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CHAPTER 2 
 

GENETIC ALGORITHMS FOR OPTIMIZATION 
PROBLEMS 
 

 

 

2.1 INTRODUCTION 

Since the idea of genetic algorithms was introduced by John Holland in the early 1970’s [27], 

GAs have been applied to a lot of optimization problems. Because they are not limited by 

restrictive assumptions about search space which concern continuity, existence of derivatives, 

unimodality, they are utilized by a lot of researchers who are tackling optimization problems. 

Search and optimization techniques can be categorized into three classes: calculus based, 

enumerative, and random. Calculus based approaches usually require the existence of 

derivatives and the continuity. Therefore it is difficult to apply them to realistic problems where 

these assumptions often do not hold. Enumerative methods are straightforward search schemes. 

They can be applied to optimization problems when the number of feasible solutions are small. 

Most optimization problems in the real world, however, have countless possible solutions. 

Therefore they can not be applied to such complex problems. As for random searches, while 

they search in solution spaces without any kind of information, it may not be efficient. 

Therefore the search direction should be specified in order to improve their search ability. GAs 

are one of random searches because they use a random choice as a tool in their searching 

process. While a random choice performs an important role in GAs, the search in GAs is 

directed by the environment. That is, they utilize information from the environment in their 

searching process. 

While it is easy to apply GAs to optimization problems, several researchers [22,49,78,82] 

pointed out that the performance of GAs on some optimization problems was a bit inferior to 

that of neighborhood search algorithms (e.g., local search, simulated annealing [90], and tabu 

search [108,119]). The performance of GAs should be improved when it is applied to 

optimization problems. Hybridization of GAs with other search methods is one way to improve 
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the performance of GAs. When problem-specific information exists, the performance of GAs 

can be improved by utilizing the information. 

In general, optimization problems to be addressed have several objectives to be optimized. 

As the number of objectives of the problem increases, the complexity of the problem becomes 

high because the objectives considered are often contradictory to one another. The researcher 

who tackles an optimization problem with multiple objectives needs a tool for optimizing their 

problem. Because objectives to be optimized in the problem are often contradictory to one 

another, the optimal solution of the problem is not obtained as a single solution. That is, a set of 

candidate solutions called non-dominated solutions is to be obtained for the problem. Since 

multiple solutions are to be obtained as candidate solutions of the problem, GAs as a kind of 

multi-point search potentially have an advantage for optimization problems with multiple 

objectives. However, GAs have been mainly applied to optimization problems with a single 

objective. Since Schaffer’s work [98], extensions of GAs to multi-objective optimization were 

proposed in several manners (e.g., see Fonseca & Fleming [14,15], Horn et al.[30], Kita et 

al.[60], Kursawe [63], Murata & Ishibuchi [77], and Tamaki et al. [111,112]). 

In this chapter, we explain the basic scheme of GAs for optimization problems. First, a 

simple genetic algorithm for single-objective optimization is considered. Next, genetic 

operators for multi-objective optimization are introduced in order to design a multi-objective 

genetic algorithm. By using a simple test problem, we compare the multi-objective genetic 

algorithm (MOGA) with several genetic algorithms for multi-objective optimization. In general, 

when an algorithm is applied to multi-objective optimization problems, it is important whether 

the algorithm works well for problems with non-convex feasible regions in objective spaces or 

not. By using another test problem with a non-convex feasible region, we demonstrate that the 

MOGA can find non-dominated solutions of such problems. 



- 7 - 

2.2 GENETIC ALGORITHM FOR SINGLE-OBJECTIVE 

 OPTIMIZATION PROBLEMS 
In this section, first we consider a simple genetic algorithm. In order to apply GAs to an 

optimization problem, each solution of the problem to be searched by GAs should be encoded 

as a finite-length string over some finite alphabet. We briefly describe the difference between 

the permutation coding and the binary coding. Next, genetic operators such as selection, 

crossover, mutation, and elitist strategy are described to construct GAs for optimization 

problems. These genetic operators should be carefully designed according to the property of the 

problems. The genetic operators for permutation strings are different from those for binary 

strings. Before applying GAs to optimization problems, several parameters such as population 

size, crossover probability, and mutation probability should be specified. After all the genetic 

operators and the parameters are specified for constructing GAs, we can apply GAs to the 

optimization problem. 

 

2.2.1 Coding 
In GAs, each solution of an optimization problem should be encoded as a finite-length string 

over some alphabet. The coding techniques can be categorized into the following two methods: 

a binary coding and a permutation coding. The binary representation is usually used for the 

coding of solutions. For example, the binary coding is often used for function optimization 

problems. In such problems, an input parameter vector x on a constraint interval vector [a, b] is 

encoded by the binary representation. The parameter vector $x  which optimizes a given 

function f ( )x  is searched by GAs in the binary coding space. The other coding scheme, the 

permutation coding, is used for sequencing problems such as scheduling problems and traveling 

salesman problems. For those problems, permutation strings of a set of numbers are more 

natural representation than binary strings. Fig. 2.1 shows examples of strings by the binary 

coding and by the permutation coding. The string by the binary coding consists of “0” and “1”. 

