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ABSTRACT

We examine the use of numeric score functions that
allow one to rank order a universe of stocks based on
profitability. We use a genetic algorithm to evolve sets
of ‘implicit-positive’ binary classification rules. Using
each rule set, we induce a scoring model by weighting
the individual terms in a representation of the rule in
terms of binary variables. We report on the empirical
performance of the proposed family of scoring
algorithms on several large historical stock data sets.
We also compare our approach with a polynomial
network technique. Key Words: genetic algorithms,
prediction, stock selection, scoring.

1. INTRODUCTION

On a daily basis, portfolio managers must select stocks
for investment and recommendation to customers. In
typical solution strategies, binary rules are developed to
classify stocks as strong or weak performers based on
technical indicators. Strategies based on binary
classification rules have been shown to be very effective
at maximizing the total profitability of the stocks that
are selected. Recently genetic algorithms (GAs) have
found widespread use in this area. GAs have been used
to induce sets of binary classification rules for stock
selection [7, 30], to develop simple trading rules that
generate buy and sell signals for stocks and
commodities [31] and stock indexes [32], and to
develop market timing rules for switching in and out of
different asset classes [34].

Having a large portfolio of target stocks is important for
variance reduction and for customer choice, however,
and so the selection problem also engenders the
conflicting objective of maximizing the total number of
stocks selected. Binary classification rule strategies do
not address this objective. In this paper we investigate
the use of scoring functions, which have the advantage
of allowing one to rank order the population based on
profitability, as an alternative to binary classification
rules. A key feature of this work is that we develop the
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scoring functions by incorporating binary classification
rules. In particular, we induce the score model by
assigning optimal weights to sets of implicit positive
binary classification rules. We use a genetic algorithm
with supervised, batch learning to evolve classification
rules.

Polynomial networks have been shown to be powerful
inductive modeling techniques and share some of the
strengths of the proposed adaptive scoring methods,
since they are suited to scoring problems where a strong
domain theory does not exist. They would also appear
to exhibit some potential advantages over adaptive
scoring since they process real valued attributes. We
have chosen STATNET, a procedure that is related to
the Algorithm for the Synthesis of Polynomial
Networks (a GMDH-type polynomial network training
algorithm), as our benchmark scoring technique. Since
polynomial networks are numeric scoring models,
STATNET was used to build a score model that predicts
the actual value of the real valued outcome. In order to
evaluate the performance of the adaptive scoring
method we tested the approach on five large historical
(U.S.) stock data sets.

2. ADAPTIVE SCORING

The underlying decision problem in stock selection may
be loosely stated as follows: use the set of attributes to
select the best members of the population with the
highest outcomes [4]. In our context, an observation is
a single stock in the overall universe of stocks at time ¢.
The population of stocks consists of the totality of the
observations for the entire universe of stocks.
Attributes include technical indicators such as the P/E
ratio of the stock, earnings expectations, interest rates
and exchange rates. The outcome of interest is the
percentage return realized on the stock one time step
into the future.

The general solution to the decision problem is: rank
order the population by each observation’s conditional
expected outcome, given the set of attributes, and then



select the top ranking observations. Scoring is the
process of using a subset of observations from the
population, with known attribute values and outcomes,
to induce a model of the conditional expectation of the
outcome given the set of attributes. If the score is
estimates the true regression function well, it can be
used to rank order the population.

This section outlines the development of a novel
approach to scoring that involves inducing a scoring
model by assigning score weights to sets of implicit
positive binary classification rules. The weighted
the outcomes, y. The solution to the decision problem
is to rank order the observations by E[ylx], the true
regression of y on x, and then select the top P members
of the population. The true regression function is
generally not know, and so one resorts to the
construction a function that (hopefully) approximates
the regression function. A good scoring function is
monotone in the regression function, and so can be used
to rank order the population.

We view the general scoring problem as a constrained
optimization problem, and evolve complete score
functions that select the top observations from the
population with maximum sum of the outcomes, given a
constraint on the total number of observations that can
be accepted. A genetic algorithm is used to induce sets
of classification rules that are both complete and
consistent, and we consider two alternative strategies -
mixed integer programming and genetic search- for
picking an optimal set of score weights that, when
applied to the set of classification rules, optimally rank
order the positively classified observations.

The underlying decision model consists of a disjunctive
set of possibly overlapping binary classification rules.
Specifically, the left-hand side of each rule is of fixed
length and consists of n attribute tests, with exactly one
test for each attribute. Rules are encoded as fixed-
length strings of length n using the ternary alphabet {0,
1, #}. Each bit tests the value of a specific attribute
relative to a predetermined threshold value. The bit “0”
tests whether the value of the corresponding attribute
lies below a threshold. “1” tests whether the value of
the corresponding attribute lies above a threshold.
Finally “#” designates a “don’t care” symbol. An
attribute test characterized by “#” maiches all legal
values of the corresponding attribute and is equivalent
to dropping that conjunctive term from the rule.

