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CHAPTER 3 
 

GENETIC ALGORITHMS FOR FLOWSHOP 
SCHEDULING PROBLEMS 
 

 

 

3.1 INTRODUCTION 

Flowshop scheduling is one of the most well-known problems in the area of scheduling. 

Various approaches have been proposed since Johnson’s work [56]. Because Johnson described 

an optimization algorithm for minimizing the makespan on n-job and two-machine flowshop 

scheduling problems [56], this scheduling criterion has been often used in various approaches. 

A lot of researchers have tried to constructing an optimization method for scheduling problems. 

It is difficult, however, to find the optimal solution of a flowshop scheduling problem involving 

many jobs and machines (e.g., 100 jobs and 10 machines). Many approaches can be classified 

into two categories: optimization algorithms for the exact solution (for example, Ignall & 

Schrage [33] and Lomnicki [69]) and heuristic algorithms for near optimal solutions (for 

example, Dannenbring [8] and Nawaz et al.[84]). Because the CPU power of available 

computers was rapidly improved, several heuristic approaches based on iterative improvement 

procedures have been applied to the flowshop scheduling. Osman & Potts [90] proposed 

simulated annealing heuristics, Taillard [108] and Widmer & Hertz [119] proposed tabu search 

heuristics. 

Recently many authors applied GAs (see, Davis [9], Goldberg [23], and Holland [27]) to 

combinatorial optimization problems such as traveling salesman problems (for example, Jog et 

al.[55], Starkweather et al.[101], and Ulder et al.[115]) and scheduling problems (for example, 

Fox & McMahon [17], Glass et al.[22], Ishibuchi et al.[49], Manderick & Spiessens [70] and 

Syswerda [106]). Some empirical studies [9,101,115] showed that the ability of GAs to find 

near optimal solutions was a bit inferior to other search algorithms. 

In this chapter, we apply GAs to single-objective flowshop scheduling problems. We first 

explain flowshop scheduling. Next we examine several crossover operators and mutation 
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operators to construct genetic algorithms for flowshop scheduling. By computer simulations, 

we point out that the combination of high performance crossover and mutation operators does 

not always lead to a high performance genetic algorithm [79,80]. We compare the genetic 

algorithm constructed for flowshop scheduling with other search algorithms such as local 

search, simulated annealing [90], and tabu search [108,119]. It is shown that the genetic 

algorithm is a bit inferior to the other search algorithms [82] as shown by several researchers [9, 

101,115]. Then, we examine two hybrid genetic algorithms to improve the performance of the 

genetic algorithm [82]. One is a genetic local search algorithm, and the other is a genetic 

simulated annealing algorithm. We also introduce some modifications of search mechanisms in 

these hybrid genetic algorithms [82]. While careful parameter specifications are required for 

constructing GAs with high performance, it is shown that we can construct the genetic local 

search algorithm without careful parameter specifications. 
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3.2 FLOWSHOP SCHDULING PROBLEMS 
We first briefly describe n-job and m-machine flowshop scheduling problems. General 

assumptions of flowshop scheduling problems can be written as follows (for details, see Dudek 

et al.[10]): Jobs are to be processed on multiple stages sequentially. There is one machine at 

each stage. Machines are available continuously. A job is processed on one machine at a time 

without preemption, and a machine processes no more than one job at a time. In this thesis, we 

assume that n jobs are processed in the same order on m machines. This means that our 

flowshop scheduling is the n-job sequencing problem. Let the processing time and the 

completion time of job j on machine i be t i jP ( , )  and t i jC ( , ) , respectively. The sequence of 

n jobs is denoted by an n-dimensional vector x = ( , , ..., )x x xn1 2 , where xk  represents the 

k-th processing job. The completion time of each job corresponding to the sequence x can be 

calculated as 

 

  t x t xC P( , ) ( , )1 11 1= ,       (3.1) 

  t i x t i x t i xC C P( , ) ( , ) ( , )1 1 11= − + ,  for i m= 2 3, , ..., ,   (3.2) 

  t x t x t xC k C k P k( , ) ( , ) ( , )1 1 11= +− ,  for k n= 2 3, , ..., ,   (3.3) 

  t i x t i x t i x t i xC k C k C k P k( , ) max{ ( , ), ( , )} ( , )= − +−1 1 , 

      for i m= 2 3, , ..., ; k n= 2 3, , ..., .  (3.4) 

 

Flowshop scheduling problems are to determine the sequence x of n jobs based on a specific 

criterion. One of the makespan, the total flowtime, the maximum tardiness, and the total 

tardiness is often used as a scheduling criterion. Each of these criteria can be defined as follows 

in flowshop scheduling:  

 

 Makespan: f t m xC n1( ) ( , )x = ,       (3.5) 

 Total flowtime: f t m xC kk
n

2 1( ) ( , )x = =∑ ,      (3.6) 

 Maximum tardiness: f t m x d x k nC k k3 0 1 2( ) max{max{ ( , ) ( ), }| , , ... , }x = − = , (3.7) 

 Total tardiness: f t m x d xC k kk
n

4 1 0( ) max{ ( , ) ( ), }x = −=∑ ,    (3.8) 
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Fig. 3.1  An example of a feasible solution of a five-job and three-machine flowshop 

scheduling problem and its makespan. 

