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Abstract. In this paper, we generalize the replacement rules based on the
dominance relation in multiobjective optimization. Ordinary two replacement
rules based on the dominance relation are usually employed in a local search
(LS) for multiobjective optimization. One is to replace a current solution with a
solution which dominates it. The other is to replace the solution with a solution
which is not dominated by it. The movable area in the LS with the first rule is
very small when the number of objectives is large. On the other hand, it is too
huge to move efficiently with the latter. We generalize these extreme rules by
counting the number of improved objectives in a candidate solution for LS. We
propose a LS with the generalized replacement rule for existing EMO
algorithms. Its effectiveness is shown on knapsack problems with two, three,
and four objectives.


1   Introduction


Since Schaffer’s study [1], evolutionary algorithms have been applied to various
multiobjective optimization problems for finding their Pareto-optimal solutions.
Recently evolutionary algorithms for multiobjective optimization are often referred to
as EMO (evolutionary multiobjective optimization) algorithms. The task of EMO
algorithms is to find Pareto-optimal solutions as many as possible. In recent studies
(e.g., [2-6]), emphasis was placed on the convergence speed to the Pareto-front as
well as the diversity of solutions. In those studies, some form of elitism was used as
an important ingredient of EMO algorithms. It was shown that use of elitism
improved the convergence speed to the Pareto-front [5].


One promising approach for improving the convergence speed to the Pareto-front is
the use of local search in EMO algorithms. Hybridization of evolutionary algorithms
with local search has already been investigated for single-objective optimization
problems in many studies (e.g., [7], [8]). Such a hybrid algorithm is often referred to
as a memetic algorithm. See Moscato [9] for an introduction to this field and [10]–
[12] for recent developments. The hybridization with local search for multiobjective
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optimization was first implemented in [13], [14] as a multiobjective genetic local
search (MOGLS) algorithm where a scalar fitness function with random weights was
used for the selection of parents and the local search for their offspring. Jaszkiewicz
[15] improved the performance of the MOGLS by modifying its selection mechanism
of parents. While his MOGLS still used the scalar fitness function with random
weights in selection and local search, it did not use the roulette wheel selection over
the entire population. A pair of parents was randomly selected from a pre-specified
number of the best solutions with respect to the scalar fitness function with the current
weights. This selection scheme can be viewed as a kind of mating restriction in EMO
algorithms. Knowles & Corne [16] combined their Pareto archived evolution strategy
(PAES [2], [4]) with a crossover operation for designing a memetic PAES (M-PAES)
[17]. In their M-PAES, the Pareto-dominance relation and the grid-type partition of
the objective space were used for determining the acceptance (or rejection) of new
solutions generated in genetic search and local search. The M-PAES had a special
form of elitism inherent in the PAES. In those studies, the M-PAES was compared
with the PAES, the MOGLS of Jaszkiewicz [15], and an EMO algorithm. In the
above-mentioned hybrid EMO algorithms (i.e., multiobjective memetic algorithms
[13]-[17]), local search was applied to individuals in every generation. In some
studies [18], [19], local search is restrictedly applied to every generation by limited
local search only to non-dominated solutions [18] or introducing the tournament
selection and the selection probability of candidate solutions for local search [19].
Another way of application of local search is proposed in [20], [21], where local
search was applied to individuals only in the final generation.


In order to design a local search for multiobjective optimization, a rule for
replacing a current solution with another solution should be defined in advance.
Murata et al. [22] showed experimental results on pattern classification problems
where a scalar fitness function-based replacement rule was better than the dominance
relation-based replacement rules. In the dominance relation-based replacement rules,
the current solution is replaced with a solution which dominates the current one or a
solution which is at least a non-dominated solution with the current one. Ishibuchi et
al. [23] also pointed this matter by experimental results on scheduling problems. As
mentioned in [17], [22] and [23], the replacement rule to accept a non-dominated
solution has a weak search pressure since almost all pairs of solutions (a current
solution and a candidate solution) will be non-dominated with respect to each other
especially in problems with a large number of objectives. On the other hand, the
replacement rule to accept a dominating solution does not work well because it is
difficult to find a dominating solution for the current solution.