The binary string treated in GAs is often decoded to the parameter value in integer, real number, 

and so on. The permutation string consists of numerals “1” to “n” where each numeral 

corresponds to a job in scheduling problems or to a city in traveling salesman problems, and n 

is the total number of jobs or cities. Then jobs are processed according to their order in the 

permutation when scheduling problems are considered, or cities are visited according to their 
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Fig. 2.1  Genotype and phenotype. 

 

 

order in the permutation in traveling salesman problems. 

As shown in Fig. 2.1, strings which consist of binary or numeral elements are called 

genotype, and solutions which are decoded from strings are called phenotype. GAs search over 

the genotype world, and strings which are obtained by GAs are decoded into solutions in the 

phenotype world. That is, the users of GAs can get solutions of their optimization problems 

after the strings obtained by GAs are decoded into the solutions in the phenotype world. 

 

2.2.2 Evaluation 
Each of solutions which are decoded from the strings obtained by GAs is evaluated for 

optimization problems. GAs search a string with a better fitness value in the genotype world. In 

the case of function optimization problems, the function value f ( )x  is calculated using a 

solution x decoded from the corresponding binary string obtained by GAs. When the function 

value f ( )x  is better, the string in the genotype world which corresponds to the solution x gets 

a better fitness value. Then the function value of the solution x is transformed to the fitness 

value in the genotype world. In the genotype world, it is easy for a string with a high fitness 

value to survive. For function optimization problems, if the function is to be maximized, the 

function value itself can be used directly for the fitness value. Otherwise, if the function is to be 

minimized, the fitness function should be defined as an increasing function by transforming the 

function in the phenotype world. For permutation problems, the same thing can be said. 

Scheduling problems have many evaluation functions such as the makespan, the total flowtime, 
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the tardiness penalty, and so on. Traveling salesman problems also have evaluation functions 

such as the total travel distance. Because permutations found by GAs are evaluated by the 

evaluation functions in the permutation problems, the function values can be transformed to the 

fitness values in the same way of function optimization problems. In this way, a fitness value is 

assigned to each string in the genotype world. 

 

2.2.3 Selection 

Selection is an operator to select two parent strings for generating new strings (i.e., offspring). 

In the selection, a string with a high fitness value has more chance to be selected as one of 

parents than a string with a low fitness value. In GAs, parent strings are selected by random 

choice. The parent strings, however, are not selected by a sheer random choice. The fitness 

value of each string is utilized for selecting parent strings. We describe two ways of selection 

schemes which are often employed: the roulette wheel selection scheme and the rank-based 

selection scheme. 

One way is the roulette wheel selection. The roulette wheel selection scheme is often used as 

a selection operator. Let Npop  be the number of strings in each population in GAs, that is, 

Npop  is the population size. We denote Npop  strings in the current generation by 

Ψ = { , , ..., }x x x1 2 N pop . Each solution xi  is selected as a parent string according to the 

selection probability P is( )x . In the roulette wheel selection scheme, the selection probability 

P is ( )x  is defined as follows:  
 

  P f

f
i

i

j
j

Ns pop
( ) ( )

( )

x x

x
=

=
∑

1

,  for i N= 1 2, , ..., pop ,    (2.1) 

 

where f ( )⋅  is the fitness value of the solution x. 

The other way is the rank-based selection scheme. In this selection scheme, the population is 

sorted according to the fitness value. Then, the string which has the best fitness value in Ψ  is 

ranked as the first string, and the string which has the second best fitness value is ranked as the 

second string, and so on. The number of selected strings is decided according to their own rank. 

For example, Table 2.1 shows that the number of strings selected as parent strings is defined as 

a percentage of Npop . 
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Table 2.1  The number of selected strings in the rank-based selection scheme. 
 

Rank 1 2 ... Npop − 1 Npop  
% of Npop  20 % 10 % ... 0.1 % 0 % 

 

 

2.2.4 Crossover 

Crossover is an operator to generate new strings (i.e., offspring) from parent strings. Various 

crossover operators have been proposed for GAs. The crossover operators for permutation 

strings are different from those for binary strings because permutation problems usually have a 

requirement that each element of a string should appear only once in the string. We first 

describe the standard one-point crossover for the binary coding as an example of crossover 

operators. Next we explain a one-point order crossover as a similar kind of crossover operator 

which fulfills the requirement. That is, all the elements appear once in a newly generated string 

by the crossover operator for permutation problems. 

 

A. Crossover for binary strings 

The standard one-point crossover is typical operator for binary strings. The operator is 

applied to selected parent strings as follows: a crossover point is randomly selected between 

two adjacent elements. Two new strings are generated by swapping all elements in the head part 

of the strings. Fig. 2.2 shows an example of the one-point crossover operator. In this figure, a 

crossover point is selected between the sixth position and the seventh position in the strings. All 

the elements from the first position to the sixth position are swapped. In this way, two new 

offspring are generated. 

 

 

Parent 2

Parent 1

001001001

100100100

Offspring 2

Offspring 1 001001 100

100100 001

Crossover point

 
 
 

Fig. 2.2  The standard one-point crossover for binary strings. 
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Fig. 2.3  The standard one-point crossover applied to permutation strings. 
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Fig. 2.4  The one-point order crossover for permutation strings. 

 

 

B. Crossover for permutation strings 

If the one-point crossover for binary strings is used for permutation strings, the operator 

generates offspring which do not fulfill the requirement that each string has to be a permutation 

of all elements such as jobs or cities. Fig. 2.3 shows offspring generated by the standard 

one-point crossover. Neither of offspring in the figure represents a legal permutation. In 

Offspring 1, the elements “6” and “8” appear twice, but the elements “1” and “7” do not appear. 

