
- 31 -

CHAPTER 3

GENETIC ALGORITHMS FOR FLOWSHOP
SCHEDULING PROBLEMS

3.1 INTRODUCTION

Flowshop scheduling is one of the most well-known problems in the area of scheduling.

Various approaches have been proposed since Johnson’s work [56]. Because Johnson described

an optimization algorithm for minimizing the makespan on n-job and two-machine flowshop

scheduling problems [56], this scheduling criterion has been often used in various approaches.

A lot of researchers have tried to constructing an optimization method for scheduling problems.

It is difficult, however, to find the optimal solution of a flowshop scheduling problem involving

many jobs and machines (e.g., 100 jobs and 10 machines). Many approaches can be classified

into two categories: optimization algorithms for the exact solution (for example, Ignall &

Schrage [33] and Lomnicki [69]) and heuristic algorithms for near optimal solutions (for

example, Dannenbring [8] and Nawaz et al.[84]). Because the CPU power of available

computers was rapidly improved, several heuristic approaches based on iterative improvement

procedures have been applied to the flowshop scheduling. Osman & Potts [90] proposed

simulated annealing heuristics, Taillard [108] and Widmer & Hertz [119] proposed tabu search

heuristics.

Recently many authors applied GAs (see, Davis [9], Goldberg [23], and Holland [27]) to

combinatorial optimization problems such as traveling salesman problems (for example, Jog et

al.[55], Starkweather et al.[101], and Ulder et al.[115]) and scheduling problems (for example,

Fox & McMahon [17], Glass et al.[22], Ishibuchi et al.[49], Manderick & Spiessens [70] and

Syswerda [106]). Some empirical studies [9,101,115] showed that the ability of GAs to find

near optimal solutions was a bit inferior to other search algorithms.

In this chapter, we apply GAs to single-objective flowshop scheduling problems. We first

explain flowshop scheduling. Next we examine several crossover operators and mutation

- 32 -

operators to construct genetic algorithms for flowshop scheduling. By computer simulations,

we point out that the combination of high performance crossover and mutation operators does

not always lead to a high performance genetic algorithm [79,80]. We compare the genetic

algorithm constructed for flowshop scheduling with other search algorithms such as local

search, simulated annealing [90], and tabu search [108,119]. It is shown that the genetic

algorithm is a bit inferior to the other search algorithms [82] as shown by several researchers [9,

101,115]. Then, we examine two hybrid genetic algorithms to improve the performance of the

genetic algorithm [82]. One is a genetic local search algorithm, and the other is a genetic

simulated annealing algorithm. We also introduce some modifications of search mechanisms in

these hybrid genetic algorithms [82]. While careful parameter specifications are required for

constructing GAs with high performance, it is shown that we can construct the genetic local

search algorithm without careful parameter specifications.

- 33 -

3.2 FLOWSHOP SCHDULING PROBLEMS
We first briefly describe n-job and m-machine flowshop scheduling problems. General

assumptions of flowshop scheduling problems can be written as follows (for details, see Dudek

et al.[10]): Jobs are to be processed on multiple stages sequentially. There is one machine at

each stage. Machines are available continuously. A job is processed on one machine at a time

without preemption, and a machine processes no more than one job at a time. In this thesis, we

assume that n jobs are processed in the same order on m machines. This means that our

flowshop scheduling is the n-job sequencing problem. Let the processing time and the

completion time of job j on machine i be t i jP (,) and t i jC (,) , respectively. The sequence of

n jobs is denoted by an n-dimensional vector x = (, , ...,)x x xn1 2 , where xk represents the

k-th processing job. The completion time of each job corresponding to the sequence x can be

calculated as

 t x t xC P(,) (,)1 11 1= , (3.1)

 t i x t i x t i xC C P(,) (,) (,)1 1 11= − + , for i m= 2 3, , ..., , (3.2)

 t x t x t xC k C k P k(,) (,) (,)1 1 11= +− , for k n= 2 3, , ..., , (3.3)

 t i x t i x t i x t i xC k C k C k P k(,) max{ (,), (,)} (,)= − +−1 1 ,

 for i m= 2 3, , ..., ; k n= 2 3, , ..., . (3.4)

Flowshop scheduling problems are to determine the sequence x of n jobs based on a specific

criterion. One of the makespan, the total flowtime, the maximum tardiness, and the total

tardiness is often used as a scheduling criterion. Each of these criteria can be defined as follows

in flowshop scheduling:

 Makespan: f t m xC n1() (,)x = , (3.5)

 Total flowtime: f t m xC kk
n

2 1() (,)x = =∑ , (3.6)

 Maximum tardiness: f t m x d x k nC k k3 0 1 2() max{max{ (,) (), }| , , ... , }x = − = , (3.7)

 Total tardiness: f t m x d xC k kk
n

4 1 0() max{ (,) (), }x = −=∑ , (3.8)

- 34 -

Machine 1:

Machine 2:

Machine 3:

Makespan

J1 J2 J3 J4 J5

J1 J2 J3 J4 J5

J1 J2 J3 J4 J5

0

Fig. 3.1 An example of a feasible solution of a five-job and three-machine flowshop

scheduling problem and its makespan.

where d xk() is the duedate of the k-th processing job xk . We use the makespan as a criterion

in this chapter because a lot of heuristic algorithms (i.e., simulated annealing, tabu search, and

so on) were proposed for flowshop scheduling with this criterion. The other criteria are

considered in the following chapter about multi-objective flowshop scheduling. Fig. 3.1 shows

an example of a feasible solution of a five-job and three-machine flowshop scheduling problem.

The makespan is the completion time of the last job. That is, the completion time of Job 5 on

Machine 3 is the makespan of this schedule. We will examine various genetic operators to

construct GAs for flowshop scheduling problems where the makespan is employed as an

objective.

