Multi-Objective Vehicle Routing Problems
Using Two-Fold EM O Algorithms
to Enhance Solution Similarity
on Non-dominated Solutions

Tadahiko Murataand Ryota Itai

Department of Informatics, Kansai University
2-1-1 Ryozenji, Takatsuki 569-1102, Osaka, Japan
nmur at a@ es. kut c. kansai -u. ac.jp
http://ww. res. kut c. kansai - u. ac. j p/ ~nur at a/

Abstract. In this paper, we focus on the importance of examining characteristics
of non-dominated solutions especially when a user should select only one
solution from non-dominated solutions at atime, and select another solution due
to the change of problem conditions. Although he can select any solution from
non-dominated solutions, the similarity of selected solutions should be
considered in practical cases. We show simulation results on vehicle routing
problems that have two demands of customers. Norma Demand Problem
(NDP) and High Demand Problem (HDP). In our definition the HDP is an
extended problem of NDP. We examined two ways of applying an EMO
algorithm. One is to apply it to each problem independently. The other is to
apply it to the HDP with initial solutions generated from non-dominated
solutions for the NDP. We show that the similarity of the obtained sets of non-
dominated solutions is enhanced by the latter approach.

1 Introduction

Although we have many approaches in EMO (Evolutionary Multi-criterion
Optimization) community [1, 2] recently, there are few research works that investigate
the similarity of obtained non-dominated solutions. Deb considered topologies of
several non-dominated solutions in Chapter 9 of his book [3]. He examined the
topologies or structures of three-bar and ten-bar truss. He showed that neighboring
non-dominated solutions on the obtained front are under the same topology, and
NSGA -1l can find the gap between the different topologies. While he considered the
similarity of solutionsin a set of non-dominated solutions from a topological point of
view, there is no research work relating to EMO that considers the similarity of
solutionsin different sets of non-dominated solutions from that point of view.



We employ the Vehicle Routing Problem (VRP) to consider the similarity in different
sets of solutions. The VRP is a complex combinatorial optimization problem, which can
be seen as a merge of two well-known problems: the Traveling Salesman Problem
(TSP) and the Bin Packing Problem (BRP). This problem can be described as follows:
Given a fleet of vehicles, a common depot, and several customers scattered
geographically. Find the sets of routes for the fleet of vehicles. Many research works
[4,5, 6, 7, 8] onthe VRP try to minimize the total route cost that is calculated using the
distance or the duration between customers. Several hybrid algorithms have been
proposed to improve the search ability of genetic algorithms [4, 5]. The research works
in[6, 7, 8] are related to multi-objective optimization. Tanet al. [6] and Saadah et al. [7]
employed the travel distance and the number of vehicles to be minimized. Chitty and
Hernandez [8] tried to minimize the total mean transit time and the total variance in
transit time.

In this paper, we employ an EMO agorithm, NSGA -1 [9], to our vehicle routing
problems with minimizing the number of vehicles and the maximum routing time among
the vehicles. It should be noted that we don’t employ the total routing time of all the
vehicles, but use the maximum routing time among the vehicles. We employed it in
order to minimize the active duration of the central depot. We consider two problems
with different demands. One problem has a norma demand of customers. The other
has a high demand. We refer the former problem and the latter problem as NDP and
HDP, respectively. We define the demand in the HDP as an extended demand of the
NDP in this paper. For example, we assume that the demand in the HDP is a demand
occurring in a high season such as Christmas season. In that season, the depot may
have an extra demand as well as the demand in the normal season. In order to avoid a
large change of each route from the depot, a solution (i.e., a set of route) in the HDP
should be similar to a solution in the NDP. This situation requires us to consider the
similarity of solutions on different non-dominated solutions in multi-objective VRPs,

In order to find a set of non-dominated solutions in the HDP that is similar to a set
of non-dominated solutions in the NDP, we apply a two-fold EMO agorithm to the
problem. In atwo-fold EMO algorithm, first we find a set of non-dominated solutions
for the NDP by an EMO algorithm. Then we generate a set of initial solutions for the
HDP from the non-dominated solutions for the NDP. We apply an EMO agorithm to
the HDP with initial solutionsthat are similar to those of the NDP problem.