Then Offspring 1 does not fulfill the requirement. Offspring 2 is also an illegal permutation 

because all the elements do not appear in the string. Therefore we need crossover operators 

which generate legal offspring for permutation problems. The one-point order crossover is one 

of those crossover operators. This crossover is illustrated in Fig. 2.4. A crossover point is 

randomly selected for dividing the parent strings. The set of elements in the head part of the 

strings are swapped each other. The remaining elements of one string, which are not included in 

the head part, are reordered in the order of their appearance in the other string. By this operator, 

both of the generated offspring are legal strings which fulfill the requirement of permutation 

problems. In Fig. 2.4, the head part of Parent 2 is inherited to Offspring 1, and the elements in 

the tail part of Parent 2 is inherited to the tail part of Offspring 1 in the order of their 

appearance in Parent 1. In this way, two new offspring are generated. 

In this subsection, we briefly described the difference between crossover operators for binary 



- 12 - 

strings and those for permutation strings using one-point crossover operators. Various crossover 

operators have been proposed in [23,79,82,89,101,118]. We will explain some of those 

crossover operators for binary strings and for permutation strings in the succeeding chapters, 

Chapter 3 and Chapter 5. 

 

2.2.5 Mutation 

Mutation is an operator to change elements in a string which is generated by a crossover 

operator. Such a mutation operator can be viewed as a transition from a current solution to its 

neighborhood solution in local search algorithms. When we apply mutation operators to strings 

in GAs, we should be careful as in applying crossover operators. That is, we should be noted 

that mutation operators for the binary coding is different from those for the permutation coding. 

We will briefly explain mutation operators for both the coding methods. 

 

A. Mutation for binary strings 

A mutation operator for binary strings is quite simple. An element (i.e., “0” or “1”) is 

changed to the other element by the mutation operator. An example of this mutation is shown in 

Fig. 2.5 where “0” in the second position is changed to “1”, and “1” in the fourth position and 

“1” in the seventh position are changed to “0”. 

 

B. Mutation for permutation strings 

A mutation operator for permutation strings should be designed in order to generate new 

strings which fulfill the requirement of permutation problems. Two elements (i.e., numbers 

from “1” to “n”) in the string are randomly selected and are swapped with each other. An 

example of this mutation is shown in Fig. 2.6 where “8” in the second position and “5” in the 

seventh position are swapped with each other. 

 

 

011 010
***

100 000 010110
Mutation ***

 
 

Fig. 2.5  A mutation for binary strings. 
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153 264
**

987 183 264957
Mutation **

 
 

Fig. 2.6  A mutation for permutation strings. 

 

 

In this subsection, we briefly described the difference between mutation operators for binary 

strings and those for permutation strings. We will explain some other mutation operators for 

permutation strings in the succeeding chapter, Chapter 3, which corresponds to optimization 

problems with a single objective where the permutation coding is used. 

 

2.2.6 Elitist strategy 

The elitist strategy is a strategy that the best string in the population should be kept in the 

next population as it is. That is, the best string is not affected by genetic operators such as 

crossover and mutation operators. The best string has a lot of chance to be selected as parent 

strings. It is also kept in the next population as it is in the current population. This strategy is 

often used for in GAs. 

 

2.2.7 Genetic algorithm 

We considered some operations such as coding, evaluation, selection, crossover, mutation, 

and elitist strategy to construct GAs for optimization problems. We can construct GAs by 

employing the above operations. The outline of GAs can be written as follows: 

 

Step 0 (Initialization):  Randomly generate an initial population of Npop  strings where 

N pop  is the population size. 

Step 1 (Evaluation):  Decode strings to solutions in the phenotype world. Next calculate 

the value of the objective function for each solution. Then transform the 

value of the objective function for each solution to the value of the 

fitness function for each string in the genotype world. 

Step 2 (Selection):  Select a prespecified number of pairs of strings from the current 

population according to the selection probability in (2.1). 

Step 3 (Crossover):  Apply the prespecified crossover operator to each of the selected 
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pairs in Step 2 to generate Npop  strings with the prespecified 

crossover probability Pc . 

Step 4 (Mutation):  Apply the prespecified mutation operator to each of the generated 

strings with the prespecified mutation probability Pm  . 

Step 5 (Elitist strategy): Randomly remove a string from the current population and add the 

best string in the previous population to the current one. 

Step 6 (Termination test): If a prespecified stopping condition is satisfied, stop this algorithm. 

Otherwise, return to Step 1. 