For binary classification, an observation that matches
one or more rules receives a positive classification while
an observation that does not match any rule receives a
negative classification. Using indicator attribute
representation, the score function can be viewed as the
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classification rules are then used to rank order positively
classified observations based on score and then to select
the best observations.

An observation can be described in terms of a vector of
attributes x = (x;, xz, . . ., X,) in n-dimensional space.
The single outcome associated with an observation may
be described in terms of a variable, y whose value is
equal to the value of the outcome. The precise
statement of the decision problem is to use the vector or
attributes, x, to select, for any P, the top P members of
the  population  with  maximum  sum  of
union of products of indicator attributes. If an
observation matches one or more rules, at least one of
the set of products of indicator attributes takes on a
value of 1 and the observation receives a positive
classification.

The first step in expressing the set of rules as a score is
to represent rules in the form of indicator attributes.
Suppose, for example, that we have n = 3 attributes, x;
X, and x3, each of which take on two values, low and
high, relative to their corresponding thresholds. First
define new indicator attributes v; = 1{x; = high} and v,
= 1{x; = high} and v; = 1{x; = high}. The rule (0 1 0)
— 1 is equivalent to (1 — v;)vy(1 - v;). Similarly, the
rule (1 # #) — 1 is equivalent to v;, since v, and v; take
on a value of 1 for all legal values of x; and x3. A
further transformation is performed by defining new
indicator attributes u; = (1 — v))vo(1 = v;) and u, = v,.
The result is the replacement of a complex rule function
by a simple function written in terms of the u;. We will
assume that all rule sets are expressed in terms of a
vector of the transformed attributes, u.

Rank ordering the observations based on score amounts
to rank ordering the observations from the positive class
if the rule-set is complete (by including all positive
observations) and consistent (by excluding all negative
observations). By assigning real valued numerical
weights to individual rules in the rule-set it is possible to
rank-order the observations based on score.
Specifically, a continuous valued weight w; is assigned
to each element u; of u. This results in the set of linear
score functions

{S(w) =wTu:we A%},
where R denotes the real numbers.

We use a variant of the ‘Pitt’ approach to evolve sets of
classification rules. The genetic algorithm maintains a
population of fixed-length rule sets, enabling us to take
advantage of the ‘individual-is-model’ properties of the
‘Pitt’ approach while not requiring any special treatment
of chromosomes during crossover.



The initialization process involves randomly generating
a population in which each bit a chromosome is chosen
to be one of the values of the ternary alphabet with
equal probability. Individuals in the current population
are probabilistically selected for survival in proportion
to their fitness, by using a simulated roulette wheel with
slices sized according to fitness. Standard single-point
crossover is used to facilitate information exchange
during the search. Mutation is achieved by flipping
random bits in the population of rule sets with a small
probability.  Since rule sets are encoded using the
ternary alphabet {0, 1, #}, random flipping of bits is
performed in such a way that a bit is flipped to either
one of the other two possible bit values with equal
probability.

An optimal set of scoré weights and cutoff can be found
using a mixed integer programming formulation with
the objective of maximizing the sum total return of the
stocks that are selected. Let u,, fori = 1,.., 2% be the
enumeration of all possible values of the binary
measurement vector u. Let r; denote the sum of the
outcomes, y, for all observations with profile u;, and
let g; denote the number of observations with profile ;.
The formulation is then
2
Maximize z rib;
i=l
S.t.
M(1-b)<wiug-c< Mbi-e, i=1,... 2%

2R

Z q,'b,' < B

i=1

w, ¢ unrestricted in sign

In the formulation, we interpret b; to be a binary
decision variable that takes on a value of 1 if the
observations with measurement vector equal to u, are
selected, and O otherwise. @We also let ¢ be a
sufficiently small positive constant and M be a
sufficiently large positive constant. The quantity B
denotes the upper limit on the number of observations
accepted. It can be easily verified that if w’ u) < ¢, then
b; = 0 and so the observations with the ith measurement
profile are not selected. : Likewise, if wTX,- >c, then b; =
1 and so the observations from the ith measurement
profile are selected. We refer to the adaptive scoring
function that is developed using this mixed integer
programming formulation as GAMIP.