 

 

where d xk( )  is the duedate of the k-th processing job xk . We use the makespan as a criterion 

in this chapter because a lot of heuristic algorithms (i.e., simulated annealing, tabu search, and 

so on) were proposed for flowshop scheduling with this criterion. The other criteria are 

considered in the following chapter about multi-objective flowshop scheduling. Fig. 3.1 shows 

an example of a feasible solution of a five-job and three-machine flowshop scheduling problem. 

The makespan is the completion time of the last job. That is, the completion time of Job 5 on 

Machine 3 is the makespan of this schedule. We will examine various genetic operators to 

construct GAs for flowshop scheduling problems where the makespan is employed as an 

objective. 
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3.3 GENETIC OPERATORS FOR PERMUTATION STRINGS 
As we explained the difference between the binary coding and the permutation coding in 

Subsections 2.2.1, 2.2.4, and 2.2.5, we should carefully design GAs according to the type of 

optimization problems to be considered. The aim of flowshop scheduling problems with the 

objective of minimizing the makespan is to find the sequence x of n jobs with the minimum 

makespan. A job sequence is directly treated as an individual in GAs. That is, the permutation 

coding method is appropriate for flowshop scheduling problems. We consider various genetic 

operators which fulfill the requirement of permutation problems that each element of a string 

should appear once in a generated string. We explain seven crossover operators and five 

mutation operators in the following subsections [78,79,80,82]. 

 

3.3.1 Crossover 
In this subsection, we examine seven crossover operators. The following two operators are 

often used for GAs with the permutation coding. 

 

(1) One-point order crossover 

This crossover was briefly explained as an example of a crossover operator for permutation 

strings in Subsection 2.2.4. This crossover is illustrated in Fig. 3.2. One point is randomly 

selected for dividing one parent string. The set of jobs on one side (i.e., either the head part or 

the tail part of the string) is chosen with the same probability and inherited from the parent 

string to the offspring, and all the remaining jobs on the other side are placed in the order of 

their appearance in the other parent string. 

 

(2) Two-point order crossover 

This crossover is illustrated in Fig. 3.3. Two points are randomly selected for dividing one 

parent string. The jobs outside the selected two points (i.e., the head part and the tail part) are 

always inherited from one parent string to the offspring, and the other jobs (i.e., the mid part of 

the string) are placed in the same manner as the one-point order crossover.  

 

The following versions of the position based order crossover (see, Syswerda [106]) were 

also examined in computer simulations: 
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Fig. 3.2  The one-point order crossover. 
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Fig. 3.3  The two-point order crossover. 
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Fig. 3.4  The position based order crossover. 
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(3) Position based order crossover 

This crossover is illustrated in Fig. 3.4. The jobs at randomly selected positions marked by 

“  ” are inherited from one parent string to the offspring, and the other remaining jobs are 

placed in the order of their appearance in the other parent string. 

 

The following four crossover operators, which had been mainly proposed for traveling 

salesman problems, are also examined in this chapter for flowshop scheduling problems. We 

omit the detailed explanations of these crossovers because they turn out to be inappropriate for 

the flowshop scheduling by the following computer simulations. 

(4) Partially matched crossover in Goldberg [23] 

(5) Cycle crossover in Oliver et al.[89] 

(6) Edge recombination crossover in Whitley et al.[118] 

(7) Enhanced Edge recombination crossover in Starkweather et al.[101] 

 

3.3.2 Mutation 
We examine the following five mutation operators for flowshop scheduling problems. 

 

(1) Adjacent two-element change 

Adjacent two elements are exchanged as shown in Fig. 3.5. The adjacent two elements to be 

exchanged are randomly selected. 

 

(2) Arbitrary two-element change 

This mutation was explained as an example of the mutation operator for permutation strings 

in Subsection 2.2.5. Arbitrary selected two jobs are changed as shown in Fig. 3.6. The two 

elements to be changed are arbitrary and randomly selected. This mutation includes the adjacent 

two-element change as a special case. 

 

(3) Arbitrary three-element change 

Arbitrary selected three elements are arbitrary changed as shown in Fig. 3.7. The three 

elements to be changed are arbitrary and randomly selected, and the order of the selected 

elements after the mutation is randomly specified from the five candidate transitions. This 

mutation includes the above two mutations as a special case. 

* 
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Fig. 3.5  Adjacent two-element change. 
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Fig. 3.6  Arbitrary two-element change. 
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Fig. 3.7  Arbitrary three-element change. 
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Fig. 3.8  Shift change. 
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Fig. 3.9  Inversion. 
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(4) Shift change 

In this mutation, an element at one position is removed and put at another position as shown 

in Fig. 3.8. The two positions are randomly selected. This mutation includes the adjacent 

two-element change as a special case and has an intersection with the arbitrary three-element 

change. 

 

(5) Inversion 

Inversion mutation reverses the order of the elements between randomly selected two 

positions as shown in Fig. 3.9. This mutation includes the adjacent two-element change as a 

special case and has an intersection with the arbitrary two-element change and the arbitrary 

three-element chage. 

