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Abstract. In this paper, we focus on the importance of examining characteristics 
of non-dominated solutions especially when a user should select only one 
solution from non-dominated solutions at a time, and select another solution due 
to the change of problem conditions. Although he can select any solution from 
non-dominated solutions, the similarity of selected solutions should be 
considered in practical cases. We show simulation results on vehicle routing 
problems that have two demands of customers: Normal Demand Problem 
(NDP) and High Demand Problem (HDP). In our definition the HDP is an 
extended problem of NDP. We examined two ways of applying an EMO 
algorithm. One is to apply it to each problem independently. The other is to 
apply it to the HDP with initial solutions generated from non-dominated 
solutions for the NDP. We show that the similarity of the obtained sets of non-
dominated solutions is enhanced by the latter approach. 

1   Introduction 

Although we have many approaches in EMO (Evolutionary Multi-criterion 
Optimization) community [1, 2] recently, there are few research works that investigate 
the similarity of obtained non-dominated solutions. Deb considered topologies of 
several non-dominated solutions in Chapter 9 of his book [3]. He examined the 
topologies or structures of three-bar and ten-bar truss. He showed that neighboring 
non-dominated solutions on the obtained front are under the same topology, and 
NSGA-II can find the gap between the different topologies. While he considered the 
similarity of solutions in a set of non-dominated solutions from a topological point of 
view, there is no research work relating to EMO that considers the similarity of 
solutions in different sets of non-dominated solutions from that point of view. 



We employ the Vehicle Routing Problem (VRP) to consider the similarity in different 
sets of solutions. The VRP is a complex combinatorial optimization problem, which can 
be seen as a merge of two well-known problems: the Traveling Salesman Problem 
(TSP) and the Bin Packing Problem (BRP). This problem can be described as follows: 
Given a fleet of vehicles, a common depot, and several customers scattered 
geographically. Find the sets of routes for the fleet of vehicles. Many research works 
[4, 5, 6, 7, 8] on the VRP try to minimize the total route cost that is calculated using the 
distance or the duration between customers. Several hybrid algorithms have been 
proposed to improve the search ability of genetic algorithms [4, 5]. The research works 
in [6, 7, 8] are related to multi-objective optimization. Tan et al. [6] and Saadah et al. [7] 
employed the travel distance and the number of vehicles to be minimized. Chitty and 
Hernandez [8] tried to minimize the total mean transit time and the total variance in 
transit time. 

In this paper, we employ an EMO algorithm, NSGA -II [9], to our vehicle routing 
problems with minimizing the number of vehicles and the maximum routing time among 
the vehicles. It should be noted that we don’t employ the total routing time of all the 
vehicles, but use the maximum routing time among the vehicles. We employed it in 
order to minimize the active duration of the central depot. We consider two problems 
with different demands. One problem has a normal demand of customers. The other 
has a high demand. We refer the former problem and the latter problem as NDP and 
HDP, respectively. We define the demand in the HDP as an extended demand of the 
NDP in this paper. For example, we assume that the demand in the HDP is a demand 
occurring in a high season such as Christmas season. In that season, the depot may 
have an extra demand as well as the demand in the normal season. In order to avoid a 
large change of each route from the depot, a solution (i.e., a set of route) in the HDP 
should be similar to a solution in the NDP. This situation requires us to consider the 
similarity of solutions on different non-dominated solutions in multi-objective VRPs. 

In order to find a set of non-dominated solutions in the HDP that is similar to a set 
of non-dominated solutions in the NDP, we apply a two-fold EMO algorithm to the 
problem. In a two-fold EMO algorithm, first we find a set of non-dominated solutions 
for the NDP by an EMO algorithm. Then we generate a set of initial solutions for the 
HDP from the non-dominated solutions for the NDP. We apply an EMO algorithm to 
the HDP with initial solutions that are similar to those of the NDP problem. 