We generalize the replacement rules based on the dominance relation by counting
the number of better objective values. Details of the dominance relation-based
replacement rules are shown in the next section. We employ a local search using the
proposed replacement rule to improve the performance of existing EMO algorithms
such as SPEA [3] and NSGA-II [6]. We apply them with the local search to multi-
objective knapsack problems as benchmark problems [3], and show the effectiveness
of our generalization.
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2  Dominance Relation-Based Replacement Rules


2.1  Previous Extensions of Dominance Relation


In order to improve the performance of local search using the dominance relation,
several ideas to extend it have been already proposed in [17], [24], and [25]. Knowles
and Corne [17] proposed a replacement rule by which a current solution is replaced
with a non-dominated solution if it dominates other solutions in the set of non-
dominated solutions obtained so far. Ikeda et al. [24] proposed their “α -dominance”
where a small detriment in one or several of the objectives is permitted if an attractive
improvement in the other objective(s) is achieved. While these two methods try to
extend the area of dominating solutions of the current solution, Laumanns et al. [25]
proposed their “ ε -dominance” where a solution with a small improvement in every
normalized objective does not dominate the current one.


Each of these three methods can be considered as an extension of the dominance
relation. Before explaining these extensions, we show the dominance relation defined
in multiobjective optimization. Without loss of generality, we assume the following
N-objective maximization problem:


Maximize ))(...,),(),(( 21 xxxz Nfff= ,                (1)


subject to Xx ∈ ,                (2)
where z is the objective vector with N objectives to be maximized, x is the decision
vector, and X is the feasible region in the decision space. A solution Xx ∈  is said to
dominate another solution Xy ∈  if the following two conditions are satisfied.


)()( yx ii ff ≥ , }...,,2,1{ Ni ∈∀ ,                (3)


)()( yx ii ff > , }...,,2,1{ Ni ∈∃ .                (4)


If there is no solution which dominates x in X, x can be said to be a Pareto-optimal
solution. Fig. 1 shows that there are four areas of candidate solutions for the solution
x in the case of two-objective problems. When we employ this dominance relation in
local search, two replacement rules can be used in the local search as follows:


Rule A: Move to dominating solutions:
Replace the solution x with a solution which dominates it (Area A in Fig. 1).


Rule B: Move to non-dominated solutions:
Replace the solution x with a solution which is not dominated by x (Areas A - C).


The movable area in the local search with Rule A is very small when the number of
objectives is large. On the other hand, it is too huge to move efficiently with Rule B.
Therefore some extensions for the dominance relation should be considered.


As shown in Fig. 2, Knowles and Corne [17] extended the area of dominating
solutions using non-dominated solutions obtained so far. Fig. 3 shows the dominating
area of the current one defined by the α -dominance relation [24]. While these two
methods enlarge the dominating area of the current solution, the ε -dominance
relation [25] reduces the dominating area as shown in Fig. 4. Since the aim of the ε -
dominance is reducing the number of non-dominated solutions obtained by this
dominance relation, an opposite strategy is used. However, we can see that the area of
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non-dominated solutions (B and C) is also reduced by the hatched area which consists
of dominated solutions (D in Fig. 4). Therefore we can see that this is also a method
to reduce the area of non-dominated solutions.


As we observe from Figs. 2 - 4, the area of non-dominated solutions is reduced by
these three methods. However, each of them needs more computational efforts. The
method in [17] needs to compare the candidate solution with non-dominated
solutions. Its performance may depend on the quality of the obtained set of non-
dominated solutions. As for the α -dominance [24], the decision maker (DM) should
define parameters β  and γ  for every pair of objectives in advance. The DM should
also define a parameter ε  in advance to use the ε -dominance [25], and ε  should be
determined carefully since a large ε  makes a solution obtained by this method far
from the true Pareto-front.
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Fig. 1. The area of candidate solutions
which replace the current solution x by the
dominance relation.
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Fig. 2. The area of candidate solutions
which replace the current solution x by the
method in [17].
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Fig. 3. The area of candidate solutions
which replace the current solution x by the
α -dominance [24].
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Fig. 4. The area of candidate solutions
which replace the current solution x by the
ε -dominance [25].
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2.2   Generalization of the Dominance Relation


In this section, we generalize the two replacement rules (i.e., Rules A and B) shown in
the previous section by counting the number of improved objectives. Fig. 5 shows that
there are eight possible spaces for the solution x in the case of three-objective
problems. Every solution in Space A dominates the solution x. On the other hand, the
solution x dominates solutions in Space H. Therefore Rule A allows the current
solution to move to a solution in only one space, Space A. On the other hand, Rule B
enables it to move to neighborhood solutions in all spaces except a dominated space
H in Fig. 5. This means that )12( −N  spaces are allowed out of N2  spaces in Rule B.
We can see that the number of accepted spaces is extreme in each of both cases. That
is, while the number of accepted spaces is only one as for Rule A, it is )12( −N  for
Rule B. We generalize these two extreme cases by counting the number of improved
objectives.