 

As we can see from Fig. 3.5 ~ Fig. 3.9, these mutation operators are applied to an entire 

string while a mutation operator is usually applied to each position of a string in the case of 

binary coding. Thus it should be noted that the mutation probability Pm is defined for each 

string in the case of permutation coding. Since mutation operator can be viewed as a transition 

from the current solution to its neighborhood solution in local search algorithms, then mutation 

operators may improve individuals locally. 
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3.4 POSITIVE AND NEGATIVE COMBINATION EFFECTS 

 OF GENETIC OPERATORS 
Various crossover and mutation operators have been examined for sequencing problems. 

Because the performance of GAs strongly depends on the choice of such operators, the 

selection of appropriate operators is critical for constructing high performance GAs. The 

evaluation of each genetic operator is usually performed by computer simulations using a 

specially constructed genetic algorithm. That is, when the performance of a crossover operator 

is evaluated, a genetic algorithm without mutation is employed. The evaluation of a mutation 

operator is performed by a genetic algorithm without crossover. For example, various crossover 

and mutation operators were examined in this manner by Manderick & Spiessens [70]. 

In this section, we point out that the combination of high performance crossover and 

mutation operators does not always lead to a high performance genetic algorithm. We clearly 

illustrate this fact by computer simulations on flowshop scheduling problems. First we evaluate 

each of various genetic operators in order to select high performance crossover and mutation 

operators. Next we combine the selected crossover and mutation operators into a genetic 

algorithm, and evaluate its performance. While the performance of each operator is good when 

it is independently evaluated, the genetic algorithm constructed by these two operators does not 

always work well. This negative combination effect is due to the complementary nature of 

crossover and mutation operators in genetic algorithms. Finally we explain how crossover and 

mutation operators can be appropriately specified to construct a high performance genetic 

algorithm by utilizing the positive combination effect of these two operators. 

 

3.4.1 Flowshop scheduling problems  
In this chapter, we simply transform the makespan f1( )x  in (3.5) to the fitness function 

f ( )x  as follows:  

 

  f f t m xC n( ) ( ) ( , )x x= − = −1 .      (3.9) 

 

We use the following simple genetic algorithm that has often been employed for evaluating 

genetic operators in the literature:  
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Step 0 (Initialization): Let t:= 1  where t  is the index of generation. Randomly generate an 

initial population Ψt  including N pop  solutions where N pop  is the population size. 

Step 1 (Evaluation): Calculate the makespan of each schedule in the current population Ψt . 

Step 2 (Selection): Select N pop  pairs of solutions from the current population Ψt  according 

to the selection probability Ps( )x  based on the linear scaling [23]: 

 

  P f f
f f

t

t
t

s

 

( ) ( ) ( )
{ ( ) ( )}

min

min
x x

x
x

= −
′ −

′∈
∑

Ψ
Ψ

Ψ

,           (3.10) 

 

where f tmin ( )Ψ  is the minimum fitness value (i.e., the worst fitness value) in the 

current population Ψt . 

Step 3 (Crossover): Apply a crossover operator to each of the pairs selected in Step 2 to 

generate N pop  solutions with the crossover probability Pc . When the crossover 

operator is not applied, one of the parents is handled as an offspring. 

Step 4 (Mutation): Apply a mutation operator to each of the generated N pop  solutions in Step 

3 with the mutation probability Pm .  

Step 5 (Termination test): If a prespecified stopping condition is satisfied, stop the algorithm. 

Otherwise, update t  as t t:= + 1 and return to Step 1. In computer simulations, the 

total number of generations is used as the stopping condition. 

 

It is noted that the elitist strategy described in Subsection 2.2.6 was not employed in this 

algorithm. We specified the population size Npop  as Npop = 100 , and the stopping condition 

tmax  as tmax = 500  in computer simulations. 

As a test problem, we randomly generated a flowshop scheduling problem with 20 jobs and 

10 machines. The processing time of each job at each machine was randomly specified as an 

integer in the closed interval [1, 99]. We applied the genetic algorithm to this test problem 30 

times. 
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3.4.2 Performance measure 
In computer simulations, we used the following performance measure in order to evaluate 

each genetic operator for our scheduling problem:  

 

  Performance = −f f( ) ( )*x xinitial
* ,          (3.11) 

 

where xinitial
*  is the best solution in the initial population and x *  is the best solution among 

all the populations. That is, f ( )xinitial
*  is the fitness value corresponding to the minimum 

makespan in the initial population and f ( )*x  corresponds to the minimum makespan during 

the execution of the genetic algorithm. Thus the performance measure in (3.11) can be viewed 

as the total improvement of the makespan during the execution of the genetic algorithm. 

 

3.4.3 Effectiveness of genetic operators 
Manderick & Spiessens [70] showed that statistical measures related to the fitness landscape 

can be used to tune and to optimize the performance of the genetic algorithm. They used 

correlation coefficients of genetic operators as a statistical measure to select the best operators. 