 
The outline of GAs is illustrated in Fig. 2.7. For details of genetic operators and parameter 

specifications in GAs for optimization problems, see the following chapters which concern with 

flowshop scheduling problems and design of classification systems.  
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Step 2: Selection

Step 3: Crossover

Step 4: Mutation
Step 5: Elitist

      strategy

Step 6: Termination test

Update of
the best solution

The best solution

< Genotype > < Phenotype >

Decoding

Encoding
Solution

 
 

Fig. 2.7  Outline of GAs for optimization problems. 
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2.3 GENETIC ALGORITHM FOR MULTI-OBJECTIVE 

 OPTIMIZATION PROBLEMS 
In this section, we consider an extension of GAs for single-objective optimization problems 

to the case of multi-objective optimization problems. Since Schaffer’s work [98], extensions of 

GAs to multi-objective optimization were proposed in several manners (e.g., see Fonseca & 

Fleming [14,15], Horn et al.[30], Kita et al.[60], Kursawe [63], Murata & Ishibuchi [77], and 

Tamaki et al. [111,112]). The basic scheme of GAs for multi-objective optimization problems 

are the same as that for single-objective optimization problems. That is, the coding method for 

multi-objective optimization problems is the same as in Subsection 2.2.1. And the genetic 

operators such as the crossover and the mutation are the same as in Subsections 2.2.4 and 2.2.5. 

Therefore, the genetic operators such as evaluation, selection, and elitist strategy should be 

modified for multi-objective optimization problems. Before we describe modified genetic 

operators for multi-objective optimization problems in [77], first we explain the background of 

multi-objective optimization problems, and we describe a multi-objective genetic algorithms. 

 

2.3.1 Background of multi-objective genetic algorithms 
Multi-objective genetic algorithms usually try to find all the non-dominated solutions of an 

optimization problem with multiple objectives. Let us consider the following multi-objective 

optimization problem with n objectives: 

 
  Maximize  f f fn1 2( ), ( ), ..., ( )x x x   ,     (2.2) 

 

where x is a vector to be determined, and f f fn1 2( ), ( ), ..., ( )⋅ ⋅ ⋅    are n objective functions to be 

maximized. If a feasible solution is not dominated by any other feasible solutions of the 

multi-objective optimization problem, that solution is said to be a non-dominated solution. 

When the following inequalities hold between two solutions x and y, it is said that the solution 

x is dominated by the solution y: 

 

  ∀i : f fi i( ) ( )x y≤    and   ∃j : f fj j( ) ( )x y< .    (2.3) 
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Examples of non-dominated solutions are shown in Fig. 2.8 where dominated solutions and 

non-dominated solutions are depicted by open circles and closed circles in a two-dimensional 

objective space, respectively. The two-dimensional objective space in Fig. 2.8 corresponds to 

the following two-objective optimization problem: 

 
  Maximize  f1( )x  and f2 ( )x .      (2.4) 

 

As is shown in Fig. 2.8, multi-objective optimization problems usually have several 

non-dominated solutions. 

The aim of our multi-objective algorithms is not to determine a single final solution but to 

find all the non-dominated solutions of the multi-objective optimization problem in (2.2). Since 

it is difficult to choose a single solution for a multi-objective optimization problem without 

iterative interaction with the decision maker, one general approach is to show the set of 

non-dominated solutions to the decision maker. Then one of the non-dominated solutions can 

be chosen depending on the preference of the decision maker. Since Schaffer’s work [98], 

extensions of GAs to multi-objective optimization problems have been proposed in several 

manners. Fonseca & Fleming [15] have published an excellent survey on GAs for 
multi-objective optimization. Almost all approaches which have already been proposed can be 

categorized into one of two classes: a “population-based non Pareto approach” or a 

“Pareto-based approach” by their selection schemes [15]. 

 

f1( )x

f2 ( )x

0
 

 

Fig. 2.8  Non-dominated solutions (closed circles) and dominated solutions (open circles). 
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Fig. 2.9  The search directions in Schaffer’s approach and Kursawe’s approach. 

 

 

The vector evaluated genetic algorithm (VEGA) proposed by Schaffer [98], which is a 

pioneer work in this field, is one of “population-based approaches” because its selection to 

form n subpopulations is implemented according to one of the n objectives separately. Kursawe 

[63] has also proposed a “population-based approach” where he suggested an idea to choose 

one of the n objectives according to the user-definable probability assigned to each objective. 

Thus GAs have n search directions in Schaffer [98] and Kursawe [63]. We show the search 

directions of these approaches in Fig. 2.9 for the case of the two-objective optimization 

problem in (2.4). As we can expect from Fig. 2.9, these approaches can easily find the solutions 

A and D, but it is not easy to find the solutions B and C. 

In order to find all the non-dominated solutions by GAs, the variety of individuals (i.e., 

solutions) should be kept in each generation. Recently, Horn et al.[30] proposed the niched 

Pareto genetic algorithm (NPGA) which is one of “Pareto-based approaches”. In their selection 

scheme, two candidates for selection were picked randomly from the current population. A 

comparison set which consists of a predefined number of individuals were also selected from 

the current population. Then each of the candidates is compared against each individual in the 

comparison set using the inequalities in (2.3) (when all objectives are to be maximized). If one 

candidate is dominated by the comparison set but the other is not dominated, the latter is 

selected for the crossover operator. If neither or both are dominated by the comparison set, a 

fitness sharing technique is adopted (for details, see [30]). 
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2.3.2 Evaluation 
When we apply GAs to the n-objective optimization problem, we have to evaluate the values 

of n objective functions for each solution. Using these values of n objective functions, the 

fitness value of each string should be defined. GAs search a string with a better fitness value in 

the genotype world as in single-objective optimization problems. A way to transform the values 

of objective functions to the fitness value of each string in the genotype world is to combine the 

n objective functions into a scalar function as follows: 