We organize this paper as follows: Section 2 gives the problem model for multi-
objective VRPs. The outline of our two-fold EMO algorithm is described in Section 3. 
We define a measure of the similarity between solutions in Section 4. A small example 
of our multi-objective VRP is also shown in Section 4. Section 5 presents the extensive 
simulations and compares results of the two-fold EMO algorithm and those obtained 
individually for the HDP and NDP. Conclusions are drawn in Section 6. 



2   Multi-objective Vehicle Routing Problems 

The domain of VRPs has large variety of problems such as capacitated VRP, multiple 
depot VRP, periodic VRP, split delivery VRP, stochastic VRP, VPR with backhauls, VRP 
with pick-up and deliverring, VRP with satellite facilities, and VRP with time windows. 
These problems have the basic architecture of the VRP except their own constraints. 
Their constraints are arisen in practical cases. Please see for the detail of the VRP 
problem in  [10]. 

The objective of the basic problem is to minimize a total cost is described as 
follows: 
 

Min. ∑ =
M
m mc1 ,            (1) 

 
where M is the number of vehicles each of them starts from the depot and is routed by 
a sequence of customers, then return to the depot. The cost of each vehicle is denoted 
by mc  and described as follows: 
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where jic ,  means the cost between Customers i and j. Let us denote 0 as the index for 
the depot in this paper. Equation (2) indicates the sum of the cost between the depot 
and the first customer assigned to the m-th vehicle (i.e., 1,0c ), the total cost from the 
1st customer to the mn -th customer (i.e., ∑ −

= +
1

1 1,
mn

i iic ), and the cost between the final 
customer mn  and the depot. Each vehicle is assigned to visit mn  customers, thus we 
have ∑ == M

m mnN 1  customers in total. The aim of the VRP is to find a set of 
sequences of customers that minimizes the total cost. Each customer should be visited 
exactly once by one vehicle. 

While the total cost of all the vehicles is ordinarily employed in the VRP, we employ 
the maximum cost to be minimized in this paper. When the cost jic ,  is related to the 
driving duration between Customers i and j in Equation (2), the total cost mc  for the 
m-th vehicle means the driving duration from the starting time from the depot to the 
returning time to the depot. In order to minimize the activity duration of the depot, the 
maximum duration of the vehicles should be minimized since the depot should wait 
until all the vehicles return to the depot. We also consider the minimization of the 
number of vehicles in our multi-objective VRP. The objectives in this paper can be 
described as follows: 
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m
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When we have a solution with 1=M , our problem becomes the traveling salesman 
problem, the TSP. In that case, however, the other objective to minimize the maximum 
driving duration in Equation (3) can be reduced to at most the optimal value of the TSP 
with only one vehicle. That is, the maximum driving duration can not be reduced as in 
the case of using multiple vehicles. On the other hand, the maximum driving duration 
becomes minimum when the number of vehicles equals to the number of customers 
(i.e., NM = ). In that case, each vehicle needs to visit only one customer. The driving 
duration for each vehicle in (2) can be described as follows: 
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where mk][  denotes the index of the customer who is the k-th customer visited by the 
m-th vehicle. The maximum driving duration in (5) over M vehicles becomes the 
optimal value of that objective in the case of NM = . We have the trade off between 
these two objectives: the minimization of the maximum driving duration and the 
minimization of the number of vehicles. 

We consider two problems with different demands: the NDP and the HDP. In the 
NDP, a normal demand of customers should be satisfied. On the other hand, extra 
demands should also be satisfied in the HDP. In this paper, we increase the number of 
customers in the HDP. That is, HDPNDP NN < , where NDPN  and HDPN  are the 
number of customers in the NDP and the HDP, respectively. We can obtain a set of 
non-dominated solutions for each problem. We refer a set of non-dominated solutions 
for the NDP as NDPΨ , and that for the HDP as HDPΨ . These two sets of non-
dominated solutions can be obtained by applying one of multi-objective algorithms 
such as EMO algorithms. But if we apply the algorithm to each of the NDP and the 
HDP independently, we can not expect to obtain a set of solutions with similar routes 
in the HDP to that obtained for the NDP. Before introducing a measure of similarity of 
a solution set in Section 4, we describe a two-fold EMO algorithm for our multi-
objective VRP in the next section. 