- 35 -

3.3 GENETIC OPERATORS FOR PERMUTATION STRINGS
As we explained the difference between the binary coding and the permutation coding in

Subsections 2.2.1, 2.2.4, and 2.2.5, we should carefully design GAs according to the type of

optimization problems to be considered. The aim of flowshop scheduling problems with the

objective of minimizing the makespan is to find the sequence x of n jobs with the minimum

makespan. A job sequence is directly treated as an individual in GAs. That is, the permutation

coding method is appropriate for flowshop scheduling problems. We consider various genetic

operators which fulfill the requirement of permutation problems that each element of a string

should appear once in a generated string. We explain seven crossover operators and five

mutation operators in the following subsections [78,79,80,82].

3.3.1 Crossover
In this subsection, we examine seven crossover operators. The following two operators are

often used for GAs with the permutation coding.

(1) One-point order crossover

This crossover was briefly explained as an example of a crossover operator for permutation

strings in Subsection 2.2.4. This crossover is illustrated in Fig. 3.2. One point is randomly

selected for dividing one parent string. The set of jobs on one side (i.e., either the head part or

the tail part of the string) is chosen with the same probability and inherited from the parent

string to the offspring, and all the remaining jobs on the other side are placed in the order of

their appearance in the other parent string.

(2) Two-point order crossover

This crossover is illustrated in Fig. 3.3. Two points are randomly selected for dividing one

parent string. The jobs outside the selected two points (i.e., the head part and the tail part) are

always inherited from one parent string to the offspring, and the other jobs (i.e., the mid part of

the string) are placed in the same manner as the one-point order crossover.

The following versions of the position based order crossover (see, Syswerda [106]) were

also examined in computer simulations:

- 36 -

Parent 2

Parent 1

649712853

152643987

Offspring 643987 125

Crossover point

Fig. 3.2 The one-point order crossover.

Parent 2

Parent 1

649712853

152643987

Offspring 649387 152

Crossover points

Fig. 3.3 The two-point order crossover.

Parent 2

Parent 1

649712853

152643987

Offspring 685937 412

** **

Fig. 3.4 The position based order crossover.

- 37 -

(3) Position based order crossover

This crossover is illustrated in Fig. 3.4. The jobs at randomly selected positions marked by

“ ” are inherited from one parent string to the offspring, and the other remaining jobs are

placed in the order of their appearance in the other parent string.

The following four crossover operators, which had been mainly proposed for traveling

salesman problems, are also examined in this chapter for flowshop scheduling problems. We

omit the detailed explanations of these crossovers because they turn out to be inappropriate for

the flowshop scheduling by the following computer simulations.

(4) Partially matched crossover in Goldberg [23]

(5) Cycle crossover in Oliver et al.[89]

(6) Edge recombination crossover in Whitley et al.[118]

(7) Enhanced Edge recombination crossover in Starkweather et al.[101]

3.3.2 Mutation
We examine the following five mutation operators for flowshop scheduling problems.

(1) Adjacent two-element change

Adjacent two elements are exchanged as shown in Fig. 3.5. The adjacent two elements to be

exchanged are randomly selected.

(2) Arbitrary two-element change

This mutation was explained as an example of the mutation operator for permutation strings

in Subsection 2.2.5. Arbitrary selected two jobs are changed as shown in Fig. 3.6. The two

elements to be changed are arbitrary and randomly selected. This mutation includes the adjacent

two-element change as a special case.

(3) Arbitrary three-element change

Arbitrary selected three elements are arbitrary changed as shown in Fig. 3.7. The three

elements to be changed are arbitrary and randomly selected, and the order of the selected

elements after the mutation is randomly specified from the five candidate transitions. This

mutation includes the above two mutations as a special case.

*

- 38 -

153 264
**
987 153 264897

Mutation

Fig. 3.5 Adjacent two-element change.

153 264
**

987 183 264957
Mutation

Fig. 3.6 Arbitrary two-element change.

153 264
**

987 143 268957
Mutation*

183 265947

183 264957

143 265987

153 268947

Fig. 3.7 Arbitrary three-element change.

153 264
**

987 169 243857
Mutation

184 256397

Fig. 3.8 Shift change.

153 264
**

987 184 293657
Mutation

Fig. 3.9 Inversion.

- 39 -

(4) Shift change

In this mutation, an element at one position is removed and put at another position as shown

in Fig. 3.8. The two positions are randomly selected. This mutation includes the adjacent

two-element change as a special case and has an intersection with the arbitrary three-element

change.

(5) Inversion

Inversion mutation reverses the order of the elements between randomly selected two

positions as shown in Fig. 3.9. This mutation includes the adjacent two-element change as a

special case and has an intersection with the arbitrary two-element change and the arbitrary

three-element chage.

As we can see from Fig. 3.5 ~ Fig. 3.9, these mutation operators are applied to an entire

string while a mutation operator is usually applied to each position of a string in the case of

binary coding. Thus it should be noted that the mutation probability Pm is defined for each

string in the case of permutation coding. Since mutation operator can be viewed as a transition

from the current solution to its neighborhood solution in local search algorithms, then mutation

operators may improve individuals locally.

- 40 -

3.4 POSITIVE AND NEGATIVE COMBINATION EFFECTS

 OF GENETIC OPERATORS
Various crossover and mutation operators have been examined for sequencing problems.

Because the performance of GAs strongly depends on the choice of such operators, the

selection of appropriate operators is critical for constructing high performance GAs. The

evaluation of each genetic operator is usually performed by computer simulations using a

specially constructed genetic algorithm. That is, when the performance of a crossover operator

is evaluated, a genetic algorithm without mutation is employed. The evaluation of a mutation

operator is performed by a genetic algorithm without crossover. For example, various crossover

and mutation operators were examined in this manner by Manderick & Spiessens [70].

In this section, we point out that the combination of high performance crossover and

mutation operators does not always lead to a high performance genetic algorithm. We clearly

illustrate this fact by computer simulations on flowshop scheduling problems. First we evaluate

each of various genetic operators in order to select high performance crossover and mutation

operators. Next we combine the selected crossover and mutation operators into a genetic

algorithm, and evaluate its performance. While the performance of each operator is good when

it is independently evaluated, the genetic algorithm constructed by these two operators does not

always work well. This negative combination effect is due to the complementary nature of

crossover and mutation operators in genetic algorithms. Finally we explain how crossover and

mutation operators can be appropriately specified to construct a high performance genetic

algorithm by utilizing the positive combination effect of these two operators.