The number of improved objectives for the solution x is different in each space. For
example, Fig. 5 shows that the number of improved objectives for a solution in Space
A is three. It is zero for a solution in Space H. There are other spaces where the
number of improved objectives is one or two. That is, Spaces B, C, and E have two
improved objectives, and Spaces D, F, and G have one.


In the case of N-objective problems, the number of possible spaces from the current
solution is N2 . The number of improved objectives varies from zero to N in this case.
We generalize the replacement rules A and B by considering the number of improved
objectives d. That is, the current solution x is replaced with a solution which has d or
more improved objective values. We have the following generalized rule:


Rule d: Move to d-Improved Solutions:
Replace the current solution x with a solution which has d or more improved
objectives.
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Fig. 5.  Eight spaces for the current solution in the case of three-objective problems.
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Fig. 6.  Generic form of our local search part and EMO part.


By varying the value of d, we have the following rules where N is the number of
objectives:


Rule N :  Accept a solution which has N better objective values.
Rule 1−N :  Accept a solution which has 1−N  or more better objective values.


�
Rule 2:  Accept a solution which has at least two better objective values.
Rule 1:  Accept a solution which has at least one better objective value.


Therefore, Rules A and B in Subsection 2.1 are Rule N and Rule 1 of the proposed
rule, respectively.


3   Local Search Using the Generalized Replacement Rule


The outline of our local search can be written in a generic form as Fig. 6. This figure
shows a basic structure of simple memetic algorithms. As shown in Fig. 6, our local
search part can be applied to every EMO algorithm. For other types of memetic
algorithms, see Krasnogor [26] where taxonomy of memetic algorithms was given
using an index number D. This type of memetic algorithms is a 4=D  memetic
algorithm in his taxonomy (for details, see [26]).


We design our local search as follows:


[Proposed Local Search]
Iterate the following seven steps popN  times, where popN  is the number of


populations to be governed by genetic operations such as crossover and mutation in
an EMO algorithm. Then replace the current population with popN  solutions obtained
by the following steps.


Step 1: Randomly choose two individuals from the current population.
Step 2: Count the number of better objective values between the two solutions. Select


a solution which has a larger number of better objective values.
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Step 3: Select another solution from the current population, and back to Step 2 until t
solutions are compared from the current population.


Step 4: Apply local search with the local search probability LSp . If it is applied, go to
Step 5. If not, go to Step 7.


Step 5: Generate a neighborhood solution of the current solution, and calculate the
objectives of the generated solution. Count the number of improved objectives
by the generated solution.


Step 6: If the number of improved objective values is d or more, replace the current
solution with the generated solution, and back to Step 5 for examining the
neighborhood solution for the generated solution. If not, back to Step 5 until
the number of examined solution for the current solution becomes k. If there is
no better solution among k neighborhood solutions, go to Step 7.


Step 7: Back to Step 1 until popN  solutions are selected for the local search.


When local search is applied to the selected solution in Step 4, the final solution
obtained by the local search is included in the next population. If local search is not
applied, the selected solution is included in the next population. Therefore Steps 1 - 3
can be considered as the tournament selection for selecting candidate solutions for
local search. In this tournament selection, we also employ the idea of the generalized
replacement rule. That is, we select a solution with respect to the number of better
objective values among t solutions. We use the local search probability LSp  for
decreasing the number of solutions to which local search is applied. In this way, local
search is not applied to all the selected solutions. If local search is applied to all the
solution among the population, the computation time may be wasted to improve
dominated solutions. Moreover, we also employ the number of examined solutions k
in Step 6 in order to control the balance between genetic search and local search.


Since this proposed local search can be applied to any EMO algorithm, we apply
our local search to SPEA [3] and NSGA-II [6]. In order to show its effectiveness, we
employ multiobjective knapsack problems [3]. We show results of computer
simulations in the next section.