The correlation coefficient ρOP  of a genetic operator OP is obtained as follows: The operator 

OP in the case of crossover is applied to two individuals and it generates offspring. For each 

application of the operator OP, the values f p  and fc  represent the mean fitness of the two 

parents and the fitness of their offspring. In the case of mutation, the operator OP is applied to 

one individual and it generates offspring. The values f p  and fc  represent the fitness of the 

one parent and its offspring. To calculate the correlation coefficient ρOP  of the operator OP, 

we take a number of parent strings, apply the operator OP to get their offspring, and calculate 

the correlation coefficient between the fitness values f p  and fc : 

 

  ρOP ( , )
( , )

( ) ( )
f f

Cov f f
f fp c

p c

p c
=

σ σ
,           (3.12) 

 

where Cov f fp c( , )  is the covariance between the values of f p  and fc , and σ ( )f p and 
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σ ( )fc  are the standard deviation of the values of f p  and fc , respectively. Manderick & 

Spiessens [70] showed that correlation coefficients of genetic operators are related with their 

performance by computer simulations. That is, they said that the effectiveness of genetic 

operators can be expected by calculating correlation coefficients of genetic operators. It should 

be noted that either a crossover operator or a mutation operator is used in their genetic 

algorithms. That is, they used genetic algorithms with no mutation operator in order to measure 

the performance of crossover operators, and genetic algorithms with no crossover operator in 

order to measure the performance of mutation operators. 

We will examine seven crossover operators and five mutation operators described in Section 

3.3 in the following subsections. First we examine the performance of genetic operators in the 

way proposed by Manderick & Spiessens [70]. Then we consider the positive and negative 

combination effects of crossover and mutation operators. 

 
3.4.4 Examination of crossover operators 

In order to examine the seven crossover operators in Subsection 3.3.1, we applied the genetic 

algorithm in Subsection 3.4.1 to our test problem 30 times by specifying the mutation 

probability Pm  as Pm = 0  in the same manner as in Manderick & Spiessens [70]. This 

means that no mutation operator was used in the genetic algorithm when the crossover 

operators were examined. Each crossover operator was examined using ten crossover 

probabilities: Pc = 0.1, 0.2, ..., 1.0. These values were also used in Manderick & Spiessens 

[70]. 

We examined each crossover operator by 30 runs of the genetic algorithm. The average value 

of the performance measure in (3.11) over the 30 runs was calculated for each crossover 

operator with each crossover probability. The best crossover probability was determined for 

each crossover operator by these computer simulations (e.g., Pc = 0.9 for the one-point order 

crossover). In Table 3.1, we show the crossover probability determined in this manner for each 

crossover operator. We also show in Table 3.1 the average value of the performance measure 

obtained by each crossover operator with the best specification of the crossover probability. 

From Table 3.1, we can see that the best performance was obtained by the position based order 

crossover with the crossover probability Pc = 0.9. 

We also calculated the correlation coefficients in (3.12) for each crossover operator by 

applying a crossover operator to 30,000 pairs of parent strings which were randomly generated.  
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Table 3.1  Average value of the performance measure over 30 runs for each crossover 

operator with its best crossover probability. 

 
Crossover Pc  Performance 

One-point order crossover 0.9 176.80 
Two-point order crossover 0.9 144.33 
Position based order crossover 0.9 206.53* 
Partially matched crossover 1.0 180.93 
Cycle crossover 1.0 152.73 
Edge recombination 0.5 124.70 
Enhanced edge recombination 0.5 125.56 
 
* Best result 
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Fig. 3.10  Relation between the performance and the correlation coefficients 

of crossover operators. 

 
 
Fig. 3.10 shows the relation between the performance and the correlation coefficients of the 

seven crossover operators where 1POX is the one-point order crossover, 2POX is the two-point 

order crossover, PBX is the position based order crossover, PMX is the partially matched 

crossover, CX is the cycle crossover, ER is the edge recombination, and EER is the enhanced 

edge recombination. From Fig. 3.10, we can observe the correlation coefficient of the crossover 

operator may be related with its performance. 
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3.4.5 Examination of mutation operators 
In order to examine the five mutation operators in Subsection 3.3.2, we applied the genetic 

algorithm 30 times to our test problem by specifying the crossover probability Pc  as Pc = 0 

in the same manner as in Manderick & Spiessens [70]. This means that no crossover operator 

was used in the genetic algorithm when the mutation operators were examined. Each mutation 

operator was examined using ten mutation probabilities: Pm = 0.1, 0.2, ..., 1.0. These values 

were also used in Manderick & Spiessens [70]. 

We examined each mutation operator in the same manner as in the last subsection. 

Simulation results are shown in Table 3.2. From Table 3.2, we can see that the best 

performance was obtained by the shift change mutation with the mutation probability 

Pm = 0.4.  

We also calculated the correlation coefficient in (3.12) for each mutation operator by 

applying a mutation operator to 30,000 pairs of parent strings which were randomly generated. 

Fig. 3.11 shows the relation between the performance and the correlation coefficients of the 

five mutation operators. From Fig. 3.11, we can observe the correlation coefficient of the 

mutation operator is related with its performance. 

From Table 3.1 and Table 3.2, the combination of the position based order crossover with 

Pc = 0.9 and the shift change mutation with Pm = 0.4 seems to lead to a high performance 

genetic algorithm. The performance of this combination is examined in the next subsection. 