3.4.1 Flowshop scheduling problems
In this chapter, we simply transform the makespan f1()x in (3.5) to the fitness function

f ()x as follows:

 f f t m xC n() () (,)x x= − = −1 . (3.9)

We use the following simple genetic algorithm that has often been employed for evaluating

genetic operators in the literature:

- 41 -

Step 0 (Initialization): Let t:= 1 where t is the index of generation. Randomly generate an

initial population Ψt including N pop solutions where N pop is the population size.

Step 1 (Evaluation): Calculate the makespan of each schedule in the current population Ψt .

Step 2 (Selection): Select N pop pairs of solutions from the current population Ψt according

to the selection probability Ps()x based on the linear scaling [23]:

 P f f
f f

t

t
t

s

() () ()
{ () ()}

min

min
x x

x
x

= −
′ −

′∈
∑

Ψ
Ψ

Ψ

, (3.10)

where f tmin ()Ψ is the minimum fitness value (i.e., the worst fitness value) in the

current population Ψt .

Step 3 (Crossover): Apply a crossover operator to each of the pairs selected in Step 2 to

generate N pop solutions with the crossover probability Pc . When the crossover

operator is not applied, one of the parents is handled as an offspring.

Step 4 (Mutation): Apply a mutation operator to each of the generated N pop solutions in Step

3 with the mutation probability Pm .

Step 5 (Termination test): If a prespecified stopping condition is satisfied, stop the algorithm.

Otherwise, update t as t t:= + 1 and return to Step 1. In computer simulations, the

total number of generations is used as the stopping condition.

It is noted that the elitist strategy described in Subsection 2.2.6 was not employed in this

algorithm. We specified the population size Npop as Npop = 100 , and the stopping condition

tmax as tmax = 500 in computer simulations.

As a test problem, we randomly generated a flowshop scheduling problem with 20 jobs and

10 machines. The processing time of each job at each machine was randomly specified as an

integer in the closed interval [1, 99]. We applied the genetic algorithm to this test problem 30

times.

- 42 -

3.4.2 Performance measure
In computer simulations, we used the following performance measure in order to evaluate

each genetic operator for our scheduling problem:

 Performance = −f f() ()*x xinitial
* , (3.11)

where xinitial
* is the best solution in the initial population and x * is the best solution among

all the populations. That is, f ()xinitial
* is the fitness value corresponding to the minimum

makespan in the initial population and f ()*x corresponds to the minimum makespan during

the execution of the genetic algorithm. Thus the performance measure in (3.11) can be viewed

as the total improvement of the makespan during the execution of the genetic algorithm.

3.4.3 Effectiveness of genetic operators
Manderick & Spiessens [70] showed that statistical measures related to the fitness landscape

can be used to tune and to optimize the performance of the genetic algorithm. They used

correlation coefficients of genetic operators as a statistical measure to select the best operators.

The correlation coefficient ρOP of a genetic operator OP is obtained as follows: The operator

OP in the case of crossover is applied to two individuals and it generates offspring. For each

application of the operator OP, the values f p and fc represent the mean fitness of the two

parents and the fitness of their offspring. In the case of mutation, the operator OP is applied to

one individual and it generates offspring. The values f p and fc represent the fitness of the

one parent and its offspring. To calculate the correlation coefficient ρOP of the operator OP,

we take a number of parent strings, apply the operator OP to get their offspring, and calculate

the correlation coefficient between the fitness values f p and fc :

 ρOP (,)
(,)

() ()
f f

Cov f f
f fp c

p c

p c
=

σ σ
, (3.12)

where Cov f fp c(,) is the covariance between the values of f p and fc , and σ ()f p and

- 43 -

σ ()fc are the standard deviation of the values of f p and fc , respectively. Manderick &

Spiessens [70] showed that correlation coefficients of genetic operators are related with their

performance by computer simulations. That is, they said that the effectiveness of genetic

operators can be expected by calculating correlation coefficients of genetic operators. It should

be noted that either a crossover operator or a mutation operator is used in their genetic

algorithms. That is, they used genetic algorithms with no mutation operator in order to measure

the performance of crossover operators, and genetic algorithms with no crossover operator in

order to measure the performance of mutation operators.

We will examine seven crossover operators and five mutation operators described in Section

3.3 in the following subsections. First we examine the performance of genetic operators in the

way proposed by Manderick & Spiessens [70]. Then we consider the positive and negative

combination effects of crossover and mutation operators.

3.4.4 Examination of crossover operators

In order to examine the seven crossover operators in Subsection 3.3.1, we applied the genetic

algorithm in Subsection 3.4.1 to our test problem 30 times by specifying the mutation

probability Pm as Pm = 0 in the same manner as in Manderick & Spiessens [70]. This

means that no mutation operator was used in the genetic algorithm when the crossover

operators were examined. Each crossover operator was examined using ten crossover

probabilities: Pc = 0.1, 0.2, ..., 1.0. These values were also used in Manderick & Spiessens

[70].

We examined each crossover operator by 30 runs of the genetic algorithm. The average value

of the performance measure in (3.11) over the 30 runs was calculated for each crossover

operator with each crossover probability. The best crossover probability was determined for

each crossover operator by these computer simulations (e.g., Pc = 0.9 for the one-point order

crossover). In Table 3.1, we show the crossover probability determined in this manner for each

crossover operator. We also show in Table 3.1 the average value of the performance measure

obtained by each crossover operator with the best specification of the crossover probability.

From Table 3.1, we can see that the best performance was obtained by the position based order

crossover with the crossover probability Pc = 0.9.

We also calculated the correlation coefficients in (3.12) for each crossover operator by

applying a crossover operator to 30,000 pairs of parent strings which were randomly generated.

- 44 -

Table 3.1 Average value of the performance measure over 30 runs for each crossover

operator with its best crossover probability.

