
- 103 -

5.4 GENETIC ALGORITHMS FOR FUZZY PARTITION OF

 PATTERN SPACE

In this section, we also introduce another genetic-algorithm-based method for adjusting the

membership functions of antecedent fuzzy sets in fuzzy classification rules [36,37]. Both the

number of fuzzy rules and the membership function of each antecedent fuzzy set are determined

simultaneously. By this method, an appropriate fuzzy partition of a pattern space is

automatically generated from numerical data. The consequent class of the fuzzy rule

corresponding to each fuzzy subspace is determined according to the given training patterns in

that fuzzy subspace [45]. We introduce a new coding method for fuzzy partitions of a pattern

space. The coding method is a modified and extended version of Nomura’s coding method [86]

that was proposed for function approximation problems. The differences between these two

coding methods are as follows:

(i) The types of fuzzy rules are different. We use fuzzy rules with class labels in the

consequent part for pattern classification problems while Nomura et al.[86] employed

simplified fuzzy rules with real numbers in the consequent part for function

approximation problems.

(ii) Our coding method can represent a “don’t care attribute” by utilizing the whole domain

of that attribute as an antecedent fuzzy set. The “don’t care attribute” is represented by an

interval with the full membership value in the whole domain.

(iii) Our coding method uses not only triangular membership functions but also trapezoidal

membership functions.

(iv) We use different mutation probabilities for increasing and decreasing the number of

membership functions. The probability of adding a new membership function is less than

that of eliminating existing one.

(v) We introduce a mutation operator for fine tuning of membership functions. The

mutation slightly modifies the shape of a membership function by exchanging adjacent

two bit values.

The aim of the modifications in (ii) ~ (iv) is to reduce the number of membership functions for

classification problems. On the other hand, the aim of introducing the new mutation in (v) is to

improve the classification performance of fuzzy rules. While Nomura et al.[86] applied their

- 104 -

method to approximation problems of single-input functions (i.e., single-dimensional problems),

we apply the method introduced in this section to classification problems with multiple

attributes (i.e., multi-dimensional problems). We also combine the error-correction learning

procedure [87,88] with the genetic algorithm as in the previous section. High performance of

our method is illustrated by computer simulations on the iris classification problem [13].

5.4.1 Coding of fuzzy partition
Nomura et al.[86] proposed the determination method of the fuzzy partition of an input space.

There is a restriction on their definition of membership functions. Therefore we modify their

definition.

Let µ ji ix() be the membership function for the fuzzy set Aji in the fuzzy rule Rj in

(5.1) (j r= 1 2, ,..., , where r is the total number of generated fuzzy rules). Fig. 5.11 shows

membership functions defined by Nomura’s method [86]. In Fig. 5.11, all the membership

functions are triangular. The width of each membership function is defined by the length

between the centers of neighboring membership functions. The arrangement of membership

functions can be expressed in terms of a string L l l li lengthi= 1 2L consisting of “0” and “1”

where lengthi means the prespecified length of the string Li (i n= 1 2, ,...,). In the string Li ,

lk = 1 means that the k-th position in the string Li is the center position of a membership

function (k lengthi= 1 2, ,...,). A string of lengthi = 10 is shown in Fig. 5.11 where Nomura’s

coding method is used. In Nomura’s coding method, there is the restriction that there must be

the value “1” at both edge positions of the string Li as shown in Fig. 5.11. Let riset be the

number of fuzzy sets on the i-th axis. This means that riset is the number of 1’s in the string

Li . Therefore the restriction in Nomura’s coding method leads to riset ≥ 2 .

0.0

1.0

0.0 1.0

1 0 0 01 1 1 101

µ ji ix()

xi
Li

Fig. 5.11 Membership functions defined by Nomura’s method.

- 105 -

0.0

1.0

1 0 0 01 1 1
0.0 1.0

01 0
l1 l2 l4 l5l3 l6 l8 l9l7 l10

µ ji ix()

xi
Li

Fig. 5.12 Membership functions defined by the extended coding method.