 

 

Table 3.2  Average value of the performance measure over 30 runs for each mutation operator 

with its best mutation probability. 

 

Mutation Pm  Performance 
Adjacent two-element change 1.0 195.20 
Arbitrary two-element change 0.2 197.60 
Arbitrary three-element 
change 

0.3 192.43 

Shift change 0.4 211.13* 
Inversion 0.3 181.60 
 
* Best result 
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Fig. 3.11  Relation between the performance and the correlation coefficient 

of mutation operators. 

 

 

3.4.6 Combination of genetic operators 
Based on the simulation results in Table 3.1 and Table 3.2, we constructed a genetic 

algorithm using the position based order crossover with Pc = 0.9 and the shift change mutation 

with Pm = 0.4. This genetic algorithm was applied to our test problem 30 times with the same 

population size and the same stopping condition as in Subsections 3.4.4 and 3.4.5. By this 

computer simulation, we had the following result:  

 
Average performance: 198.2. 

 
From the comparison of this value with Table 3.1 and Table 3.2, we can see that the 

performance of the genetic algorithm was deteriorated by the combination of the high 

performance crossover and mutation operators. 

This result suggests the existence of the negative combination effect of crossover and 

mutation operators. That is, crossover and mutation operators can not be appropriately specified 

by the independent examination of one operator from the other operator because of their 

complementary nature.  
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3.4.7 Selection of genetic operators and their probabilities 
In this subsection, we explain several methods for appropriately specifying crossover and 

mutation operators.  

 

A. Probability tuning 

One reason of the poor performance of the genetic algorithm in the last subsection may be 

the inappropriate specifications of the crossover and mutation probabilities. Those probabilities 

were specified by the computer simulations in Subsections 3.4.4 and 3.4.5 where either 

crossover or mutation operator (not both operators) was used in genetic algorithms. Thus those 

probabilities may be inappropriate when both operators are used in genetic algorithms. This 

means that the performance of the genetic algorithm in Subsection 3.4.6 may be improved by 

the tuning of those probabilities. 

In order to appropriately specify those probabilities, we applied a genetic algorithm with the 

position based order crossover and the shift change mutation to our test problem 30 times by 

using the following crossover and mutation probabilities: 

 
  Pc = 01 0 2 0 3 10. , . , . , ..., . , Pm = 01 0 2 0 3 10. , . , . , ..., . . 

 
Therefore there were 100 combinations of the crossover and mutation probabilities. 

The following best result was obtained by Pc 0.3=  and Pm 0.2= : 

 
Average performance: 216.8. 

 
From the comparison of this result with the value “198.2” in Subsection 3.4.6, we can see that 

the performance of the genetic algorithm was improved by tuning the crossover and mutation 

probabilities. The above result is also better than all the results in Table 3.1 and Table 3.2 

where either crossover or mutation operator (not both operators) was employed in genetic 

algorithms. This means that the positive combination effect can be realized by appropriately 

specifying the crossover and mutation probabilities. 

 

B. Search for good genetic operators 

In the last subsection, we used the crossover and mutation operators that were independently 

selected by the computer simulations in Subsections 3.4.4 and 3.4.5. Here we examine a search 
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method of appropriate genetic operators by considering the combination effects of crossover 

and mutation. There are two versions of the search method: One starts from the selection of a 

crossover operator, and the other starts from the selection of a mutation operator.  

The first version of the search method can be written as follows: 

 

Step 1 (Initial selection of a crossover operator): Evaluate applicable crossover operators with 

various crossover probabilities, and choose the best crossover operator and the best 

crossover probability as in Table 3.1. In this step, the evaluation is performed by a 

genetic algorithm with no mutation operator. 

Step 2 (Initial selection of a mutation operator): Evaluate applicable mutation operators with 

various mutation probabilities by a genetic algorithm with the crossover operator and the 

crossover probability specified in Step 1. That is, the evaluation is performed by a 

genetic algorithm with both mutation and crossover. Choose the best mutation operator 

and the best mutation probability. 

Step 3 (Search for a better crossover operator): Evaluate applicable crossover operators with 

various crossover probabilities by a genetic algorithm with the mutation operator and the 

mutation probability specified in the previous step (i.e., Step 2 or Step 4). Choose the 

best crossover operator and the best crossover probability. If the performance of the 

genetic algorithm is not improved, stop the algorithm. Otherwise go to Step 4 with the 

selected crossover operator and crossover probability. 

Step 4 (Search for a better mutation operator): Evaluate applicable mutation operators with 

various mutation probabilities by a genetic algorithm with the crossover operator and the 

crossover probability specified in Step 3. Choose the best mutation operator and the best 

mutation probability. If the performance of the genetic algorithm is not improved, stop 

the algorithm. Otherwise return to Step 3 with the selected mutation operator and 

mutation probability. 