We organize this paper as follows: Section 2 gives the problem model for multi-
objective VRPs. The outline of our two-fold EMO algorithm is described in Section 3.
We define a measure of the similarity between solutions in Section 4. A small example
of our multi-objective VRP is also shown in Section 4. Section 5 presents the extensive
simulations and compares results of the two-fold EMO algorithm and those obtained
individually for the HDP and NDP. Conclusions are drawn in Section 6.



2 Multi-objective Vehicle Routing Problems

The domain of VRPs has large variety of problems such as capacitated VRP, multiple
depot VRP, periodic VRP, split delivery VRP, stochastic VRP, VPR with backhauls, VRP
with pick-up and deliverring, VRP with satellite facilities, and VRP with time windows.
These problems have the basic architecture of the VRP except their own constraints.
Their constraints are arisen in practical cases. Please see for the detail of the VRP
problemin [10].

The objective of the basic problem is to minimize a total cost is described as
follows:
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where M is the number of vehicles each of them starts from the depot and is routed by
a sequence of customers, then return to the depot. The cost of each vehicleis denoted
by C,, and described asfollows:
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where ¢; j means the cost between Customersi and j. Let us denote 0 as the index for
the depot in this paper. Equation (2) indicates the sum of the cost between the depot
and the first customer assigned to the m-th vehicle (i.e., co1), the total cost from the
1st customer to the nm-th customer (i.e., § Y¢i i+1), and the cost between the final
customer ny, and the depot. Each vehicle is assigned to visit ny, customers, thus we
have N =§ mjlnm customers in total. The aim of the VRP is to find a set of
sequences of customers that minimizes the total cost. Each customer should be visited
exactly once by one vehicle.

While the total cost of all the vehiclesis ordinarily employed in the VRP, we employ
the maximum cost to be minimized in this paper. When the cost ¢; ; is related to the
driving duration between Customersi and j in Equation (2), the total cost ¢, for the
mth vehicle means the driving duration from the starting time from the depot to the
returning time to the depot. In order to minimize the activity duration of the depot, the
maximum duration of the vehicles should be minimized since the depot should wait
until al the vehicles return to the depot. We also consider the minimization of the
number of vehicles in our multi-objective VRP. The objectives in this paper can be
described asfollows:
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When we have a solution with M =1, our problem becomes the traveling salesman
problem, the TSP. In that case, however, the other objective to minimize the maxmum
driving duration in Equation (3) can be reduced to at most the optimal value of the TSP
with only one vehicle. That is, the maximum driving duration can not be reduced asin
the case of using multiple vehicles. On the other hand, the maximum driving duration
becomes minimum when the number of vehicles equals to the number of customers
(i.,e, M =N). Inthat case, each vehicle needs to visit only one customer. The driving
duration for each vehiclein (2) can be described as follows:

Cm = Co,[1)m + C[Lm,0 » ®

where [K]n denotesthe index of the customer who isthe k-th customer visited by the
mth vehicle. The maximum driving duration in (5) over M vehicles becomes the
optimal value of that objectivein the case of M =N . We have the trade off between
these two objectives: the minimization of the maximum driving duration and the

minimization of the number of vehicles.

We consider two problems with different demands: the NDP and the HDP. In the
NDP, a norma demand of customers should be satisfied. On the other hand, extra
demands should also be satisfied in the HDP. In this paper, we increase the number of
customers in the HDP. That is, Nnpp < Nupp , where Nnpp and Nypp are the
number of customers in the NDP and the HDP, respectively. We can obtain a set of
non-dominated solutions for each problem. We refer a set of hon-dominated solutions
for the NDP as Y npp, and that for the HDP as Y ypp . These two sets of non-
dominated solutions can be obtained by applying one of multi-objective algorithms
such as EMO algorithms. But if we apply the algorithm to each of the NDP and the
HDP independently, we can not expect to obtain a set of solutions with similar routes
in the HDP to that obtained for the NDP. Before introducing a measure of similarity of
a solution set in Section 4, we describe a two-fold EMO agorithm for our multi-
objective VRP in the next section.