0.0

1.0

0.0 1.0

0 0 0 00 0 0 001

µ ji ix()

xi
Li

Fig. 5.13 Special membership function defined by Li where riset = 1.

In this section, we relax this restriction on the values at both edge positions of the string Li .

That is, there can be “0” at both the edge positions. Fig. 5.12 shows example membership

functions µ ji ix() defined by the extended coding method. In Fig. 5.12, the shape of the

membership function on the right edge of this axis is trapezoidal since the value of l10 is 0.

When the number of 1’s in the string Li is less than two, we specially define just one

membership function for the i-th axis as follows:

 µ ji i
ix

x
()

, ,
,

=
≤ ≤

1 1
0

if 0
otherwise.

 (5.33)

The shape of this fuzzy set is illustrated in Fig. 5.13. When this membership function is

- 106 -

assigned for a certain attribute, we can ignore that attribute because the membership value is

always equal to 1 for all its possible attribute values.

We use the fuzzy sets defined by the string Li as the antecedent fuzzy sets Aji ’s for the

i-th attribute. Since there are riset fuzzy sets for each axis of the n-dimensional pattern space

[,]0 1 n , we can generate r r rset set nset
1 2⋅ ⋅ ⋅... fuzzy rules. Therefore the total number r of the

fuzzy rules in (5.1) is r r r rset set nset= ⋅ ⋅ ⋅1 2 The fuzzy classification system that has the

r r rset set nset
1 2⋅ ⋅ ⋅... fuzzy rules is denoted by a combined string as S L L Ln= 1 2L . In this

section, the combined string S is treated as an individual in the genetic algorithm. Therefore, an

individual S denotes a rule set (i.e., a classification system) for pattern classification problems.

Hereafter, S and Li are called a string and a substring, respectively. It should be noted that the

consequent class C j and the grade of certainty CFj of the fuzzy rule Rj in (5.1)

corresponding to each fuzzy subspace are determined according to the given training patterns in

that fuzzy subspace using the rule generation method in Subsection 5.2.1. Therefore the

combined string S does not include the consequent part of each fuzzy rule.

5.4.2 Genetic algorithm for adjusting membership functions
Our problem is to find a compact fuzzy classification system S with high classification power.

Therefore our problem has the same objectives as in (5.10) and (5.11): (i) to maximize the

number of correctly classified training patterns by the fuzzy rules in S, and (ii) to minimize the

number of the fuzzy rules in S. By combining these two objectives, the following problem is

formulated in the same manner as in (5.12):

 Maximize w NCP S w SNCP S⋅ − ⋅() | | , (5.34)

where wNCP and wS are non-negative constant weights assigned to the two objectives

NCP S() and | |S , respectively. As we have already explained in the last subsection, | |S is

calculated from the combined string S L L Ln= 1 2 ... as | | ...S r r rset set nset= ⋅ ⋅ ⋅1 2 where riset is

the number of fuzzy sets specified by Li . A similar problem was formulated for function

approximations in Fukuda et al.[18].

The value of the objective function in (5.34) is used as the fitness value of each individual.

- 107 -

That is, the fitness function f S() is defined as

 f S w NCP S w S() ()= ⋅ − ⋅NCP S . (5.35)

In order to maximize the fitness function defined by (5.35), we construct the following

genetic algorithm where t is the number of generations and tmax is the maximum number of

generations that is prespecified to terminate the algorithm.

Step 0 (Initialization): Let t:= 0 . Generate an initial population containing N pop strings (i.e.,

N pop individuals) where N pop is the number of strings in each population. In this

operation, each string S is generated by assigning “1” with the probability P1 and “0”

with the probability P0 to each bit in S where P P1 0 1+ = . The fitness value of each

string S is calculated by (5.35).