Crossover Pc Performance

One-point order crossover 0.9 176.80
Two-point order crossover 0.9 144.33
Position based order crossover 0.9 206.53*
Partially matched crossover 1.0 180.93
Cycle crossover 1.0 152.73
Edge recombination 0.5 124.70
Enhanced edge recombination 0.5 125.56

* Best result

Correlation coefficient

Pe
rf

or
m

an
ce

100

150

200

0.0 1.00.5

ER

PBX

EER

PMX

2POX

CX

1POX

ρ

Fig. 3.10 Relation between the performance and the correlation coefficients

of crossover operators.

Fig. 3.10 shows the relation between the performance and the correlation coefficients of the

seven crossover operators where 1POX is the one-point order crossover, 2POX is the two-point

order crossover, PBX is the position based order crossover, PMX is the partially matched

crossover, CX is the cycle crossover, ER is the edge recombination, and EER is the enhanced

edge recombination. From Fig. 3.10, we can observe the correlation coefficient of the crossover

operator may be related with its performance.

- 45 -

3.4.5 Examination of mutation operators
In order to examine the five mutation operators in Subsection 3.3.2, we applied the genetic

algorithm 30 times to our test problem by specifying the crossover probability Pc as Pc = 0

in the same manner as in Manderick & Spiessens [70]. This means that no crossover operator

was used in the genetic algorithm when the mutation operators were examined. Each mutation

operator was examined using ten mutation probabilities: Pm = 0.1, 0.2, ..., 1.0. These values

were also used in Manderick & Spiessens [70].

We examined each mutation operator in the same manner as in the last subsection.

Simulation results are shown in Table 3.2. From Table 3.2, we can see that the best

performance was obtained by the shift change mutation with the mutation probability

Pm = 0.4.

We also calculated the correlation coefficient in (3.12) for each mutation operator by

applying a mutation operator to 30,000 pairs of parent strings which were randomly generated.

Fig. 3.11 shows the relation between the performance and the correlation coefficients of the

five mutation operators. From Fig. 3.11, we can observe the correlation coefficient of the

mutation operator is related with its performance.

From Table 3.1 and Table 3.2, the combination of the position based order crossover with

Pc = 0.9 and the shift change mutation with Pm = 0.4 seems to lead to a high performance

genetic algorithm. The performance of this combination is examined in the next subsection.

Table 3.2 Average value of the performance measure over 30 runs for each mutation operator

with its best mutation probability.

Mutation Pm Performance
Adjacent two-element change 1.0 195.20
Arbitrary two-element change 0.2 197.60
Arbitrary three-element
change

0.3 192.43

Shift change 0.4 211.13*
Inversion 0.3 181.60

* Best result

- 46 -

Correlation coefficient

Pe
rf

or
m

an
ce

100

150

0.0 1.00.5

Shift

Adjacent 2

ρ

200 Arbitrary 2

Arbitrary 3

Inversion

Fig. 3.11 Relation between the performance and the correlation coefficient

of mutation operators.

3.4.6 Combination of genetic operators
Based on the simulation results in Table 3.1 and Table 3.2, we constructed a genetic

algorithm using the position based order crossover with Pc = 0.9 and the shift change mutation

with Pm = 0.4. This genetic algorithm was applied to our test problem 30 times with the same

population size and the same stopping condition as in Subsections 3.4.4 and 3.4.5. By this

computer simulation, we had the following result:

Average performance: 198.2.

From the comparison of this value with Table 3.1 and Table 3.2, we can see that the

performance of the genetic algorithm was deteriorated by the combination of the high

performance crossover and mutation operators.

This result suggests the existence of the negative combination effect of crossover and

mutation operators. That is, crossover and mutation operators can not be appropriately specified

by the independent examination of one operator from the other operator because of their

complementary nature.

- 47 -

3.4.7 Selection of genetic operators and their probabilities
In this subsection, we explain several methods for appropriately specifying crossover and

mutation operators.

A. Probability tuning

One reason of the poor performance of the genetic algorithm in the last subsection may be

the inappropriate specifications of the crossover and mutation probabilities. Those probabilities

were specified by the computer simulations in Subsections 3.4.4 and 3.4.5 where either

crossover or mutation operator (not both operators) was used in genetic algorithms. Thus those

probabilities may be inappropriate when both operators are used in genetic algorithms. This

means that the performance of the genetic algorithm in Subsection 3.4.6 may be improved by

the tuning of those probabilities.

In order to appropriately specify those probabilities, we applied a genetic algorithm with the

position based order crossover and the shift change mutation to our test problem 30 times by

using the following crossover and mutation probabilities:

 Pc = 01 0 2 0 3 10. , . , . , ..., . , Pm = 01 0 2 0 3 10. , . , . , ..., . .

Therefore there were 100 combinations of the crossover and mutation probabilities.

The following best result was obtained by Pc 0.3= and Pm 0.2= :

Average performance: 216.8.

From the comparison of this result with the value “198.2” in Subsection 3.4.6, we can see that

the performance of the genetic algorithm was improved by tuning the crossover and mutation

probabilities. The above result is also better than all the results in Table 3.1 and Table 3.2

where either crossover or mutation operator (not both operators) was employed in genetic

algorithms. This means that the positive combination effect can be realized by appropriately

specifying the crossover and mutation probabilities.

B. Search for good genetic operators

In the last subsection, we used the crossover and mutation operators that were independently

selected by the computer simulations in Subsections 3.4.4 and 3.4.5. Here we examine a search

- 48 -

method of appropriate genetic operators by considering the combination effects of crossover

and mutation. There are two versions of the search method: One starts from the selection of a

crossover operator, and the other starts from the selection of a mutation operator.

The first version of the search method can be written as follows:

Step 1 (Initial selection of a crossover operator): Evaluate applicable crossover operators with

various crossover probabilities, and choose the best crossover operator and the best

crossover probability as in Table 3.1. In this step, the evaluation is performed by a

genetic algorithm with no mutation operator.