3 Two-Fold EMO Algorithm for Multi-objective VRPs

In this section, we show the employed coding scheme to find a set of non-dominated
solutions using the genetic operations to apply an EMO algorithm to our multi-
objective VRPs. Then we show how we apply a two-fold EMO algorithm to obtain a
similar set of solutionsin the NDP and the HDP.



3.1 Coding Schemeto Describe Solutions

We code a solution of the VRPs by a permutation of N customers, and we split it into
M parts as shown in Fig. 1. There are eight customersin Fig. 1, and they are served by
one of three vehicles. Thefirst vehicle denoted vy in the figure visits three customers
in the order of Customers 1, 2, and 3. It is noted that the depot is not appeared in the
coding. Each route is divided by a closed triangle. Therefore the driving duration for
vy is calculated by cg1 +C12 +Co 3+ Cgo. Fig. 2 shows an example of three routes
depicted on the map of eight customers and the depot.

3.2 Genetic Operations

We employ the cycle crossover [11] as acrossover operator in this paper. Fig. 3 shows
an example of generating an offspring from selected two parents by the crossover.
From this figure we can find that the number and the location of splits are changed by
this crossover. In thisfigure, the generation of the offspring is started from Customer 3
in Parent 1. Another offspring is also generated by starting from Parent 2.

As for the mutation, we employ two kinds of operatorsin order to modify locations
of splits and the order of customersin a selected route. Fig. 4 shows examples of these
mutations. It should be noted that the order mutation itself does not affect the two
objectives (i.e., the maximum driving duration and the number of vehicles). But it can
be useful to increase the variety of solutions when it is used with the cycle crossover
and the split mutation.
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Fig. 1. An example of eight customers visited by three vehicles. Each triangle shows the split
between the routes for vehicles.



Fig. 2. An example of eight customers visited by three vehicles. Each triangle shows the split
between the routes for vehicles.
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Fig. 3. An example of the cycle crossover. Customer 3 in Parent 1 is randomly chosen and
inherited to an offspring. Then Customer 3 in the other parent is found (the dotted line). The
customer in Parent 1 locating in the same position of Customer 3 in Parent 2 is inherited to the
offspring (i.e., Customer 4). This operation is repeated until returning to Customer 3 in Parent 1.
One of remaining customers is chosen from Parent 2 (Customer 8 in this figure). Repesat these
operations until all customers are inherited to the offspring. It is noted that a split denoted by a
closed triangle is aso inherited to the offspring when a customer that is the final one in aroute
isinherited (Customers 3 and 5 from Parent 1, and Customer 1 from Parent 1 in thisfigure).
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Fig. 4. Examples of two mutation operators. In the split mutation, locations of splits are
changed randomly. In the order mutation, a selected route isinversed its order of customers.

3.3 Two-Fold EMO Algorithm

In our multi-objective VRP, we have two problems, the NDP and the HDP. Since the
HDP has extra demands of customers with the demands of the NDP, we have two
approaches to search a set of non-dominated solutions for each of the NDP and the
HDP. One approach is to apply an EMO algorithm individually to each of them. The
other is to apply atwo-fold EMO agorithm to them. In the two-fold EMO algorithm,
first we find a set of non-dominated solutions for the NDP by an EMO algorithm. Then
we generate aset of initial solutions for the HDP from the non-dominated solutions for
the NDP. We apply an EMO algorithm to the HDP with initial solutions that are similar
to those of the NDP problem. The procedure of the two-fold EMO agorithm is
described asfollows:

[Two-Fold EM O Algorithm]

Step 1: Initialize a set of solutions randomly for the NDP.

Step 2: Apply an EMO agorithm to find a set of non-dominated solutions until the
specified stopping condition is satisfied.

Step 3:  Obtain a set of non-dominated solutions for the NDP.

Step 4: Initialize a set of solutions for the HDP using a set of non-dominated
solutions of the NDP.

Step 5: Apply an EMO agorithm to find a set of non-dominated solutions until the
specified stopping condition is satisfied.

Step 6:  Obtain a set of non-dominated solutions for the HDP.

In Step 4, weinitidize aset of solutions asfollows:

Step 4.1: Obtain a set of non-dominated solutions of the NDP.