Step 1 (Selection): Let Ψt be the population in the t-th generation. Select N pop /2 pairs of

strings from the current population Ψt . The selection probability P Ss() of a string S in

the population Ψt is specified as

 P S f S f
f S f

t

t
S t

s

() () ()
{ () ()}

min

min
= −

′ −
′∈
∑

Ψ
Ψ

Ψ

, (5.36)

where

 f f S St tmin () min{ () }Ψ Ψ= ′ ′ ∈ | . (5.37)

Step 2 (Crossover): For each of the selected pairs, randomly choose substrings Li ’s from one

string. Each substring Li is chosen with the probability of 0.5. Interchange the substring

Li between the selected pair. Fig. 5.14 shows an example of this crossover operator.

 Step 3 (Mutation): To each bit value of the generated strings by the crossover operator, apply

the following two mutation operations:

Step 3.1 : Exchange adjacent bit values in Li with the probability Pswap .

Step 3.2 : Reverse the value of each bit with the probabilities Preverse ()1 0→ and

- 108 -

1 0 0 01

0 0 1 10

L 1

1 1 101

0 1 010

L 2

1 0 0 01 0 1 010

0 0 1 10 1 1 101

0 1 100

0 1 101

L 3

0 1 100

0 1 101

*
Parent 1

Parent 2

Offspring 1

Offspring 2

Fig. 5.14 Crossover operator.

L 1 L 2

1 0 0 01 0 1 010

Mutation (Step 3.1)

** **
1 1 0 00 1 0 001

0 0 0 00 0 0 101

(Step 3.2)Mutation

0 1 101

L 3

0 1 011

0 1 001

*

Fig. 5.15 Mutation operators.

Preverse (0)→ 1 :

l l Pk k= → = →1 0 1 0 with the probability ()reverse ,

l l Pk k= → = →0 1 1 with the probability (0)reverse .

These mutation operators are illustrated in Fig. 5.15.

Step 4 (Elitist strategy): Randomly remove one string from the N pop strings generated by the

above genetic operations, and add the string with the maximum fitness value in the

previous population to the current one.

Step 5 (Termination test): Let t t:= + 1. If t t= max , stop the algorithm. Otherwise, return to

Step 1.

- 109 -

The characteristics of the proposed genetic algorithm are as follows.

(i) The crossover operator in Step 2 interchanges substrings Li ’s between the selected pair

of strings. This means that our crossover is a multi-point crossover with crossover points

between substrings. Because crossover points are not chosen within substrings, the

membership functions of antecedent fuzzy sets are not destroyed by the crossover

operator. It is possible to implement an alternative crossover operation by randomly

selecting crossover points within substrings as well as between substrings. In this case,

the membership functions are destroyed by the crossover operator.

(ii) The mutation operation in Step 3.1 is for fine tuning of membership functions. The

shape of a membership function is slightly modified by this mutation.

(iii) The mutation operation in Step 3.2 is to generate a new membership function or to

eliminate existing one. By assigning a larger value to the mutation from lk = 1 to

lk = 0 (i.e., Preverse ()1 0→ > Preverse (0)→ 1), we can reduce the number of fuzzy rules

in S.

5.4.3 Computer simulations

In this section, we apply the genetic algorithms with the extended coding method to a

two-dimensional pattern classification problem and the well-known iris data [13] in the

four-dimensional pattern space.

A. A two-dimensional pattern classification problem

First let us consider the two-class classification problem in Fig. 5.16. For this classification

problem, a fine fuzzy partition is required for the left half of the pattern space but a coarse

fuzzy partition is appropriate for the right half. The genetic algorithm with the extended coding

method described in the last section was applied to the classification problem with the

following parameter specifications.

Length of each substring Li of the string t t= max : lengthi = 21,

Weights in the fitness function: wNCP = 10 , wS = 1,

Population size: Npop = 10 ,

Assigning probabilities of “1” and “0” in the initial population: P1 0 5= . , P0 05= . ,

- 110 -

This figure is inserted by cut-and-paste.