As an alternative to GAMIP, we can use genetic search
to develop a near-optimal combination of rules and
weights. Using this technique the genetic algorithm is
given the responsibility not only of evolving a complete
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and consistent set of classification rules, but also of
searching for a set of weights that, when applied to the
set of rules, most effectively rank orders the positive
training observations. Each individual (chromosome) in
the GA population represents the set of classification
rules as well as the values of the elements of the weight
vector. Each element of the weight vector ranges
between —1 and +1. We refer to the adaptive scoring
function that is developed using genetic search as
GAGS. '

3. EMPIRICAL RESULTS

In order to evaluate the performance of the adaptive -
scoring method we tested the approach on 5 large
historical (U.S.) stock data sets. The data sets were
obtained via the internet at
[http://www.investor.msn.com]. Each data set consisted
of approximately 3 years (1995 — 1998) of weekly data
on a universe of 16 stocks, so there were a total of
approximately 150 X 16 = 2400 instances in each data
set. Each instance is described in terms of a vector of 9
real valued attributes. All 9 attributes were
retrospective technical indicators. The first 2 years of
the data was used for training and remaining 1 year of
the data was reserved for testing.

We feel that net profits from simulated trading on the
test set of data is an effective means for assessing
predictive accuracy in the financial forecasting domain.
A common performance criterion that we do not
consider is classification accuracy, expressed in our
context as the percentage of winning trades. A winning
trade occurs when the selection of the top ranking
stocks results in a net positive return over the
subsequent week. It is important to note that
classification accuracy is not necessarily a meaningful
performance measure in the financial forecasting
domain. A high accuracy may be achieved by a system
that makes a large number of winning trades on small
market moves, but this may be at the expense of missing
the large moves.

In each week of simulated trading, the universe of
stocks was rank ordered based on score and the
portfolio was rebalanced using a simple strategy: (1) sell
any stock in the current portfolio if it does not rank
among the top 5 stocks, and (2) replace any stocks sold
with stocks that currently rank in the top 5 and are not
currently in the portfolio. Each stock was equally
weighted. All data sets were prepared using closing
prices, so we do not factor in the effect of the bid-ask
spread in our analysis. We also ignore the effect of
transaction costs, since the level of impact largely
depends on who is managing the portfolio. For



instance, financial institutions trading in large volume
tend to suffer less from transaction costs [43].

Each experiment consisted of the evaluation of a score
induction algorithm on a single data set. For the GABS
methods, an experiment was a set of 10 independent
runs of the GA on the training set of data. Each run was
executed using different random seeds. At the end of
each run, the score function that resulted in the highest
degree of fitness was selected. and its predictive
performance was evaluated on the test set of data. The
performance on each test data set was the average of the
multiple runs. Because STATNET+ is a deterministic
procedure, it was run just once on the training set and its
predictive performance was evaluated on the test set.

GAGS was evaluated on all five data sets, while
GAMIP was evaluated on only three of the data sets.
Both systems maintained fixed length rule sets with R =
3 rules per rule set. Each rule consisted of n = 9
conjunctive attribute tests, so the length of each rule set
was 27. The number of rules in the rule set was fixed at
3 in order to keep computational overhead at a
manageable level. GA parameters were kept constant
for all of the simulations with mutation probability of
0.01, crossover probability of 0.25, population. size of
60, and the total number of generations of 250.

The polynomial network output is the prediction of the
future return realized on a stock. Stocks in the universe
are rank ordered according to the predicted performance
and the top stocks are selected. Since the network
output is continuous valued, its use will result in the
selection of the maximum allowable number of stocks
each week. With GABS models it is possible for no
stock to be selected in any given week. This may occur
if none of the stocks in the universe match any of the
rules in the rule set, or if all of the stocks receive the
same score. Polynomial network models would hence
appear to have the advantage of selecting larger
numbers of stocks than GABS models do. However,

near-zero or noisy predictions. Typically the decision-
maker would treat near-zero forecasts as though they
were zero forecasts and not purchase the associated
stocks.

Using an approach similar to that in [7], we made
STATNET made more selective by selecting those top-
ranking stocks only if their predicted returns lie at least
0.5 standard deviations above from the mean prediction
(across all test observations). The choice of this cutoff
parameter was made through experimentation with a
subset of the data. Of the polynomial network training
parameters, the complexity penalty multiplier, CPM, is
perhaps the most influential. A high value for the CPM
leads to a strong bias toward relatively simple
polynomial network models, while a low value for the
CPM reduces the impact of the complexity penalty term
of the objective function, and favors the development of
more complex models.  We selected the CPM by
performing a binary search for the value of the CPM
that minimized the mean squared error on a checking
subset of the data. We use the term STANET+ to
describe the enhancement of STATNET with optimized
noise cutoff and complexity penalty multiplier.