Step 2 (Initial selection of a mutation operator): Evaluate applicable mutation operators with

various mutation probabilities by a genetic algorithm with the crossover operator and the

crossover probability specified in Step 1. That is, the evaluation is performed by a

genetic algorithm with both mutation and crossover. Choose the best mutation operator

and the best mutation probability.

Step 3 (Search for a better crossover operator): Evaluate applicable crossover operators with

various crossover probabilities by a genetic algorithm with the mutation operator and the

mutation probability specified in the previous step (i.e., Step 2 or Step 4). Choose the

best crossover operator and the best crossover probability. If the performance of the

genetic algorithm is not improved, stop the algorithm. Otherwise go to Step 4 with the

selected crossover operator and crossover probability.

Step 4 (Search for a better mutation operator): Evaluate applicable mutation operators with

various mutation probabilities by a genetic algorithm with the crossover operator and the

crossover probability specified in Step 3. Choose the best mutation operator and the best

mutation probability. If the performance of the genetic algorithm is not improved, stop

the algorithm. Otherwise return to Step 3 with the selected mutation operator and

mutation probability.

 We applied this algorithm to our test problem. In each step, we selected a genetic operator

and its probability by average results over 30 runs. In Step 1, the seven crossover operators

were examined by a genetic algorithm with no mutation operator. As shown in Table 3.1, the

position based order crossover with Pc = 0.9 was selected, and the average performance

measure “206.53” was obtained in this step. In Step 2, the five mutation operators were

- 49 -

examined by a genetic algorithm with the position based order crossover. This means that the

combinations of the position based order crossover and the five mutation operators were

examined. In this step, the adjacent two-element change mutation with Pm = 0.6 was selected,

and the average performance measure “224.3” was obtained. In Step 3, the combinations of the

adjacent two-element change mutation and the seven crossover operators were examined. Then

the position based order crossover with Pc = 0.6 was selected, and the average performance

measure “225.8” was obtained. Because the performance of the genetic algorithm was

improved in Step 3 from 224.3 to 225.8, we went to Step 4 where the combinations of the

position based order crossover with Pc = 0.6 and the five mutation operators were examined.

In Step 4, the adjacent two-element change mutation with Pm = 0.6 was selected, and the

average performance measure “225.8” was obtained. Because the performance of the genetic

algorithm was not improved in this step, the algorithm was terminated. Therefore the following

final result was obtained by the position based order crossover with Pc = 0.6 and the adjacent

two-element change mutation with Pm = 0.6:

Average performance: 225.8.

This result is better than any results in Table 3.1 and Table 3.2 where either crossover or

mutation operator (not both operators) was employed in genetic algorithms. This means that the

positive combination effect of crossover and mutation was realized by selecting the genetic

operators by the above algorithm.

The other version of the proposed method starts from the selection of a mutation operator.

This version was also applied to our test problem and the following result was obtained by the

two-point order crossover with Pc = 0.9 and the shift change mutation with Pm = 0.3:

Average performance: 222.3.

C. Examination of all combinations

One of the most straightforward methods for selecting crossover and mutation operators is to

examine all the possible combinations of various operators. Using our test problem, we

examined the 35 combinations of the seven crossover operators and the five mutation operators.

The crossover and mutation probabilities in Table 3.1 and Table 3.2 were used in computer

- 50 -

simulations. Simulation results were summarized in Table 3.3 where the average value of the

performance measure over 30 runs is shown for each combination. From this table, we can see

the following best result was obtained by the combination of the cycle crossover and the

adjacent two-element change mutation:

Average performance: 227.2.

It should be noted that the cycle crossover and the adjacent two-element change mutation

were not highly evaluated in Table 3.1 and Table 3.2 when each of these operators was

independently examined. Therefore the good result “227.2” was attained by the positive

combination effect of crossover and mutation in genetic algorithms.

The crossover and mutation probabilities were also tuned for this combination in the same

manner as in Subsection 3.4.7.A. Then the following improved result was obtained by Pc = 0.8

and Pm = 1.0:

Average performance: 228.3.

Table 3.3 The performance of all the possible combinations of various genetic operators.

 Adjacent 2
(Pm = 1.0)

Arbitrary 2
(Pm = 0.2)

Arbitrary 3
(Pm = 0.3)

Shift
(Pm = 0.4)

Inversion
(Pm = 0.3)

1POX (Pc = 0.9) 211.5 211.8 210.3 213.7 200.8
2POX (Pc = 0.9) 206.9 214.9 209.9 217.1 196.1
PBX (Pc = 0.9) 217.6 205.6 188.3 198.2 182.2
PMX (Pc = 1.0) 172.0 164.2 150.0 156.1 148.2
CX (Pc = 1.0) 227.2* 205.8 201.2 211.7 191.6
ER (Pc = 0.5) 126.2 118.7 115.0 120.3 123.4
EER (Pc = 0.5) 121.8 121.0 112.1 125.3 126.0

 198.2 is the result by the combination of the best operators in Table 3.1 and Table 3.2.

 227.2* is the best result in this table.

- 51 -

3.5 COMPARISON WITH OTHER SEARCH ALGORITHMS

In this section, we compare the GA with other search algorithms such as local search, tabu

search and simulated annealing. In computer simulations, the neighborhood structure based on

the shift change mutation was used in all the search algorithms.

3.5.1 Other search algorithms
A. Local search algorithm

In a local search algorithm, first an initial solution x is randomly generated. Then the

solutions in the neighbor of the current solution x are examined in random order. When a better

solution is found by this neighborhood examination, the current solution is immediately

replaced with that solution. That is, the current solution is replaced with the first solution that

improves the current one. When there is no solution that improves the current one in the

neighborhood, the current solution x can be regarded as a local optimal solution. Then the

search procedure restarts from another initial solution that is generated randomly again. This

search procedure is iterated until a prespecified stopping condition is satisfied.

In the above algorithm, the current solution is immediately replaced with the first solution

that improves the current one. There is another strategy for a transition from the current

solution. That is, the current solution is replaced the best solution of all the neighborhood

solutions of the current solution. The former strategy is called the first move strategy, and the

latter is called the best move strategy. In this section, we employed the first move strategy.