Step 4.2: Specify asolution of the set.

Step 4.3: Insert new customers randomly into the solution.

Step 4.4: Repeat Steps 4.2 and 4.3 until all solutions in the set of non-dominated
solutions of the NDP are modified.

It should be noted that the number of vehicles of each solution is not changed by this
initialization. The number of vehicles of each solution is changed by the crossover
operation. Using this initialization method, we show that the similarity between non-
dominated solutions for the NDP and those for the HDP can be increased. Before
showing the simulation results we explain a measure of the similarity of solutions in
the next section
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Solution for NDP
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Fig. 5. A set of example solutions for the NDP and the HDP.

4 Measureof Similarity Between Sets of Non-dominated Solutions

4.1 Similarity Measure

We define a similarity measure to compare non-dominated solutions obtained for the
NDP and the HDP. Figure 5 shows a set of example solutions to be compared. Suppose
that we have five customers in the NDP and eight in the HDP. The five customersin
the NDP are denoted by 1, 2, ..., 5. The other three customers inserted in the HDP are
denoted by 6, 7 and 8. When we obtain a solution with three vehicles for the NDP and
one with four for the HDP, the similarity of a solution in the HDP to one in the NDP
can be calculated as follows:

s(vPP) = mjax rsr (viHDP,v'J-\‘DP) =1, Mo, (6)
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where s(vi'-") isthe similarity of the i-th vehicle vi "~ of a solution for the HDP to
vehicles v]°F (j =1,.., M e ) of asolution for the NDP, and rsr (v"'°F ,v["°7) isthe
ratio of the sameroutein vi°" and v'°P . The number of vehicles in these solutions
is denoted by M, +or and M e respectlvely In the example of Fig. 5, M, or =4
and M, or = 3. We calculate Fsr (vPP v PPy asfollows:

rsr (V,HDP NDP) :| RVHDP R/jNDP |/ | Rv;\lDP |, (7)

where R, shows a set of routes for Vehicle vi, and | R, | indicates that the number
of routes of Vehicle v; . For example, R,HDP consists of routes{0to 8, 8to 5, 5to 0}.

The number of routes of Vi'°P is three. When we compare the routes of vi*° to the
routes of vehiclesin the solution obtained for the NDP, we can obtain the si m|Iarity of

vi™®P using (6) asfollows:

\HoP HDP |/NDP
v ) = maxlfo( Vi),

- max{rg.( HDP NDP) rg.( HDP NDP) rer (VHDP NDP)}
— maq 0/3.0/2,1/3 =1/3. &)
As shown in the above equations, vi"°F has no common routes with \{*°" and v)'°7

and 1/3 asits similarity to the route of v3'°".

4.2 Example

We show asmall example of our multi-objective vehicle routing problem. Fig. 6 shows
amap of adepot and customers. The rectangle in the map shows a central depot from
which every vehicle starts and to which it returns. Open circles show customersin the
NDP, and closed circles show those added in the HDP. Fig. 7 shows an example
solution with three vehicles for the NDP with five customers. Figs. 8 and 9 show
solutions with a high maximum similarity and a low maximum similarity. From these
figures, we can see that the solution for the HDP in Fig. 8 has the same routes (thick
routes) in Fig. 7 more than the one in Fig. 9. If we can obtain a solution with a high
similarity, we can reduce the effort of drivers of vehicles to be informed of routes
among customers.
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Fig. 6. Thelocations of customersin avehicle routing problem with five customersin the NDP,
and tenin the HDP.
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Fig. 7. A solution with three vehicles for the NDP.
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Fig. 8. A solution with three vehicles with a Fig. 9. A solution with three vehicles with a

high similarity. low similarity.
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Fig. 10. Sets of Pareto-optimal solutions for the NDP and the HDP in Fig. 6.