3   Two-Fold EMO Algorithm for Multi-objective VRPs 

In this section, we show the employed coding scheme to find a set of non-dominated 
solutions using the genetic operations to apply an EMO algorithm to our multi-
objective VRPs. Then we show how we apply a two-fold EMO algorithm to obtain a 
similar set of solutions in the NDP and the HDP. 



3.1   Coding Scheme to Describe Solutions 

We code a solution of the VRPs by a permutation of N customers, and we split it into 
M parts as shown in Fig. 1. There are eight customers in Fig. 1, and they are served by 
one of three vehicles. The first vehicle denoted 1v  in the figure visits three customers 
in the order of Customers 1, 2, and 3. It is noted that the depot is not appeared in the 
coding. Each route is divided by a closed triangle. Therefore the driving duration for 

1v  is calculated by 0,33,22,11,0 cccc +++ . Fig. 2 shows an example of three routes 
depicted on the map of eight customers and the depot. 

3.2   Genetic Operations 

We employ the cycle crossover [11] as a crossover operator in this paper. Fig. 3 shows 
an example of generating an offspring from selected two parents by the crossover. 
From this figure we can find that the number and the location of splits are changed by 
this crossover. In this figure, the generation of the offspring is started from Customer 3 
in Parent 1. Another offspring is also generated by starting from Parent 2. 

As for the mutation, we employ two kinds of operators in order to modify locations 
of splits and the order of customers in a selected route. Fig. 4 shows examples of these 
mutations. It should be noted that the order mutation itself does not affect the two 
objectives (i.e., the maximum driving duration and the number of vehicles). But it can 
be useful to increase the variety of solutions when it is used with the cycle crossover 
and the split mutation. 
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Fig. 1. An example of eight customers visited by three vehicles. Each triangle shows the split 
between the routes for vehicles. 
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Fig. 2. An example of eight customers visited by three vehicles. Each triangle shows the split 
between the routes for vehicles.  
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Fig. 3. An example of the cycle crossover. Customer 3 in Parent 1 is randomly chosen and 
inherited to an offspring. Then Customer 3 in the other parent is found (the dotted line). The 
customer in Parent 1 locating in the same position of Customer 3 in Parent 2 is inherited to the 
offspring (i.e., Customer 4). This operation is repeated until returning to Customer 3 in Parent 1. 
One of remaining customers is chosen from Parent 2 (Customer 8 in this figure). Repeat these 
operations until all customers are inherited to the offspring. It is noted that a split denoted by a 
closed triangle is also inherited to the offspring when a customer that is the final one in a route 
is inherited (Customers 3 and 5 from Parent 1, and Customer 1 from Parent 1 in this figure). 
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Fig. 4. Examples of two mutation operators. In the split mutation, locations of splits are 
changed randomly. In the order mutation, a selected route is inversed its order of customers. 

3.3   Two-Fold EMO Algorithm 

In our multi-objective VRP, we have two problems, the NDP and the HDP. Since the 
HDP has extra demands of customers with the demands of the NDP, we have two 
approaches to search a set of non-dominated solutions for each of the NDP and the 
HDP. One approach is to apply an EMO algorithm individually to each of them. The 
other is to apply a two-fold EMO algorithm to them. In the two-fold EMO algorithm, 
first we find a set of non-dominated solutions for the NDP by an EMO algorithm. Then 
we generate a set of initial solutions for the HDP from the non-dominated solutions for 
the NDP. We apply an EMO algorithm to the HDP with initial solutions that are similar 
to those of the NDP problem. The procedure of the two-fold EMO algorithm is 
described as follows: 
 
[Two-Fold EMO Algorithm] 
Step 1: Initialize a set of solutions randomly for the NDP. 
Step 2: Apply an EMO algorithm to find a set of non-dominated solutions until the 

specified stopping condition is satisfied. 
Step 3: Obtain a set of non-dominated solutions for the NDP. 
Step 4: Initialize a set of solutions for the HDP using a set of non-dominated 

solutions of the NDP. 
Step 5: Apply an EMO algorithm to find a set of non-dominated solutions until the 

specified stopping condition is satisfied. 
Step 6: Obtain a set of non-dominated solutions for the HDP. 
 