B. Tabu search algorithm

In computer simulations, we used the following tabu search algorithm, which is basically the

same as an algorithm mentioned in Taillard [108]. First an initial solution x is randomly

generated, and the tabu list is specified as φ where φ shows that the tabu list is empty. Next

the neighborhood solutions that are not included in the tabu list are examined in random order.

Let y* be the first solution that improves the current one. If no solution improves the current

one, then let y* be the best solution in the neighborhood solutions that are not included in the

tabu list. If a prespecified stopping condition is satisfied, then stop the search procedure.

Otherwise, let x := y* , renew the tabu list, and continue the search procedure from the updated

current solution x. In computer simulations, we used the tabu list defined by the pairs of

- 52 -

positions and jobs. When the job xk at the k-th position is removed and put at another

position, the pair (,)k xk is added to the tabu list. The length of the tabu list was specified as

seven.

As in the case of local search algorithm, the best move strategy can be utilized in this

algorithm. The comparison of the first move and the best move was examined in Taillard [108].

In his paper, the first move strategy was better than the best move strategy. Therefore we

employed the first move strategy in this algorithm.

C. Simulated annealing algorithm

In this section, we used the simulated annealing algorithm proposed by Osman & Potts [90].

First an initial solution x is randomly generated. The transition from the current solution x to a

neighborhood solution y is accepted by the following probability:

 P f f
cl

trans () min{ , exp(() ())}x y x y→ = − −1 , l N= 1 2, ,..., iteration , (3.13)

where f ()⋅ is a fitness function in (3.9) to be maximized, cl is a control parameter called

temperature, and Niteration is the total iteration number of simulated annealing algorithms. In

simulated annealing algorithms, the value of the control parameter is gradually decreased from

a large initial value to a small final value. In computer simulations, we specified the sequence

of cl as

 c c cl l l+ = + ⋅1 1/ ()β , l N= −1 2 1, ,..., iteration , (3.14)

where β is a positive constant. We determined the positive constant β and the initial value

of cl according to Osman & Potts [90]. The current solution x is replaced with the candidate

solution y with the acceptance probability in (3.13). This search procedure is iterated until a

prespecified stopping condition is satisfied.

3.5.2 Simulation results
We applied the genetic algorithm (GA), the local search algorithm (LS), the tabu search

algorithm (TS) and the simulated annealing algorithm (SA) to randomly generated 100 test

- 53 -

problems with 20 jobs and 10 machines. We employed the two-point order crossover and the

shift change mutation as genetic operators in the genetic algorithm. For comparison, we also

applied a random sampling technique with the same computation load in the other algorithms.

We also applied these algorithms to randomly generated 100 test problems with 50 jobs and 10

machines.

Simulation results are shown in Table 3.4 and Table 3.5 for 20-job problems and 50-job

problems, respectively. We plotted the results for 20-job problems in Fig. 3.12. In these tables,

the average makespan to be minimized obtained by each algorithm are normalized using the

result by the simulated annealing algorithm with 200,000 evaluations (which were the second

best result in Table 3.4, and the best result in Table 3.5). From these tables and figure, we can

see that the genetic algorithm, which is much superior to the random sampling technique, is a

bit inferior to the other search algorithms.

Table 3.4 Comparison of the search algorithms for 20-job and 10-machine problems.

Evaluations 10,000 50,000 200,000
GA
LS
TS
SA
Random

 101.5
 101.2
 101.1*
 100.9**
 109.6

 101.0
 100.5
 100.5*
 100.2**
 108.4

 100.7
 100.2
 100.0**
 100.0*
 107.5

** and * show the best result and the second best result in each column, respectively.

Table 3.5 Comparison of the search algorithms for 50-job and 10-machine problems.

Evaluations 10,000 50,000 200,000
GA
LS
TS
SA
Random

 102.3
 101.9
 101.4*
 101.2**
 111.4

 101.4
 101.2
 101.0*
 100.4**
 110.5

 101.1
 100.7
 100.5*
 100.0**
 109.8

** and * show the best result and the second best result in each column, respectively.

- 54 -

99.8

100.0

100.2

100.4

100.6

100.8

101.0

101.2

101.4

101.6

0 50000 100000 150000 200000

Number of evaluations

GA LS TS SA

A
ve

ra
ge

 p
er

fo
rm

an
ce

Fig. 3.12 Simulation results by the four search algorithms

for 20-job and 10-machine problems.

- 55 -

3.6 HYBRIDIZATION OF GENETIC ALGORITHMS WITH

 OTHER SEARCH ALGORITHMS

In this section, we examine two hybrid algorithms (i.e., genetic local search and genetic

simulated annealing) to improve the performance of the genetic algorithm which was a bit

inferior to the other search algorithms in the previous section. While careful parameter

specifications are required for constructing GAs with high performance, it is shown that we can

construct the genetic local search algorithm without careful parameter specifications.

3.6.1 Genetic local search
Genetic local search have been proposed by several authors for mainly traveling salesman

problems (for example, see Glass et al.[22], Jog et al.[55], and Ulder et al.[115]). Generally a

local search procedure can be written as follows:

[Local Search Procedure]

Step 0: Specify an initial solution x.

Step 1: Examine a neighborhood solution y of the current solution x.

Step 2: If y is a better solution than x, replace the current solution x with y (i.e., let x y:=)

and return to Step 1.

Step 3: If all the neighborhood solutions of the current solution x have been already

examined (i.e., if there is no neighborhood solution that improves x), then end this

procedure. Otherwise return to Step 1 (i.e., another neighborhood solution is

examined in Step 1).

As we can see from Step 3, this local search procedure is terminated when there is no better

solution in the neighborhood of the current solution x. This means that all the neighborhood

solutions of the current solution x should be examined before the procedure is terminated.

Therefore the total number of solutions examined by this local search procedure for a single

initial solution is more than or equal to the number of the neighborhood solutions. For example,

if we define the neighborhood solutions by exchanging arbitrary two elements for a flowshop

scheduling problem with 20 jobs, the number of the neighborhood solutions is 20 2 190C = .