 

 We applied this algorithm to our test problem. In each step, we selected a genetic operator 

and its probability by average results over 30 runs. In Step 1, the seven crossover operators 

were examined by a genetic algorithm with no mutation operator. As shown in Table 3.1, the 

position based order crossover with Pc = 0.9 was selected, and the average performance 

measure “206.53” was obtained in this step. In Step 2, the five mutation operators were 
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examined by a genetic algorithm with the position based order crossover. This means that the 

combinations of the position based order crossover and the five mutation operators were 

examined. In this step, the adjacent two-element change mutation with Pm = 0.6 was selected, 

and the average performance measure “224.3” was obtained. In Step 3, the combinations of the 

adjacent two-element change mutation and the seven crossover operators were examined. Then 

the position based order crossover with Pc = 0.6 was selected, and the average performance 

measure “225.8” was obtained. Because the performance of the genetic algorithm was 

improved in Step 3 from 224.3 to 225.8, we went to Step 4 where the combinations of the 

position based order crossover with Pc = 0.6 and the five mutation operators were examined. 

In Step 4, the adjacent two-element change mutation with Pm = 0.6 was selected, and the 

average performance measure “225.8” was obtained. Because the performance of the genetic 

algorithm was not improved in this step, the algorithm was terminated. Therefore the following 

final result was obtained by the position based order crossover with Pc = 0.6 and the adjacent 

two-element change mutation with Pm = 0.6: 

 
Average performance: 225.8. 

 
This result is better than any results in Table 3.1 and Table 3.2 where either crossover or 

mutation operator (not both operators) was employed in genetic algorithms. This means that the 

positive combination effect of crossover and mutation was realized by selecting the genetic 

operators by the above algorithm. 

The other version of the proposed method starts from the selection of a mutation operator. 

This version was also applied to our test problem and the following result was obtained by the 

two-point order crossover with Pc = 0.9 and the shift change mutation with Pm = 0.3: 

 
Average performance: 222.3. 

 

C. Examination of all combinations 

One of the most straightforward methods for selecting crossover and mutation operators is to 

examine all the possible combinations of various operators. Using our test problem, we 

examined the 35 combinations of the seven crossover operators and the five mutation operators. 

The crossover and mutation probabilities in Table 3.1 and Table 3.2 were used in computer 
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simulations. Simulation results were summarized in Table 3.3 where the average value of the 

performance measure over 30 runs is shown for each combination. From this table, we can see 

the following best result was obtained by the combination of the cycle crossover and the 

adjacent two-element change mutation: 

 

Average performance: 227.2. 

 

It should be noted that the cycle crossover and the adjacent two-element change mutation  

were not highly evaluated in Table 3.1 and Table 3.2 when each of these operators was 

independently examined. Therefore the good result “227.2” was attained by the positive 

combination effect of crossover and mutation in genetic algorithms. 

The crossover and mutation probabilities were also tuned for this combination in the same 

manner as in Subsection 3.4.7.A. Then the following improved result was obtained by Pc = 0.8 

and Pm = 1.0: 

Average performance: 228.3. 

 

 
 

Table 3.3  The performance of all the possible combinations of various genetic operators. 

 

 Adjacent 2 
( Pm = 1.0) 

Arbitrary 2 
( Pm = 0.2) 

Arbitrary 3 
( Pm = 0.3) 

Shift 
( Pm = 0.4) 

Inversion 
( Pm = 0.3) 

1POX ( Pc = 0.9)   211.5   211.8   210.3   213.7   200.8 
2POX ( Pc = 0.9)   206.9   214.9   209.9   217.1   196.1 
PBX ( Pc = 0.9)   217.6   205.6   188.3   198.2   182.2 
PMX ( Pc = 1.0)   172.0   164.2   150.0   156.1   148.2 
CX ( Pc = 1.0)   227.2*   205.8   201.2   211.7   191.6 
ER ( Pc = 0.5)   126.2   118.7   115.0   120.3   123.4 
EER ( Pc = 0.5)   121.8   121.0   112.1   125.3   126.0 

 

  198.2 is the result by the combination of the best operators in Table 3.1 and Table 3.2. 

  227.2* is the best result in this table. 
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3.5 COMPARISON WITH OTHER SEARCH ALGORITHMS 

In this section, we compare the GA with other search algorithms such as local search, tabu 

search and simulated annealing. In computer simulations, the neighborhood structure based on 

the shift change mutation was used in all the search algorithms. 

 

3.5.1 Other search algorithms 
A. Local search algorithm 

In a local search algorithm, first an initial solution x is randomly generated. Then the 

solutions in the neighbor of the current solution x are examined in random order. When a better 

solution is found by this neighborhood examination, the current solution is immediately 

replaced with that solution. That is, the current solution is replaced with the first solution that 

improves the current one. When there is no solution that improves the current one in the 

neighborhood, the current solution x can be regarded as a local optimal solution. Then the 

search procedure restarts from another initial solution that is generated randomly again. This 

search procedure is iterated until a prespecified stopping condition is satisfied. 

In the above algorithm, the current solution is immediately replaced with the first solution 

that improves the current one. There is another strategy for a transition from the current 

solution. That is, the current solution is replaced the best solution of all the neighborhood 

solutions of the current solution. The former strategy is called the first move strategy, and the 

latter is called the best move strategy. In this section, we employed the first move strategy. 

 

B. Tabu search algorithm 

In computer simulations, we used the following tabu search algorithm, which is basically the 

same as an algorithm mentioned in Taillard [108]. First an initial solution x is randomly 

generated, and the tabu list is specified as φ  where φ  shows that the tabu list is empty. Next 

the neighborhood solutions that are not included in the tabu list are examined in random order. 