 

  f w f w f w fn n( ) ( ) ( ) ... ( )x x x x= + + +1 1 2 2   ,    (2.5) 

 

where f ( )x  is the fitness function of x, and w wn1,...,  are non-negative weights for the n 

objectives. These weights satisfy the following relations: 

 

  wi ≥ 0  for i n= 1,2,..., ,       (2.6) 

  w w wn1 2 1+ + + =  ... .       (2.7) 

 

If we use constant weight values for the two-objective optimization problem in (2.4), the search 

direction by GAs is fixed as shown in Fig. 2.10. The search direction in Fig. 2.10 corresponds 

to the weight vector w = =( , )w w1 2 (0.5, 0.5) in the two-dimensional objective space. When 

the search direction is fixed, it is not easy to obtain a variety of non-dominated solutions. In the 

case of Fig. 2.10, GAs with the constant weight vector w = =( , )w w1 2 (0.5, 0.5) may easily 

find the solutions B and C, but it is very difficult to find the solutions A and D.  

From the above discussions, we can see that neither the constant weight value approach nor 

the choice of one objective is appropriate for finding all the non-dominated solutions of the 

multi-objective optimization problem in (2.2). This is because various search directions are 

required to find a variety of non-dominated solutions. In order to realize various search 

directions, we suggest an idea of randomly specified weight values. The weight values are 

determined as follows: 

 

  w random random randomi i n= + +/ ( ... )1   , i n= 1,2,..., ,    (2.8) 

 



- 19 - 

f1( )x

f2 ( )x

0

B
C

A

D

 
Fig. 2.10  The search direction determined by the constant weight vector 

( , )w w1 2 = (0.5, 0.5). 

 

 

where random random randomn1 2, , ...,    are non-negative random real numbers (or 

non-negative random integers). The fitness function with various weights is utilized in the 

selection operator. For details, we will explain in the next subsection. 

 

2.3.3 Selection 
When a pair of parent strings are to be selected from a current population Ψ  for generating 

an offspring by a crossover operator, first n weight values ( , , ..., )w w wn1 2  are randomly 

specified by (2.8). Then the fitness value of each solution x in the current population Ψ  is 

calculated as the weighted sum of the n objectives by (2.5). The selection probability P is ( )x  

of each string x based on the linear scaling is defined by the roulette wheel selection as follows: 

 

  P f f

f f
i

i

j
j

Ns pop
( ) ( ) ( )

{ ( ) ( )}

min

min

x x

x

= −

−
=
∑

Ψ

Ψ
1

,  for i N= 1 2, , ..., pop ,   (2.9) 

 

where fmin ( )Ψ  is the minimum fitness value (i.e., the worst fitness value) in the current 

population Ψ . According to this selection probability, a pair of parent strings are selected from 

the current population Ψ . 
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Fig. 2.11  Various search directions of the multi-objective genetic algorithm. 

 
 

An offspring (i.e., a new string) is generated by a crossover operator from the selected pair of 

parent strings. Then a mutation operator is applied to the new string. When another pair of 

parent strings are selected, we randomly specify the n weight values ( , , ..., )w w wn1 2    again. 

That is, we use a different weight vector for each selection. Thus the selection in our 

multi-objective genetic algorithm has various search directions as shown in Fig. 2.11. 

 
2.3.4 Elitist strategy 

During execution of GAs for multi-objective optimization, two sets of solutions are stored: a 

current population and a tentative set of non-dominated solutions. After evaluating all the 

strings in the current population, the tentative set of non-dominated solutions is updated by the 

current population. That is, if a string in the current population is not dominated by any other 

strings in the current population and the tentative set of non-dominated solutions, this string is 

added to the tentative set. Then all solutions dominated by the added one are eliminated from 

the tentative set. In this manner, the tentative set of non-dominated solutions is updated at every 

generation in GAs for multi-objective optimization problems. From the tentative set of 

non-dominated solutions, a few solutions are randomly selected and added to the current 

population. The randomly selected non-dominated solutions may be viewed as a kind of elite 

solutions because they are added to the current population with no genetic operations. Update 

of the current population and the tentative set of non-dominated solutions is illustrated in Fig. 

2.12. 
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Fig. 2.12  Update of the two sets of strings stored in the MOGA. 

 

 

2.3.5 Multi-objective genetic algorithm 

We considered some modified operations such as evaluation, selection, and elitist strategy in 

the previous sections in order to construct a genetic algorithm for multi-objective optimization 

problems. We can construct a multi-objective genetic algorithm (MOGA) by employing those 

operations for multi-objective optimization. The outline of the MOGA can be written as 

follows: 

 
Step 0 (Initialization):  Randomly generate an initial population of Npop  strings where 

Npop  is the population size.  

Step 1 (Evaluation):  Decode strings to solutions in the phenotype world. Next calculate 

the values of the n objectives for each solution. Then update the 

tentative set of non-dominated solutions. 

Step 2 (Selection):  Repeat the following procedure to select parent strings to generate 

Npop  strings. 
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(i)  Randomly specify the weight values w w wn1 2, , ...,  in the fitness 

function (2.5) by (2.8). 

(ii)  According to the selection probability in (2.9), select a pair of 

parent strings. 

Step 3 (Crossover):  Apply a crossover operator to each of the selected pairs in Step 2. 

Step 4 (Mutation):  Apply a mutation operator to each of the generated strings with 

mutation probability Pm . 