Fig. 5.16 A two-class classification problem in the two-dimensional pattern space [,]0 1 2 .

Crossover probability: 1.00,

Mutation probabilities: Pswap = 01. , Preverse () .1 0 01→ = , and Preverse () .0 1 0 05→ = ,

Stopping condition: tmax = 500 (i.e., 500 generations).

For examining the effect of the coding restriction of l1 1= and llengthi = 1, we also applied

the genetic algorithm with Nomura’s coding method. Fig. 5.17 (a) shows the fuzzy partition and

the classification boundary between two classes obtained by the genetic algorithms with

Nomura’s coding method. Fig. 5.17 (b) shows those obtained by the extended coding method.

The hatched areas, the dotted areas, and the painted areas in Fig. 5.17 indicate that the

consequents of the corresponding fuzzy classification rules are Class 1, Class 2 and φ ,

respectively. All the given patterns were correctly classified by each method in Fig. 5.17. The

genetic algorithm with Nomura’s coding method generated sixteen fuzzy rules, while the

algorithm with the extended coding method found eight fuzzy rules. From Fig. 5.17 (b), we

observe that the extension to trapezoidal membership functions reduced the number of fuzzy
rules effectively. The genetic algorithm with the extended coding method could find the

appropriate fuzzy partition for this problem.

B. Iris classification problem

We also applied the genetic algorithm with the extended coding method to the well-known

iris data [13]. The same preprocessing procedure in Subsection 5.3.3 was applied to the data. In

the coding method, the length of each substring Li (i.e., l l Pk k=→= →10 10 with the probability ()reverse) should be prespecified.

When

- 111 -

These figures are inserted by cut-and-paste.

 (a) Nomura’s coding (riset ≥ 2) (b) The extended coding (riset ≥ 1)

Fig. 5.17 The fuzzy partitions and classification boundaries.

a large value is used for lengthi , the genetic algorithm can adjust membership functions

elaborately, but its execution requires long computation time. On the contrary, if a small value

is used for lengthi , the computation time can be reduced but the tuning of membership

functions is not fine. In order to examine the effect of the specifications of lengthi on the

performance of the genetic algorithm, we employed the following five values of lengthi as

follows:

Length of each substring Li of the string S L L L L= 1 2 3 4 : lengthi = 6 11 16 21 31, , , , .

In order to generate almost the same number of initial fuzzy rules in these five trials, we

specified the assigning probabilities of “1” and “0” in the initial population as P lengthi1 4= /

and P P0 11= − . This means that each substring has four positions with “1” on the average.

Therefore, each string S has 44 fuzzy rules on the average in the initial population.

In the same manner as in the last subsection, we applied the genetic algorithm to the iris

classification problem. We employed the same parameter specifications of the genetic

algorithm except for the length of each Li . All the 150 patterns of the iris classification

problem were used for constructing a fuzzy-rule-based classification system by the genetic

algorithm. Table 5.2 shows the classification rate, the number of fuzzy rules and CPU time.

CPU time in the fourth column were required for the genetic algorithm with each value of

- 112 -

lengthi . The classification rate was calculated for all the training patterns. From Table 5.2, we

can see that large values of lengthi deteriorated the ability of the genetic algorithm to generate

good fuzzy classification rules. This deterioration may be explained as follows. Because the iris

classification problem is a four-dimensional problem, the length of each string S is 4 × lengthi .

Therefore the total number of possible solutions (i.e., possible combinations of “0” and “1” for

S) is 24×lengthi . When lengthi increases, 24×lengthi exponentially increases. This

exponential increase of the search space may deteriorate the ability of the genetic algorithm to

generate good fuzzy classification rules. Of course, if we implement our genetic algorithm

using a large number of population (e.g., 1000 strings) and a large number of generations (e.g.,

10,000 generations), we may have a elaborated fuzzy partition by a large number of lengthi .