Let y*  be the first solution that improves the current one. If no solution improves the current 

one, then let y*  be the best solution in the neighborhood solutions that are not included in the 

tabu list. If a prespecified stopping condition is satisfied, then stop the search procedure. 

Otherwise, let x := y* , renew the tabu list, and continue the search procedure from the updated 

current solution x. In computer simulations, we used the tabu list defined by the pairs of 
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positions and jobs. When the job xk  at the k-th position is removed and put at another 

position, the pair ( , )k xk  is added to the tabu list. The length of the tabu list was specified as 

seven. 

As in the case of local search algorithm, the best move strategy can be utilized in this 

algorithm. The comparison of the first move and the best move was examined in Taillard [108]. 

In his paper, the first move strategy was better than the best move strategy. Therefore we 

employed the first move strategy in this algorithm. 

 

C. Simulated annealing algorithm 

In this section, we used the simulated annealing algorithm proposed by Osman & Potts [90]. 

First an initial solution x is randomly generated. The transition from the current solution x to a 

neighborhood solution y is accepted by the following probability:  

 

  P f f
cl

trans  ( ) min{ , exp( ( ) ( ) )}x y x y→ = − −1 , l N= 1 2, ,..., iteration ,  (3.13) 

 

where f ( )⋅  is a fitness function in (3.9) to be maximized, cl  is a control parameter called 

temperature, and Niteration  is the total iteration number of simulated annealing algorithms. In 

simulated annealing algorithms, the value of the control parameter is gradually decreased from 

a large initial value to a small final value. In computer simulations, we specified the sequence 

of cl  as 

  c c cl l l+ = + ⋅1 1/ ( )β , l N= −1 2 1, ,..., iteration ,         (3.14) 

 

where β  is a positive constant. We determined the positive constant β  and the initial value 

of cl  according to Osman & Potts [90]. The current solution x is replaced with the candidate 

solution y with the acceptance probability in (3.13). This search procedure is iterated until a 

prespecified stopping condition is satisfied. 

 

3.5.2 Simulation results 
We applied the genetic algorithm (GA), the local search algorithm (LS), the tabu search 

algorithm (TS) and the simulated annealing algorithm (SA) to randomly generated 100 test 
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problems with 20 jobs and 10 machines. We employed the two-point order crossover and the 

shift change mutation as genetic operators in the genetic algorithm. For comparison, we also 

applied a random sampling technique with the same computation load in the other algorithms. 

We also applied these algorithms to randomly generated 100 test problems with 50 jobs and 10 

machines. 

Simulation results are shown in Table 3.4 and Table 3.5 for 20-job problems and 50-job 

problems, respectively. We plotted the results for 20-job problems in Fig. 3.12. In these tables, 

the average makespan to be minimized obtained by each algorithm are normalized using the 

result by the simulated annealing algorithm with 200,000 evaluations (which were the second 

best result in Table 3.4, and the best result in Table 3.5). From these tables and figure, we can 

see that the genetic algorithm, which is much superior to the random sampling technique, is a 

bit inferior to the other search algorithms. 

 

 

Table 3.4  Comparison of the search algorithms for 20-job and 10-machine problems. 
 

Evaluations 10,000 50,000 200,000 
GA 
LS 
TS 
SA 
Random 

   101.5 
   101.2 
   101.1* 
   100.9** 
   109.6 

   101.0 
   100.5 
   100.5* 
   100.2** 
   108.4 

   100.7 
   100.2 
   100.0** 
   100.0* 
   107.5 

 

** and * show the best result and the second best result in each column, respectively. 

 
 

Table 3.5  Comparison of the search algorithms for 50-job and 10-machine problems. 
 

Evaluations 10,000 50,000 200,000 
GA 
LS 
TS 
SA 
Random 

   102.3 
   101.9 
   101.4* 
   101.2** 
   111.4 

   101.4 
   101.2 
   101.0* 
   100.4**  
   110.5 

   101.1 
   100.7 
   100.5* 
   100.0** 
   109.8 

 

** and * show the best result and the second best result in each column, respectively. 
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Fig. 3.12  Simulation results by the four search algorithms 

for 20-job and 10-machine problems. 
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3.6 HYBRIDIZATION OF GENETIC ALGORITHMS WITH 

 OTHER SEARCH ALGORITHMS 

In this section, we examine two hybrid algorithms (i.e., genetic local search and genetic 

simulated annealing) to improve the performance of the genetic algorithm which was a bit 

inferior to the other search algorithms in the previous section. While careful parameter 

specifications are required for constructing GAs with high performance, it is shown that we can 

construct the genetic local search algorithm without careful parameter specifications. 

 

3.6.1 Genetic local search 
Genetic local search have been proposed by several authors for mainly traveling salesman 

problems (for example, see Glass et al.[22], Jog et al.[55], and Ulder et al.[115]). Generally a 

local search procedure can be written as follows: 

 

[Local Search Procedure] 

Step 0: Specify an initial solution x.  

Step 1: Examine a neighborhood solution y of the current solution x. 