Step 5 (Elitist strategy): Randomly remove Nelite  solutions from the generated Npop  

solutions, and add Nelite  solutions that are randomly selected from the 

tentative set of non-dominated solutions. 

Step 6 (Termination test): If a prespecified stopping condition is satisfied, stop this algorithm. 

Otherwise, return to Step 1. 

 

The outline of the MOGA is illustrated in Fig. 2.13. For details of genetic operators and 
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Fig. 2.13  Outline of the MOGA. 
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parameter specifications in GAs for multi-objective optimization problems, see the following 

chapters which are concerned with flowshop scheduling problems and rule selection problems. 

In the next subsection, we apply our multi-objective genetic algorithm to a simple test problem 

with two objectives and a function optimization problem with a non-convex feasible region in 

the objective space. 

 

2.3.6 Computer simulations and discussions  

In this section, we first compare our multi-objective genetic algorithm (MOGA) described in 

the previous subsections with the vector evaluated genetic algorithm (VEGA) by Schaffer [98] 

and the niched Pareto genetic algorithm (NPGA) by Horn et al.[30] on a simple test problem 

used in [30]. Then we apply the MOGA to a function optimization problem used in [112] 

which has a non-convex feasible region in the objective space. By these computer simulations, 

high search ability of the MOGA is demonstrated. 

 

A. Application to a simple test problem 

First we show simulation results by three genetic algorithms (VEGA, NPGA, and MOGA) 

for a simple test problem [30] called “unitation versus pairs”. This problem has two objectives 

to be maximized: unitation and complementary adjacent pairs. Unitation Unit( )x  is simply 

the number of 1’s in the fixed length bit string x (e.g., Unit( )11010100 4= ). Pairs Prs( )x is 

the number of pairs of complementary adjacent bits (i.e., 01 or 10). For example, 

Prs( )11010100 5= . 

When our MOGA was applied to this problem, we used the following fitness function: 

 

  f w Unit w Prs( ) ( ) ( )x x x= ⋅ + ⋅Unit Prs ,          (2.10) 

 

where wUnit  and wPrs  are randomly specified non-negative weights for Unit( )⋅  and 

Prs( )⋅ , respectively. 

True non-dominated solutions (i.e., Pareto optimal solutions) of this problem with 12-bit 

binary strings are shown in Fig. 2.14 [30] where “P” indicates a Pareto optimal solution and “-” 

denotes a feasible solution dominated by the Pareto optimal solutions.  

In all the three algorithms, the standard one-point crossover described in Subsection 2.2.4 
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Unitation

12   P12   P12   P12   P
11  11  11  11  　　　　　　　　-  P-  P-  P-  P
10  10  10  10  　　　　　　　　-  -  -  P-  -  -  P-  -  -  P-  -  -  P
09  09  09  09  　　　　　　　　-  -  -  -  -  P-  -  -  -  -  P-  -  -  -  -  P-  -  -  -  -  P
08  08  08  08  　　　　　　　　-  -  -  -  -  -  -  P-  -  -  -  -  -  -  P-  -  -  -  -  -  -  P-  -  -  -  -  -  -  P
07  07  07  07  　　　　　　　　-  -  -  -  -  -  -  -  -  P-  -  -  -  -  -  -  -  -  P-  -  -  -  -  -  -  -  -  P-  -  -  -  -  -  -  -  -  P
06  06  06  06  　　　　　　　　-  -  -  -  -  -  -  -  -  -  P-  -  -  -  -  -  -  -  -  -  P-  -  -  -  -  -  -  -  -  -  P-  -  -  -  -  -  -  -  -  -  P
05  05  05  05  　　　　　　　　-  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  -
04  04  04  04  　　　　　　　　-  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  -
03  03  03  03  　　　　　　　　-  -  -  -  -  --  -  -  -  -  --  -  -  -  -  --  -  -  -  -  -
02  02  02  02  　　　　　　　　-  -  -  --  -  -  --  -  -  --  -  -  -
01  01  01  01  　　　　　　　　-  --  --  --  -
00   -00   -00   -00   -

　　　　　　　　 0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12  Pairs
 

 

Fig. 2.14  Feasible (-) and Pareto (P) solutions of the simple test problem [30]. 

 

 

was employed with the crossover probability 0.9. The number of strings (i.e., individuals) in 

each population (i.e., population size) was specified as Npop = 100. Fig. 2.15 ～ Fig. 2.17 

show the final solutions by the three algorithms after 100 generations (i.e., solutions in the 

100-th generation). In Fig. 2.15 ～ Fig. 2.17, each numeral plotted in the two-dimensional 

objective space shows the number of obtained solutions (i.e., individuals) at the corresponding 

coordinate. Simulation results in Fig. 2.15 and Fig. 2.17 were obtained by our simulation, and 

Fig. 2.16 was quoted from Horn et al. [30]. Pareto optimal solutions in these figures are 

indicated by encircling the corresponding numerals (e.g., ②).  