In Step 4, we initialize a set of solutions as follows: 
 
Step 4.1: Obtain a set of non-dominated solutions of the NDP. 



Step 4.2: Specify a solution of the set. 
Step 4.3: Insert new customers randomly into the solution. 
Step 4.4: Repeat Steps 4.2 and 4.3 until all solutions in the set of non-dominated 

solutions of the NDP are modified. 
 
It should be noted that the number of vehicles of each solution is not changed by this 
initialization. The number of vehicles of each solution is changed by the crossover 
operation. Using this initialization method, we show that the similarity between non-
dominated solutions for the NDP and those for the HDP can be increased. Before 
showing the simulation results we explain a measure of the similarity of solutions in 
the next section 
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Fig. 5. A set of example solutions for the NDP and the HDP. 

4   Measure of Similarity Between Sets of Non-dominated Solutions 

4.1   Similarity Measure 

We define a similarity measure to compare non-dominated solutions obtained for the 
NDP and the HDP. Figure 5 shows a set of example solutions to be compared. Suppose 
that we have five customers in the NDP and eight in the HDP. The five customers in 
the NDP are denoted by 1, 2, ..., 5. The other three customers inserted in the HDP are 
denoted by 6, 7 and 8. When we obtain a solution with three vehicles for the NDP and 
one with four for the HDP, the similarity of a solution in the HDP to one in the NDP 
can be calculated as follows: 
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where ivR  shows a set of routes for Vehicle iv , and || ivR  indicates that the number 
of routes of Vehicle iv . For example, HDPvR

1
 consists of routes {0 to 8, 8 to 5, 5 to 0}. 

The number of routes of HDPv1  is three. When we compare the routes of HDPv1  to the 
routes of vehicles in the solution obtained for the NDP, we can obtain the similarity of 

HDPv1  using (6) as follows: 
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As shown in the above equations, HDPv1  has no common routes with NDPv1  and NDPv2 , 
and 1/3 as its similarity to the route of NDPv3 . 

4.2   Example 

We show a small example of our multi-objective vehicle routing problem. Fig. 6 shows 
a map of a depot and customers. The rectangle in the map shows a central depot from 
which every vehicle starts and to which it returns. Open circles show customers in the 
NDP, and closed circles show those added in the HDP. Fig. 7 shows an example 
solution with three vehicles for the NDP with five customers. Figs. 8 and 9 show 
solutions with a high maximum similarity and a low maximum similarity. From these 
figures, we can see that the solution for the HDP in Fig. 8 has the same routes (thick 
routes) in Fig. 7 more than the one in Fig. 9. If we can obtain a solution with a high 
similarity, we can reduce the effort of drivers of vehicles to be informed of routes 
among customers. 
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Fig. 6. The locations of customers in a vehicle routing problem with five customers in the NDP, 
and ten in the HDP. 
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Fig. 7. A solution with three vehicles for the NDP. 
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Fig. 8. A solution with three vehicles with a 
high similarity. 
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Fig. 9. A solution with three vehicles with a 
low similarity. 
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Fig. 10. Sets of Pareto-optimal solutions for the NDP and the HDP in Fig. 6. 
  