This means that at least 190 solutions are examined before the local search procedure is

- 56 -

terminated for a single initial solution. When we applied a genetic local search algorithm where

the above mentioned local search algorithm was incorporated into a genetic algorithm to 100

test problems with 20 jobs, the average number of generations was 7.4 (in the case of

Npop = 10 and 50,000 evaluations). If we want to efficiently utilize the global search ability of

GAs in the genetic local search algorithm, we have to reduce the computation time spent by the

local search. This can be realized by restricting the number of neighborhood solutions

examined by the local search procedure. We modify the local search procedure as follows:

[Modified Local Search Procedure]

Step 0: Specify an initial solution x.

Step 1: Examine a neighborhood solution y of the current solution x.

Step 2: If y is a better solution than x, replace the current solution x with y (i.e., let x y:=)

and return to Step 1.

Step 3: If a certain number of neighborhood solutions of the current solution x have been

already examined (i.e., if there is no better solution among the a certain number of

neighborhood solutions of the current solution x), then end this procedure. Otherwise

return to Step 1 (i.e., another neighborhood solution is examined in Step 1).

This algorithm is terminated if no better solution is found among a certain number of

neighborhood solutions that are randomly selected from the neighborhood of the current

solution. Therefore if we examine a small number of neighborhood solutions, the local search

procedure may be terminated soon. On the contrary, if we examine a large number of

neighborhood solutions, the local search procedure examines many solutions. In this manner,

we can adjust the computation time spent by the local search procedure in the genetic local

search algorithm. In computer simulations, we used the following genetic local search

algorithm.

Step 0 (Initialization)

Step 1 (Evaluation)

Step 2 (Selection)

Step 3 (Crossover)

- 57 -

Step 4 (Mutation)

Step 5 (Elitist strategy)

Step 6 (Modified local search and termination test): Apply the modified local search algorithm

to the Npop solutions in the current population. If a prespecified stopping condition is

satisfied during the local search, stop the algorithm. If the local search is completed for all

the Npop solutions, let the set of the obtained Npop solutions be the current population.

Step 7 (Termination test): Return to Step 1.

3.6.2 Genetic simulated annealing
In the genetic local search algorithm, we can use the simulated annealing instead of the local

search to construct a genetic simulated annealing algorithm. That is, we have the genetic

simulated annealing algorithm by modifying Step 6 of the genetic local search algorithm in the

last subsection. In computer simulations, we applied the simulated annealing algorithm with the

constant temperature to each of the Npop solutions in the current population. We used the

constant temperature to avoid extreme deterioration of the current solution during the initial

state of annealing with high temperature. The simulated annealing algorithm was iterated 500

times for each solution of the current population in computer simulations. In order to improve

the performance of the genetic simulated annealing algorithm, we modify the simulated

annealing algorithm by randomly selecting k neighborhood solutions of the current one and

letting the best one be the candidate solution for the next transition in the simulated annealing

(for such modification of simulated annealing, see Ishibuchi et al.[34]).

3.6.3 Simulation results
As in a similar manner to the computer simulations in the last section, we applied the genetic

local search algorithm (GLS) and the genetic simulated annealing algorithm (GSA) to the 100

test problems with 20 jobs and 10 machines. The simulation results are shown in Table 3.6. In

the GLS, α % (α = 100, 75, 50, 25, 10, 5) of the neighborhood solutions of the current

solution were examined in each local search procedure. When α = 100 , the local search

algorithm in the GLS is the same as the standard local search algorithm. In the GSA, k (k = 1,

- 58 -

Table 3.6 Performance of the genetic local search and the genetic simulated annealing for
20-job and 10-machine problems.

Number of evaluations Search

Algorithms 10,000 50,000 200,000
GA
GLS
GLS
GLS
GLS
GLS
GLS
GSA
GSA
GSA
GSA
GSA
GSA
GSA

100%
75%
50%
25%
10%
5%

k = 1
k = 2
k = 4
k = 6
k = 8
k = 10
k = 20

 101.48
 101.14
 101.05
 101.04*
 101.02**
 101.16
 101.25
 101.25
 101.18
 101.21
 101.10
 101.26
 101.27
 101.51

 101.03
 100.14
 100.12**
 100.18
 100.19
 100.28
 100.52
 100.25
 100.20
 100.22
 100.12*
 100.23
 100.17
 100.20

 100.71
 99.85*
 99.82**
 99.92
 99.97
 100.01
 100.24
 99.92
 99.93
 99.96
 99.87
 99.92
 99.92
 99.94

** and * show the best result and the second best result in each column, respectively.

99.8

100.0

100.2

100.4

100.6

100.8

101.0

101.2

101.4

101.6

0 50000 100000 150000 200000

Number of evaluations

GA GLS GSA

A
ve

ra
ge

 p
er

fo
rm

an
ce

Fig. 3.13 Simulation results by the GA, the GLS (α = 75), and the GSA (k = 6).

- 59 -

2, 4, 6, 8, 10, 20) candidate solutions were selected from the neighbor of the current solution,

and the transition to the best solution was examined with the acceptance probability in (3.13) of

the simulated annealing algorithm. When k = 1, the simulated annealing in the GSA is the same

as the standard algorithm. In this section, the constant temperature in the GSA was specified as

c = 2 . In Fig. 3.13 we plotted the results obtained by the GA, the GLS (α = 75), and the GSA

(k = 6). From the comparison between the results in Table 3.4 and Table 3.6, we can see that

the performance of the genetic algorithm was improved by combining it with local search or

simulated annealing. Table 3.6 shows that the modification of the local search procedure in the

GLS is effective to improve the performance of the GLS. Table 3.6 also shows that the

introduction of k into the simulated annealing improved the performance of the genetic

simulated annealing algorithm. From Table 3.4 and Table 3.6, we can see that the best result

was obtained by the GLS with α = 75%. It should be noted that not only genetic algorithm but

also the local search and the simulated annealing were improved by the hybridization (compare

Table 3.4 with Table 3.6).