In order to find a rule set with high classification power, we performed another computer

simulation with different weights in the fitness function and a different stopping condition. We

defined the weights as wNCP = 1000 , wS = 1, and tmax = 1000 . The length of each substring

Li was specified as lengthi = 21. By this computer simulation, we got 56 fuzzy rules that

correctly classified all the 150 training patterns. Fig. 5.18 shows the membership functions for

each axis obtained by the genetic algorithm. We can see from Fig. 5.18 that the attribute x1

can be negligible.

5.4.4 Hybrid genetic algorithm

The learning procedure of the grade of certainty CFj [87,88] is combined with our genetic

algorithm in the same manner as in Subsection 5.3.3. Since the learning procedure is applicable

to any rule set S, we apply it to all the rule sets (i.e., all the strings) generated by the crossover

and mutation operators in the genetic algorithm. That is, the following procedure is inserted

between Step 4 and Step 5 of the genetic algorithm described in Subsection 5.4.2:

Table 5.2 Performance of genetic algorithms with various lengthi ’s.

lengthi Classification rate (%) Number of rules in S CPU time (sec.)

6 97.3 6 278.2
11 98.0 12 755.9
16 97.3 9 1776.9
21 97.3 18 5524.3
31 96.0 40 17458.0

- 113 -

x1
0.0

1.0

1.0 x2
0.0

1.0

1.0

x3
0.0

1.0

1.0 x4
0.0

1.0

1.0

Fig. 5.18 Membership functions for each attribute.

Table 5.3 Performance of the hybrid genetic algorithm with various lengthi ’s.

lengthi Classification rate (%) Number of rules in S CPU time (sec.)

6 100.0 24 2649.0
11 98.7 12 6588.2

[Learning procedure of the grade of certainty]

Step 4.5 (Learning): Apply the learning procedure to each rule set S generated by the

crossover and mutation operators. The learning procedure for each rule set S is

iterated Nlearning times for all the training patterns.

The hybrid algorithm was applied to the iris data using the same parameter specifications as in

the genetic algorithm in Subsection 5.4.3 except for the length of each substring Li (i.e.,

lengthi). We employed the hybrid genetic algorithms with lengthi = 6 11, . Table 5.3 shows the

results of computer simulations with wNCP = 10 , wS = 1, and N learning = 10 . The learning

algorithm improved the classification rate of the generated fuzzy classification rules while it

required much longer computation time. Because of heavy computation load of the hybrid

algorithm, large values of lengthi are inappropriate.

- 114 -

5.5 SUMMARY

In this chapter, we introduced two genetic-algorithm-based approaches for constructing fuzzy

classification systems. We first applied a genetic-algorithm-based method to the construction of

a fuzzy classification system with linguistic rules. The method was illustrated by computer

simulations on a numerical example and the well-known iris data. A hybrid approach that

incorporates a learning procedure [87,88] into the genetic algorithm was also designed in order

to improve the performance of fuzzy classification systems. It was demonstrated by computer

simulations on the iris data that the hybrid algorithm can find a small number of linguistic rules

with high classification power.

We also applied another genetic-algorithm-based method for adjusting the membership

functions of antecedent fuzzy sets in fuzzy classification rules. Both the number of fuzzy rules

and the membership function of each antecedent fuzzy set were determined simultaneously by

this method. By this method, an appropriate fuzzy partition of a pattern space is automatically

generated from numerical data. The consequent class of the fuzzy rule corresponding to each

fuzzy subspace is determined according to the given training patterns in that fuzzy subspace

[45]. We introduced a new coding method of fuzzy partitions of a pattern space. The new

coding method was a modified and extended version of Nomura’s coding method [86] that was

proposed for function approximation problems. We also combined the error-correction learning

procedure [87,88] with the genetic algorithm. High performance of our method was illustrated

by computer simulations on the iris classification problem [13].