When we apply an exact search algorithm to find optimal Pareto set for the NDP and 
the HDP, we obtained the Pareto front depicted in Fig. 10 (In this paper, we employed 
an exhaust method to examine all possible solutions in the problem. We could employ 
the exhaust method since the problem is small). The open circles in Fig. 10 show the 
Pareto solutions for the NDP with the five customers in Fig. 6 with respect to the 
maximum driving duration and the number of vehicles. The closed circles show the 
Pareto solutions for the HDP. Each dotted arrow shows the corresponding solution in 
the NDP, that has the maximum similarity to each solution in the HDP. For example, the 
solution with four vehicles in the HDP has the routes with the maximum similarity with 
the solution with three vehicles in the HDP. This figure shows that not all solutions in 
the NDP are similar to solutions obtained in the HDP. We can increase the number of 
vehicles according to the increase of demands of customers in the HDP with a small 
effort of drivers to be informed of new routes between customers. 

5   Simulation Results by Two-Fold EMO Algorithm 

We show the simulation result on the NDP and HDP problems. We apply our two-fold 
EMO algorithm to the problem with 100 different initial solution sets. That is, we obtain 
100 results for the problem in Fig. 6. We also apply an EMO algorithm to the HDP 
individually from the solution obtained for the NDP. In this paper, we refer a two-fold 
EMO algorithm and an individually applied EMO as 2F-EMO and I-EMO, respectively. 
As an EMO algorithm, we employed the NSGA -II [9], that is known as one of high 
performance algorithm among EMO algorithms. It should be noted that any EMO 
algorithm can be used in a 2F-EMO and an I-EMO. 

Figs. 11 and 12 show examples of non-dominated solutions obtained by a 2F-EMO 
and by an I-EMO. In these figures, we compare each set of non-dominated solutions 
obtained by a 2F-EMO or an I-EMO for a HDP to a set of non-dominated solutions for 



a NDP. A value attached to each solution of non-dominated solutions for the HDP 
means a maximum similarity of that solution calculated by (8). By comparing these 
figures, we can see that the obtained sets of non-dominated solutions are not so 
different each other. However, when we measure the maximum similarity of each 
solution for the HDP to a set of solutions for the NDP, we can see the difference 
between those sets of solutions. That is, while the average value of the maximum 
similarity for each solution obtained by a 2F-EMO in Fig. 11 is 0.5717, that obtained by 
an I-EMO in Fig. 12 is 0.3858. These values show that the set of non-dominated 
solutions obtained by a 2F-EMO has higher similarity to the set obtained for the NDP. 
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Fig. 11. Similarities of solutions obtained by a two-fold EMO algorithm (2F-EMO). Solutions 
of the HDP are obtained by an EMO algorithm with initial solutions generated from the 
solutions obtained in the NDP. 
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Fig. 12. Similarities of solutions obtained by an individually applied EMO algorithm (I-EMO). 
Solutions of the HDP are obtained by an EMO algorithm applied individually. 



Table 1. The average maximum similarity over 100 trials. 

# of 
vehicles 10 9 8 7 6 5 4 3 2 1 Ave. 

2F-EMO 0.41 0.39 0.43 0.41 0.38 0.33 0.31 0.20 0.13 0.05 0.304 
I-EMO 0.37 0.44 0.38 0.35 0.36 0.28 0.25 0.19 0.13 0.04 0.277 

 
 

Table 1 shows that the average simulation results over 100 trials on the NDP and 
the HDP shown in Fig. 6. It summarizes the average maximum similarity for the 
solutions of each number of vehicles. We can see that the maximum similarity tends to 
become small for the solutions with the small number of vehicles. In a solution with a 
small number of vehicles, it has a small similarity since each vehicle should visit many 
customers. 

5   Conclusion 

In this paper, we consider the similarity of sets of non-dominated solutions that are 
obtained for a vehicle routing problem and its variant. When the number of customers 
are increased in a vehicle routing problem, it is better to reduce the effort of drivers to 
be informed of routes among customers when the new vehicle routing problem is 
solved. In this paper, we have just considered the influence of using initial solutions 
generated by a solution obtained for the former problem. Simulation results show that 
it is better to use initial solutions for an EMO algorithm to solve the increased problem. 
We are tackling to develop an algorithm to increase the similarity using genetic 
operations such as crossover and mutation. 
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