3.6.4 Sensitivity of the performance of the genetic local search

 algorithm to parameter specifications
As we have already shown in Section 3.4, careful parameter specifications are required for

constructing GAs with high performance. In this section, it is shown that we can construct the

GLS without careful parameter specifications.

A. Specifications of a test problem and a genetic algorithm

As a test problem, we randomly generated a flowshop scheduling problem with 20 jobs and

10 machines in the same manner as in Subsection 3.4.1. The processing time of each job at each

machine was randomly specified as an integer in the closed interval [1, 99]. We applied the

genetic algorithm to this test problem 10 times. We employed the two-point order crossover

and the shift change mutation as genetic operators in the GA and the GLS. In the GLS, the

neighborhood structure based on the shift change was used. We examined the following

crossover and mutation probabilities.

 Pc = 01 0 2 0 3 10. , . , . , ..., . , Pm = 01 0 2 0 3 10. , . , . , ..., . .

- 60 -

Then the number of combination of crossover and mutation probabilities is 10 10 100× = . In

the GLS, we examined α% neighborhood solutions of the current solution where

 α = 3 5 10 25 50 75 100, , , , , , .

B. Simulation results

In this subsection, we employed the modified local search procedure with multiple start

solutions (MLS) in order to compare the performance of the GLS. In the case of α = 100 in

the MLS, the algorithm can be regarded as the standard local search algorithm. Both the

algorithms were stopped when 100,000 solutions were evaluated.

Simulation results obtained by the GA and the GLS with 100 probability combinations are

shown in Fig. 3.14 and Fig. 3.15. In Fig. 3.14, α was specified as α = 0. In this case, the

GLS can be regarded as the GA with no local search algorithm. In Fig. 3.15, we specified α

as α = 50 . We used the average makespan over 10 times as a performance measure. From

these figures, we can observe that the performance of the GLS does not depend on probability

specifications while the performance of the GA highly depends on those. From this observation,

we can see that the performance of the GLS is not sensitive to the parameter specifications.

In order to clarify the robustness of the GLS, we plotted the average performance of each

algorithm over α in Fig. 3.16. In Fig. 3.16, the best results were obtained by the GLS where

the best probability combination was employed. The worst results were obtained by the GLS

where the worst combination was employed. The average results were calculated from the

results over all results. From this figure, we can observe that the results obtained by the GLS

are always better than that of the standard local search algorithm (i.e., α = 100 in the MLS).

We can also observe that the difference between the best results and the worst results decreases

by incorporating the local search in the GAs.

- 61 -

0.1 0.3 0.5 0.7 0.9
0.1

0.3
0.5

0.7
0.9

1580

1590

1600

1610

1620

1630
A

ve
ra

ge
 m

ak
es

pa
n

Mutation
 probability

Crossover
 probability

Fig. 3.14 The average makespan obtained by the GA over 100 probability combinations.

0.1 0.3 0.5 0.7 0.9
0.1

0.3
0.5

0.7
0.9

1580

1590

1600

1610

1620

1630

A
ve

ra
ge

 m
ak

es
pa

n

Mutation
 probability

Crossover
 probability

Fig. 3.15 The average makespan obtained by the GLS over 100 probability combinations.

- 62 -

1580

1590

1600

1610

1620

1630

0 20 40 60 80 100

neighborhood solutions

A
ve

ra
ge

 m
ak

es
pa

n
MLS: the average result
GLS: the worst result
GLS: the average result
GLS: the best result

α%

Fig. 3.16 The relation between α and average performance of the MLS and the GLS.

- 63 -

3.7 SUMMARY

In this chapter, we considered genetic algorithms with a single objective for flowshop

scheduling problems. First we examined seven crossover operators and five mutation operators

for permutation strings. By computer simulations, we pointed out that the combination of high

performance crossover and mutation operators did not always lead to a high performance

genetic algorithm. We illustrated how high performance genetic algorithms could be

constructed by utilizing the positive combination effect of crossover and mutation operators.

From simulation results in this chapter, we can conclude the following:

(i) The combination of high performance crossover and mutation operators did not always

mean a high performance genetic algorithm (see, Table 3.1, Table 3.2 and the combination

of PBX and Shift in Table 3.3). This suggested the existence of the negative combination

effect of crossover and mutation operators.

(ii) A high performance genetic algorithm could be constructed by crossover and mutation

operators each of which is not highly evaluated (see, Table 3.1, Table 3.2 and the

combination of CX and Adjacent 2 in Table 3.3). This suggested the existence of the

positive combination effect of crossover and mutation operators.

(iii) When each of the crossover and mutation probabilities was independently specified by

computer simulations using genetic algorithms with either crossover or mutation operator

(not both operators), the selected values were not appropriate (i.e., too large) for

constructing a high performance genetic algorithm (see the results in Subsection 3.4.6

(Pc 0.9= , Pm 0.4=) and Subsection 3.4.7.A (Pc 0.3= , Pm 0.2=).

Our intention in this chapter was not to find the best specifications of crossover and mutation

of the simple genetic algorithm for a specific class of permutation problems (i.e., flowshop

scheduling). We performed many runs of the genetic algorithm with various specifications of

crossover and mutation operators in order to clearly demonstrate that the selection of genetic

operators and the specifications of their probabilities could not be appropriately done by

independent examinations of one genetic operator (i.e., crossover or mutation) from the other.

We believe this is true for various classes of combinatorial optimization problems.

Next, we compared the genetic algorithm, which was constructed for flowshop scheduling,

with other search algorithms such as local search, simulated annealing [90], and tabu search

[108,119]. It was shown that the genetic algorithm was a bit inferior to the other search

- 64 -

algorithms [82]. We examined two hybrid genetic algorithms to improve the performance of the

genetic algorithm [82]. One is a genetic local search algorithm and the other is a genetic

simulated annealing algorithm. We also introduced some modifications of search mechanisms

in these hybrid genetic algorithms [82]. From the computer simulations, we observed that the

performance of the GLS did not depend on probability specifications while the performance of

the GA highly depended on those.

