353349 1 1 23 28


0.03 133 4194 552847 1 0 22 25


0.025 157 4735 715612 1 1 21 24


0.02 216 5788 1001681 7 1 24 27


0.015 331 8103 1907411 2 0 18 19


0.01 610 13574 5152398 10 1 19 21


0 21351 373641 - - - - -


Influence on Computational time Figure 7 shows the


CPU times of the two methods in Tables 3 and 4 graphi-


cally, where size is the archive size and the CPU time is


shown in logarithmic milliseconds values. For all test func-


tions, the CPU time increases when increasing the archive







size. We have to note that when the limit of the archive size


is bigger than the number of non-dominated solutions, clus-


tering is not applied to the archive. This can be observed es-


pecially for both of the 2-objective test functions, the CPU


time of the clustering technique decreases for large archive


sizes. In both of 2- and 3-objective test functions the CPU


time of the program when using the � -dominance is much


less than when using the clustering techniques. The cluster-


ing technique takes in some cases more than 100 times the


� -dominance to find the same number of solutions.


In Table 3, the � -dominance method finds 941 solutions


for the test function
���


, when �����	� �
���� . But if we apply


the method using the clustering technique, we see that we


never reach the number of 941 as the archive size in order


to apply clustering on it, therefore it will take less time than


the � -dominance method.


Influence on convergence In Tables 3 and 4, the factor�����
shows the number of solutions in set � that are weakly


dominated by the solutions in set � , i.e.:


� ��� � � � ����� � � ����� � � �! "�$#�� (10)


By comparing
� �%�


and
� �&�


, where A is the MOPSO us-


ing the � -dominance and B MOPSO using clustering tech-


nique, we can conclude that for the same archive sizes the � -
dominance dominates more solutions of the results of clus-


tering technique. This also depends on the archive size and


the number of objectives. For test functions t1, t2 and t3, the


values of
�'�%�


are much higher than
�(�&�


, which we can


conclude a better convergence. However, for the 3-objective


test function t4, they are comparable.


Influence on diversity As it is explained, we have intro-


duced a new diversity metric, which are demonstrated as the)
values in Tables 3 and 4. The


)
value is shown in per-


cent. Here, we study the results of 2- and 3-objective test


functions separately:


- 2-objective test functions: In both of the 2-objective


test functions (
� �


and
�+*


), we have used the same number


of reference lines (Sigma values) as the archive size i.e.,,(- �.�/� � � . Therefore, it is clear for the test function
�0*


,


which has discontinuities, the value of
)


will never reach


100 1 . The values of 2 used in measuring the diversities


are as follows: for archive sizes less than 20, 0.1, between


20 and 50, 0.05, between 50 and 500, 0.01, and more than


500, 0.005. Comparing the diversity of the � -dominance


method with the clustering method by using
)


values, we


conclude that for bigger archive sizes the � -dominance has


bigger
)


values, which means a better diversity. In some


cases the clustering method obtains higher
)


values than


using � -dominance. However, the diversity of solutions is


comparable.


- 3-objective test functions: In both of the 3-objective


test functions, we can not achieve the best diversity of solu-


tions. However, the clustering method gives us better diver-


sity of solutions than the � -dominance method. One of the


reasons may be the shape of the approximate Pareto-front.


In Table 4, the number of reference lines is determined by


the value of
,


in Table 1. In our experiments, we have used
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Figure 8:
�43


test function ( �5�6�� �87 ). (a),(b) objective space


and (c),(d) 9;:=< axis of the spherical coordinate.
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Figure 9:
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test function ( �5�6�� �	� ). (a),(b) objective space


and (c),(d) 9 : < axis of the spherical coordinate.


the number of reference lines very close to the archive sizes.


Figures 8 and 9 show the results of the
� 3


and
�+>


test func-


tions and also the 9 - < axis of the solutions (spherical coor-


dinates), for having a better observation on the diversity of


solutions. We can observe that the � -dominance method can


not obtain some solutions, therefore the diversity of solu-


tions of the � -dominance, especially for test function
�03


, is


not as good as the clustering method.


6 Conclusion and Future Work


In this paper, the influence of the � -dominance in compari-


son to the clustering techniques is studied. The � -dominance


bounds the number of solutions in the archive and decreases


the computational time. The computational time in some


cases is much less than the method using the clustering


technique. Using � -dominance has also influence on con-


vergence and diversity of solutions. The obtained solutions


have comparable convergence and diversity when compared


to clustering technique and in some cases are better in con-







vergence and diversity, especially for 2-objective test func-


tions.


The diversity of the solutions is compared with a new di-


versity metric called Sigma metric. According to this met-


ric, the diversity of the solutions obtained by � -dominance is


getting worse than the clustering technique for an increasing


number of objectives. However, we have to consider that the


results are just for the recorded number of generations and


if we run the methods for a large number of generations we


obtain a very good diversity and convergence of solutions.


The introduced diversity metric Sigma diversity metric is


easy to implement and efficient for high dimensional spaces


which makes it worthy in comparison to other diversity met-


rics. Dealing with continuous and positive objective values


it will give us a very good measurement of diversity of so-


lutions. In the case of negative objective values or when


the objective functions have different ranges, scaled Sigma


method should be used.


In this paper, we have also suggested to use an initial


archive instead of an empty archive. This has influence on


the diversity of the solutions.


In the future we would like to investigate and compare


the � -dominance method for different number of genera-


tions for different test functions with higher number of ob-


jectives.
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