4   Computer Simulations on Multiobjective Knapsack Problems


4.1   Multiobjective Knapsack Problems


We employ multiobjective knapsack problems [3] to which we applied EMO
algorithms with the proposed local search. Those test problems are available from the
web site (http://www.tik.ee.ethz.ch/~zitzler/). Generally, a 0/1 knapsack problem
consists of a set of items, weight and profit associated with each item, and an upper
bound for the capacity of the knapsack. The task is to find a subset of items which
maximizes the total profits within the prespecified total weight of the items. This
single-objective problem was extended to the multiobjective case by allowing an
arbitrary number of knapsacks in [3]. In the multiobjective knapsack problem, there
are m items and N knapsacks. Profits of items, weights of items, and capacities of
knapsacks are denoted as follows:
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ijp : profit of item j according to knapsack i,                 (5)
ijw : weight of item j according to knapsack i,                 (6)


ic : capacity of knapsack i,                 (7)
where mj ...,,1=  and Ni ...,,1= .                 (8)


The decision vector x of this problem is )...,,,( 21 mxxx=x , where jx  is a binary
decision value. 0=jx  and 1=jx  mean that the item j is not included in the
knapsacks, and it is included in the knapsacks, respectively. Thus N-objective
problem can be written as follows:


Maximize ))(...,),(),(( 21 xxxz Nfff= ,                 (9)


 subject to m}1,0{∈x , and ∑ =
≤⋅m


j ijij cxw
1


 for Ni ...,,1= ,               (10)


where each objective function is described in the following form:


∑ =
⋅= m


j jiji xpf
1


)(x  for Ni ...,,1= .               (11)


On the website of the first author of [3], problems with 100, 250, 500, and 750 items
for 2, 3 and 4 knapsacks are available. We employed the SPEA [3] and the NSGA-II
[6] as representative EMO algorithms. These algorithms are known as high
performance algorithms for multiobjective problems. We preliminarily defined the
parameters in both the algorithms as shown in Table 1. We employed a one point
crossover with the crossover rate 0.8, a bit-flip mutation with the mutation rate 0.01 to
each bit. In our local search, we specified the tournament size as 6=t , the selection
probability as 1.0LS =p , and the number of examined solution as 3=k . We
commonly used these parameters to the SPEA and the NSGA-II. We generated 30 sets
of different initial solutions and applied each of EMO algorithms to them.


After that we apply the three- and four-objective knapsack problems with 250, 500,
and 750 items to show the effectiveness of generalizing the replacement rule based on
the dominance relation.


4.2   Experimental Results on a Two-Objective Problem


We show the effectiveness of our local search on two-objective knapsack problems.
We employed a 750-item problem for two knapsacks to show non-dominated
solutions obtained by EMO algorithms with/without our local search. Therefore we
applied each of four EMO algorithms to the problem. In this case, we can not show
the effectiveness of generalization using the number of improved objective values d
because the value of d can vary one or two for two-objective problems. We can see,
however, the performance of the basic architecture of our local search with 2=d .


First we obtained 30 sets of non-dominated solutions by each algorithm. In order to
depict figures clearly, we employed the 50%-attainment surface [27]. An attainment
surface is a kind of trade-off surface obtained by a single run of an EMO algorithm.
And 50%-attainment surface shows the estimated attainment surface obtained by at
least 50% of multiple runs. Figs. 7 and 8 show the 50%-attainment surface of 30 sets
of non-dominated solutions obtained by four EMO algorithms. Each axis of the
figures shows the total profit of each knapsack. In a two objective problem, the total
profit of each of two knapsacks is maximized.
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From Figs. 7 and 8, we can see that the 50%-attaiment surface is improved by
introducing the local search in the area of compromised solutions. Considering only a
single objective, each of the original EMO algorithm (i.e., without the local search)
found better solutions. Since we employed the local search with 2=d , the local
search allows a solution to move to only a dominating solution in two objectives.
Therefore the attainment surface in the area of compromised solutions is improved by
the local search.


As for the local search using the generalized replacement rule with 1=d , we could
not obtain better attainment surfaces than the original EMO algorithms. As explained
in [23], a drawback of the replacement rule which allows a solution to move to non-
dominated solutions is that the current solution can be degraded by multiple moves.
That may be a reason why the local search with 1=d  was not effective to this
problem.


Table 1.  Parameter settings for EMO algorithms.


Problem
(objectives, items)


# of evaluations Population size Secondary Population Size
in SPEA


(2, 750) 125 000 250 100
(3, 250) 100 000 200 80
(3, 500) 125 000 250 100
(3, 750) 150 000 300 120
(4, 250) 125 000 250 100
(4, 500) 150 000 300 120
(4, 750) 175 000 350 140


No LS


d=2 LS


25000 26000 27000 28000
24000


25000


26000


27000


28000


Fig. 7.  50%-attainment surface obtained by
SPEA with/without local search.


No LS


d=2 LS


25000 26000 27000 28000
24000


25000


26000


27000


28000


Fig. 8.  50%-attainment surface obtained by
NSGA-II with/without local search.