When we apply an exact search algorithm to find optimal Pareto set for the NDP and
the HDP, we obtained the Pareto front depicted in Fig. 10 (In this paper, we employed
an exhaust method to examine all possible solutions in the problem. We could employ
the exhaust method since the problem is small). The open circles in Fig. 10 show the
Pareto solutions for the NDP with the five customers in Fig. 6 with respect to the
maximum driving duration and the number of vehicles. The closed circles show the
Pareto solutions for the HDP. Each dotted arrow shows the corresponding solution in
the NDP, that has the maximum similarity to each solution in the HDP. For example, the
solution with four vehiclesin the HDP has the routes with the maximum similarity with
the solution with three vehicles in the HDP. This figure shows that not all solutionsin
the NDP are similar to solutions obtained in the HDP. We can increase the number of
vehicles according to the increase of demands of customers in the HDP with a small
effort of driversto be informed of new routes between customers.

5 Smulation Results by Two-Fold EMO Algorithm

We show the simulation result on the NDP and HDP problems. We apply our two-fold
EMO algorithm to the problem with 100 different initial solution sets. That is, we obtain
100 results for the problem in Fig. 6. We also apply an EMO agorithm to the HDP
individually from the solution obtained for the NDP. In this paper, we refer atwo-fold
EMO algorithm and an individually applied EMO as 2F-EM O and I-EMO, respectively.
As an EMO algorithm, we employed the NSGA -I1 [9], that is known as one of high
performance algorithm among EMO agorithms. It should be noted that any EMO
algorithm can be used in a2F-EMO and an I-EMO.

Figs. 11 and 12 show examples of non-dominated solutions obtained by a 2F-EMO
and by an I-EMO. In these figures, we compare each set of non-dominated solutions
obtained by a 2F-EMO or an I-EMO for a HDP to a set of non-dominated solutions for



a NDP. A value attached to each solution of non-dominated solutions for the HDP
means a maximum similarity of that solution calculated by (8). By comparing these
figures, we can see that the obtained sets of non-dominated solutions are not so
different each other. However, when we measure the maximum similarity of each
solution for the HDP to a set of solutions for the NDP, we can see the difference
between those sets of solutions. That is, while the average value of the maximum

similarity for each solution obtained by a2F-EMO in Fig. 11is0.5717, that obtained by
an FEMO in Fig. 12 is 0.3858. These values show that the set of non-dominated
solutions obtained by a 2F-EM O has higher similarity to the set obtained for the NDP.
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Fig. 11. Similarities of solutions obtained by a two-fold EMO algorithm (2F-EMO). Solutions
of the HDP are obtained by an EMO algorithm with initial solutions generated from the

solutions obtained in the NDP.

=
o

W72
{

90529

/ ’F 0.265

2 ’
Sl Loss
7 / & ,’
w S/ /! 587
o . A
¥ / Prad .524
¢ r4
Wi e 0431
T

-
7 0.226
/

s
1

The Number of Vehicles
o = N w ESN a o ~ o O

o il
<t

0.175

0 100 200 300 400 500 600 700 800
Maximum Driving Duration

Fig. 12. Similarities of solutions obtained by an individually applied EMO algorithm (I-EMO).
Solutions of the HDP are obtained by an EMO algorithm applied individually.



Table 1. The average maximum similarity over 100 trials.

# of

vehicles 10 9 8 7 6 5 4 3 2 1 Ave.

2F-EMO 041 039 043 041 038 033 031 020 0.13 0.05 0.304
I-EMO 037 044 038 035 036 028 025 0.19 0.13 0.04 0.277

Table 1 shows that the average simulation results over 100 trials on the NDP and
the HDP shown in Fig. 6. It summarizes the average maximum similarity for the
solutions of each number of vehicles. We can see that the maximum similarity tends to
become small for the solutions with the small number of vehicles. In a solution with a
small number of vehicles, it has a small similarity since each vehicle should visit many
customers.

5 Conclusion

In this paper, we consider the similarity of sets of non-dominated solutions that are
obtained for avehicle routing problem and its variant. When the number of customers
areincreased in avehicle routing problem, it is better to reduce the effort of driversto
be informed of routes among customers when the new vehicle routing problem is
solved. In this paper, we have just considered the influence of using initial solutions
generated by a solution obtained for the former problem. Simulation results show that
it is better to useinitial solutionsfor an EMO algorithm to solve the increased problem.
We are tackling to develop an algorithm to increase the similarity using genetic
operations such as crossover and mutation.
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