From these figures, we can observe the characteristic of each approach. Many individuals in 

the VEGA were driven to the two extreme solutions, i.e., there were 38 and 21 individuals at 

( )Pairs,Unitation = (0, 12) and (11, 6), respectively (see, Fig. 2.15). Two Pareto optimal 

solutions ( )Pairs,Unitation = (4, 10) and (6, 9) were not included in the final generation 

obtained by the VEGA (see, also Fig. 2.15). The NPGA succeeded in maintaining equal size 

subpopulations, but one Pareto optimal solution ( )Pairs,Unitation = (11, 6) was not included in 

the final generation (see, Fig. 2.16). Our MOGA could find all the Pareto optimal solutions (see, 

Fig. 2.17). 
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Unitation

12  3812  3812  3812  38
11  11  11  11  　　　　　　　　- 12- 12- 12- 12
10  10  10  10  　　　　　　　　-  -  -  0-  -  -  0-  -  -  0-  -  -  0
09  09  09  09  　　　　　　　　-  -  -  -  1  0-  -  -  -  1  0-  -  -  -  1  0-  -  -  -  1  0
08  08  08  08  　　　　　　　　-  -  -  -  -  -  5  2-  -  -  -  -  -  5  2-  -  -  -  -  -  5  2-  -  -  -  -  -  5  2
07  07  07  07  　　　　　　　　-  -  -  -  -  -  -  - 17 4-  -  -  -  -  -  -  - 17 4-  -  -  -  -  -  -  - 17 4-  -  -  -  -  -  -  - 17 4
06  06  06  06  　　　　　　　　-  -  -  -  -  -  -  -  -  - 21-  -  -  -  -  -  -  -  -  - 21-  -  -  -  -  -  -  -  -  - 21-  -  -  -  -  -  -  -  -  - 21
05  05  05  05  　　　　　　　　-  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  -
04  04  04  04  　　　　　　　　-  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  -
03  03  03  03  　　　　　　　　-  -  -  -  -  --  -  -  -  -  --  -  -  -  -  --  -  -  -  -  -
02  02  02  02  　　　　　　　　-  -  -  --  -  -  --  -  -  --  -  -  -
01  01  01  01  　　　　　　　　-  --  --  --  -
00   -00   -00   -00   -

　　　　　　　　 0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12  Pairs  
 

Fig. 2.15  The number of Pareto optimal solutions obtained by the VEGA. 

 

Unitation

12  2612  2612  2612  26
11  11  11  11  　　　　　　　　- 11- 11- 11- 11
10  10  10  10  　　　　　　　　-  -  - 14-  -  - 14-  -  - 14-  -  - 14
09  09  09  09  　　　　　　　　-  -  -  -  - 12-  -  -  -  - 12-  -  -  -  - 12-  -  -  -  - 12
08  08  08  08  　　　　　　　　-  -  -  -  -  -  - 16-  -  -  -  -  -  - 16-  -  -  -  -  -  - 16-  -  -  -  -  -  - 16
07  07  07  07  　　　　　　　　-  -  -  -  -  -  -  -  - 21-  -  -  -  -  -  -  -  - 21-  -  -  -  -  -  -  -  - 21-  -  -  -  -  -  -  -  - 21
06  06  06  06  　　　　　　　　-  -  -  -  -  -  -  -  -  -  0-  -  -  -  -  -  -  -  -  -  0-  -  -  -  -  -  -  -  -  -  0-  -  -  -  -  -  -  -  -  -  0
05  05  05  05  　　　　　　　　-  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  --  -  -  -  -  -  -  -  -  -
04  04  04  04  　　　　　　　　-  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  -
03  03  03  03  　　　　　　　　-  -  -  -  -  --  -  -  -  -  --  -  -  -  -  --  -  -  -  -  -
02  02  02  02  　　　　　　　　-  -  -  --  -  -  --  -  -  --  -  -  -
01  01  01  01  　　　　　　　　-  --  --  --  -
00   -00   -00   -00   -

　　　　　　　　 0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12  Pairs
 

 
Fig. 2.16  The number of Pareto optimal solutions obtained by the NPGA [30]. 

 

Unitation

12   312   312   312   3
11  11  11  11  　　　　　　　　-  2-  2-  2-  2
10  10  10  10  　　　　　　　　-  -  1 11-  -  1 11-  -  1 11-  -  1 11
09  09  09  09  　　　　　　　　-  -  -  -  2 13-  -  -  -  2 13-  -  -  -  2 13-  -  -  -  2 13
08  08  08  08  　　　　　　　　-  -  -  -  -  5  1 24-  -  -  -  -  5  1 24-  -  -  -  -  5  1 24-  -  -  -  -  5  1 24
07  07  07  07  　　　　　　　　-  -  -  -  -  -  -  9  8  -  -  -  -  -  -  -  9  8  -  -  -  -  -  -  -  9  8  -  -  -  -  -  -  -  9  8  8888
06  06  06  06  　　　　　　　　-  -  -  -  -  -  -  -  -  6  5-  -  -  -  -  -  -  -  -  6  5-  -  -  -  -  -  -  -  -  6  5-  -  -  -  -  -  -  -  -  6  5
05  05  05  05  　　　　　　　　-  -  -  -  -  -  -  -  1  --  -  -  -  -  -  -  -  1  --  -  -  -  -  -  -  -  1  --  -  -  -  -  -  -  -  1  -
04  04  04  04  　　　　　　　　-  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  --  -  -  -  -  -  -  -
03  03  03  03  　　　　　　　　-  -  -  -  -  --  -  -  -  -  --  -  -  -  -  --  -  -  -  -  -
02  02  02  02  　　　　　　　　-  -  -  --  -  -  --  -  -  --  -  -  -
01  01  01  01  　　　　　　　　-  --  --  --  -
00   100   100   100   1

　　　　　　　　 0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12   0  1  2  3  4  5  6  7  8  9 10 11 12  Pairs  
 

Fig. 2.17  The number of Pareto optimal solutions obtained by the MOGA. 
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B. Application to a test problem with a non-convex feasible region 

Weighted sum approaches usually do not work well for multi-objective optimization 

problems with non-convex feasible regions in objective spaces. In this subsection, we 

demonstrate that our MOGA can handle such multi-objective optimization problems. As a test 

problem, let us consider the following two-objective optimization problem.  