4.3   Experimental Results on Three- and Four-Objective Problems


In the case of two-objective problems, we can depict the set distribution by two-
dimensional graphs, it is difficult, however, to show the set distribution by figures for
more than three-objective problems. In this paper, we use the coverage metric [3] to
evaluate two sets of non-dominated solutions obtained by two EMO algorithms. Let
X’, X’’ X∈  be two sets of non-dominated solutions. The coverage metric can be
defined as follows:


No LS


d = 2 LS


No LS


d = 2 LS
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|’’|/|}’’’:’’|’’’’{|)’’,’( XaaXaXaXX �∈∃∈=C .               (12)


The value 1)’’,’( =XXC  means that all points in ’’X  are dominated by or equal to


points in X’. On the other hand, 0)’’,’( =XXC  represents that no solutions in ’’X  are


covered by the set X’. It is noted that both )’’,’( XXC  and )’,’’( XXC  have to be


considered, since )’’,’( XXC  is not necessarily equal to )’,’’( XXC .


Table 2.  SPEA for 3-objective problems (250, 500, and 750 items).


3 objectives No LS d = 1 d = 2 d = 3
No LS -- 0.0311 0.0088 0.0179
d = 1 0.7444 -- 0.1960 0.2123
d = 2 0.8437 0.5142 -- 0.3671
d = 3 0.8044 0.4484 0.2796 --


Table 3.  NSGA-II for 3-objective problems (250, 500, and 750 items).


3 objectives No LS d = 1 d = 2 d = 3
No LS -- 0.0961 0.0862 0.1147
d = 1 0.4373 -- 0.2274 0.2369
d = 2 0.4797 0.3283 -- 0.3127
d = 3 0.4466 0.3326 0.2473 --


Table 4.  SPEA for 4-objective problems (250, 500, and 750 items).


 4 objectives No LS d = 1 d = 2 d = 3 d = 4
No LS -- 0.0038 0.0010 0.0001 0.0012
d = 1 0.8820 -- 0.1488 0.1369 0.1697
d = 2 0.9353 0.4231 -- 0.2394 0.2904
d = 3 0.9299 0.4356 0.2792 -- 0.2976
d = 4 0.9161 0.3756 0.2122 0.2011 --


We applied the EMO algorithms with/without our local search to three three-
objective problems and three four-objective problems using the parameters in Table 1.
We varied the number of improved objective values d as 3,2,1=d  in three-objective
problems, and 4,3,2,1=d  in four-objective problems. Therefore we had four variants
for each EMO algorithm in the case of three-objective problems, and five in the case
of four-objective problems. We compare two sets of non-dominated solutions using
the coverage metric, and calculate an average value over 30 trials. Tables 2–5 show
the summarization of the results for each EMO algorithm. We average the values of
the coverage over three different items. The second column of Tables 2 and 3 shows
that the sets obtained original algorithm is covered by those obtained by algorithms
with the proposed local search. For example, 0.8437 in the cell of the 4th row and the
second column in Table 2 shows that 84.37 % solutions obtained by the original EMO
algorithm (SPEA with No LS) are covered by solutions obtained by SPEA with the
local search ( 2=d ). From Tables 2–5, we can see that the better sets obtained by our
local search with 2=d  for three-objective problems, and 3,2=d  for four-objective
problems.
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Table 5.  NSGA-II for 4-objective problems (250, 500, and 750 items).


4 objectives No LS d = 1 d = 2 d = 3 d = 4
No LS -- 0.0431 0.0114 0.0114 0.0155
d = 1 0.4701 -- 0.1165 0.1233 0.1112
d = 2 0.5898 0.3736 -- 0.2418 0.2475
d = 3 0.5719 0.3551 0.2214 -- 0.2122
d = 4 0.6022 0.3643 0.2447 0.2325 --


Due to the page limitation, we don’t show detail results on each problem. Further
information is shown in the first authors web (http://www.res.kutc.kansai-u.ac.jp/
~murata/research.html). Through the experiments, we found that the proposed local
search was effective in the case of larger problems. That is, it was more effective in
500-item problem than 250, and 750 than 500 for each of three- and four-objective
problems.


5   Conclusion and Future Works


In this paper, we generalized the replacement rules based on the dominance relation
for local search in multiobjective optimization. Simulation results on knapsack
problems with three- and four-objectives showed the effectiveness of the generalized
replacement rule by introducing the number of improved objectives. As shown in the
experimental results for the two-objective problems, the proposed local search is
weak to improve each objective value. We can improve such weakness of the local
search with the generalization rule. Since we employed the proposed only to knapsack
problems in this paper, we can also apply other types of problems such as permutation
problems, and function approximation problems.
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