Table 1 is'a comparison of GAGS and STATNET+,
using a relative return performance criterion. The table
also shows the percentage return achieved by each of
the scoring methods relative to the naive strategy of
buying and holding all stocks. Since STATNET is a
deterministic procedure, taking the difference in
percentage returns between GAGS and STATNET
allows us to formulate a t-test to evaluate relative
performance. Let p; denote the mean return (over 10
independent runs) on a single test data set using GAGS
induced score functions, and let W, be the return
achieved using the polynomial network on the same
data set. The null hypothesis is [Ho: p; - W, = 0], and
the alternate hypothesis is [Hy: p > u,). ‘P-value’ is the
smallest level of significance at which the null

> hypothesis can be rejected.
many of the positive forecasts used to select the top
ranking stocks using the polynomial network models are
Relative Return vs.
Buy & Hold Strategy Relative Return
(%) GAGS vs. STATNET+ P-value
Experiment | GAGS | STATNET+ (%) (%)
1 54.0 1.5 52.6 0.05
2 -9.1 6.6 -15.7 N/A
3 329 19.7 13.2 1.00
4 14.1 37 103 5.00
5 433 49.7 -6.4 N/A
Table 1 Comparison of GAGS and STATNET+ on 5 test cases
STATNET+ outperforms the buy and hold strategy in all profitable than STATNET+. Both GAGS and

5 test cases. On experiment 2, GAGS is clearly less

3928

STATNET+ outperform the buy and hold and naive



strategies on experiment 5, with STATNET+ posting a
slightly higher return, at level of significance of over
25%. This indicates that on experiment 5 there is no
significant difference between the two results.

Table 10 compares the performance of GAMIP and
STATNET+ on experiments 1,2, and 3. STATNET+
outperforms GAMIP by a wide margin on experiment 1,

but there is no significant difference in performance
between STATNET+ and GAMIP on experiment 2. On
experiment 3, GAMIP outperforms STATNET+ by 8
percentage points, at a 10% level of significance.
Overall, no one technique clearly dominates the other.
However, more experiments are required in order to
verify these findings.

Relative Return vs. Relative Return
Buy & Hold Strategy (%) | GAMIP vs. STATNET+ P-value
Experiment | GAMIP | STATNET+ (%) (%)
1 -16.1 1.5 -17.5 N/A
2 7.2 6.6 0.50 40.0
3 28.4 19.7 8.0 10.0

Table 2 Comparison of the performance of GAMIP and STATNET+ on 3 test cases

4. CONCLUDING REMARKS

In the experiments conducted GABS and STATNET+
models significantly outf)erformed the passive and naive
strategies in the majority of the test cases, with GABS
systems producing equal or better final results than
STATNET+ systems.  The results suggest that the
adaptive approach to scoring is well suited to complex
scoring problems. Future work includes further
assessment of the performance of GAMIP on additional
historical stock data sets, and the evaluation of the family
of adaptive scoring algorithms on related credit screening
problem. Of interest is the induction of classification
rule sets of variable length, so that the final size of the
score function can be détermined within the search. In
addition, the approach can be extended to consider non-
linear decision boundaries as a way of enhancing the
flexibility of the induced score model

In these experiments, the GABS models appear to
produce more profitable results than basic STATNET
models. The tabulated results support our hypothesis
that the adaptive scoring algorithms should induce score
models with superior predictive performance to those
produced by STATNET. This may be due to the fact
that GABS models are based on implicit positive
classification rules. As such, the resulting score
functions have the advantage of being able to abstain
from selecting stocks (and observations in general) in
cases where there is ambiguity (i.e. no clear top ranking
stocks) and in situations where there are no positively
classified observations (i.e. no ‘good’ performers in the
universe). These results suggest that the assumption of
discrete valued attributes in the financial forecasting
domain is valid. This may stem from the fact that the
technical analysis of stocks and commodities is
inherently a rule-based approach. Since it has become

such a widely used investment analysis technique, it is
possible that the related categorical valued attributes (i.e.
technical trading ‘rules’) have come to possess a high
amount of information content.

An attempt to make STATNET more selective led to an
improvement in the results, as evidenced by the
performance of STATNET+. The improvement in
results immediately suggests that STATNET induced
score models are not very robust in the presence of noise,
and tend to fit noisy training observations. Still, the
good performance of STATNET+ suggests that with post
processing, the network output can be used in
combination with the forecast from a GABS model.
Another extension is to use the polynomial network
output as a powerful input on which to train a GABS
model.

It is also important to note that, in these experiments,
while the complexity bias of STATNET+ models was
allowed to vary across training data sets, nothing was
done to adjust the strong bias toward very simple models
in the GABS algorithms. Specifically, GABS models
with more (or less) than three terms in the induced score
functions (i.e. three rules in the rule set) were not
explored.
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