 

  Minimize  f x1 12( )x =    and   f x x2 1 21 5( ) ( )x = − + ,        (2.11) 

   subject to  1 41≤ ≤x    and   1 22≤ ≤x ,          (2.12) 

 

where x = ( , )x x1 2 . This test problem was used for examining some multi-objective GAs in 

Tamaki et al.[112]. Substituting (2.11) into (2.12), we obtained the relation between f1( )x  

and f2 ( )x  as follows: 

 

  f x f2
2

1 21
4

5( ) { ( )}x x= − ⋅ + .           (2.13) 

 

When x2 2= , (2.13) gives the non-dominated solutions of this problem. We show the feasible 

region of this test problem and the non-dominated solutions in the two-dimensional objective 

space in Fig. 2.18. From Fig. 2.18, we can see that this test problem has the non-convex 

feasible region.  

Because the two objectives of this test problem should be minimized, we specified the fitness 

function of each string x as follows: 

 

  f w f w f( ) ( ) ( )x x x= − −1 1 2 2 .           (2.14) 

 

This fitness function was used in the selection of our MOGA. In the same manner as in Tamaki 

et al.[112], we denoted each decision variable xi  by a 10-bit string. For example,  

 
  x1 = 1010101000   and   x2 = 1111010100.         (2.15) 

 
Thus each solution x = ( , )x x1 2  of the test problem was denoted by a 20-bit string in the 

genotype world. For example, 
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Fig. 2.18  Feasible region and non-dominated solutions of a test problem. 

 

 
  x = 10101010001111010100.           (2.16) 

 
For 20-bit strings, we used a two-point crossover and the standard binary mutation (i.e., 0 1→  

and 1 0→ ) in the same manner as in Tamaki et al.[112]. We applied our MOGA to the test 

problem with the following parameter specifications: 

 

Population size: N pop = 100 ,  Crossover probability: 0.9, 

Mutation probability for each bit: 0.01, The number of elite solutions: Nelite = 5 , 

Stopping condition: 20 generations. 

 

These parameter specifications are similar to those in Tamaki et al.[112]. 

We show the final set of non-dominated solutions in Fig. 2.19. From Fig. 2.19, we can see 

that non-dominated solutions on the non-convex surface of the feasible region were obtained by 

the MOGA. 

We also applied single objective genetic algorithms where weight w1 and w2  were fixed 

as follows: 

 

( , )w w1 2 = (100, 1), (50, 1), (20, 1), (15, 1), (10, 1), (5, 1), (2, 1), (1, 1), (1, 2), (1, 5), 

(1, 10), (1, 20), (1, 50), (1, 100). 
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Fig. 2.19  Final set of non-dominated solutions obtained by the MOGA. 

 

 

The single objective genetic algorithms with these 15 different weight values found only two 

non-dominated solutions: ( , ) ( , )f f1 2 2 4=  and ( , ) ( , )f f1 2 4 1= . From these simulation 

results, we can see that the single objective genetic algorithms with constant weights can not 

find the non-dominated solutions on the non-convex surface of the feasible region. 
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2.4 SUMMARY 

In this chapter, we explained GAs for optimization problems. Several researchers 

[22,49,78,82] pointed out that the performance of GAs on some optimization problems was a 

bit inferior to that of neighborhood search algorithms (e.g., local search, simulated annealing 

[90], and tabu search [108, 119]). Hybridization of GAs with other search methods is one way 

to improve the performance of GAs. In the following chapters, we consider hybrid algorithms 

in order to improve performance of GAs. For flowshop scheduling problems, GAs are 

hybridized with a local search algorithm and a simulated annealing algorithm. For designing 

fuzzy classification systems, we incorporate a learning procedure into GAs which improves 

performance of fuzzy classification systems to be constructed. 

First we considered a genetic algorithm for single-objective optimization. We described that 

GAs should be designed according to the type of optimization problems which they treat. We 

also considered an extension of GAs for single-objective optimization problems to 

multi-objective optimization problems. In order to construct GAs for multi-objective 

optimization, we introduced operations such as evaluation, selection, and elitist strategy for 

multi-objective optimization problems. We compared the MOGA with the VEGA by Schaffer 

[98] and the NPGA by Horn et al.[30] on a simple test problem used in [30]. By computer 

simulations, it was demonstrated that the MOGA is comparable to the other algorithms. We 

applied the MOGA to a function optimization problem with a non-convex feasible region in the 

objective space used in [112]. By applying the MOGA to such problem, the ability of the 

MOGA to find set of non-dominated solutions on the non-convex surface of the feasible region 

was demonstrated. 

 