Step 2: If y is a better solution than x, replace the current solution x with y (i.e., let x y:= ) 

and return to Step 1. 

Step 3: If all the neighborhood solutions of the current solution x have been already 

examined (i.e., if there is no neighborhood solution that improves x), then end this 

procedure. Otherwise return to Step 1 (i.e., another neighborhood solution is 

examined in Step 1). 

 

As we can see from Step 3, this local search procedure is terminated when there is no better 

solution in the neighborhood of the current solution x. This means that all the neighborhood 

solutions of the current solution x should be examined before the procedure is terminated. 

Therefore the total number of solutions examined by this local search procedure for a single 

initial solution is more than or equal to the number of the neighborhood solutions. For example, 

if we define the neighborhood solutions by exchanging arbitrary two elements for a flowshop 

scheduling problem with 20 jobs, the number of the neighborhood solutions is 20 2 190C = . 

This means that at least 190 solutions are examined before the local search procedure is 
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terminated for a single initial solution. When we applied a genetic local search algorithm where 

the above mentioned local search algorithm was incorporated into a genetic algorithm to 100 

test problems with 20 jobs, the average number of generations was 7.4 (in the case of 

Npop = 10  and 50,000 evaluations). If we want to efficiently utilize the global search ability of 

GAs in the genetic local search algorithm, we have to reduce the computation time spent by the 

local search. This can be realized by restricting the number of neighborhood solutions 

examined by the local search procedure. We modify the local search procedure as follows: 

 

[Modified Local Search Procedure] 

Step 0: Specify an initial solution x.  

Step 1: Examine a neighborhood solution y of the current solution x. 

Step 2: If y is a better solution than x, replace the current solution x with y (i.e., let x y:= ) 

and return to Step 1. 

Step 3: If a certain number of neighborhood solutions of the current solution x have been 

already examined (i.e., if there is no better solution among the a certain number of 

neighborhood solutions of the current solution x), then end this procedure. Otherwise 

return to Step 1 (i.e., another neighborhood solution is examined in Step 1). 

 

This algorithm is terminated if no better solution is found among a certain number of  

neighborhood solutions that are randomly selected from the neighborhood of the current 

solution. Therefore if we examine a small number of neighborhood solutions, the local search 

procedure may be terminated soon. On the contrary, if we examine a large number of 

neighborhood solutions, the local search procedure examines many solutions. In this manner, 

we can adjust the computation time spent by the local search procedure in the genetic local 

search algorithm. In computer simulations, we used the following genetic local search 

algorithm. 

 

Step 0 (Initialization) 

Step 1 (Evaluation) 

Step 2 (Selection) 

Step 3 (Crossover) 
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Step 4 (Mutation) 

Step 5 (Elitist strategy) 

Step 6 (Modified local search and termination test): Apply the modified local search algorithm 

to the Npop  solutions in the current population. If a prespecified stopping condition is 

satisfied during the local search, stop the algorithm. If the local search is completed for all 

the Npop  solutions, let the set of the obtained Npop  solutions be the current population. 

Step 7 (Termination test): Return to Step 1. 

 

3.6.2 Genetic simulated annealing 
In the genetic local search algorithm, we can use the simulated annealing instead of the local 

search to construct a genetic simulated annealing algorithm. That is, we have the genetic 

simulated annealing algorithm by modifying Step 6 of the genetic local search algorithm in the 

last subsection. In computer simulations, we applied the simulated annealing algorithm with the 

constant temperature to each of the Npop  solutions in the current population. We used the 

constant temperature to avoid extreme deterioration of the current solution during the initial 

state of annealing with high temperature. The simulated annealing algorithm was iterated 500 

times for each solution of the current population in computer simulations. In order to improve 

the performance of the genetic simulated annealing algorithm, we modify the simulated 

annealing algorithm by randomly selecting k neighborhood solutions of the current one and 

letting the best one be the candidate solution for the next transition in the simulated annealing 

(for such modification of simulated annealing, see Ishibuchi et al.[34]).  

 

3.6.3 Simulation results 
As in a similar manner to the computer simulations in the last section, we applied the genetic 

local search algorithm (GLS) and the genetic simulated annealing algorithm (GSA) to the 100 

test problems with 20 jobs and 10 machines. The simulation results are shown in Table 3.6. In 

the GLS, α % (α  = 100, 75, 50, 25, 10, 5) of the neighborhood solutions of the current 

solution were examined in each local search procedure. When α = 100 , the local search 

algorithm in the GLS is the same as the standard local search algorithm. In the GSA, k ( k = 1, 
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Table 3.6  Performance of the genetic local search and the genetic simulated annealing for 
20-job and 10-machine problems. 

 
Number of evaluations Search 

Algorithms 10,000 50,000 200,000 
GA 
GLS 
GLS 
GLS 
GLS 
GLS 
GLS 
GSA 
GSA 
GSA 
GSA 
GSA 
GSA 
GSA 

 
100% 
75% 
50% 
25% 
10% 
5% 

k = 1 
k = 2  
k = 4  
k = 6  
k = 8  
k = 10 
k = 20  

  101.48 
  101.14 
  101.05 
  101.04* 
  101.02** 
  101.16 
  101.25 
  101.25 
  101.18 
  101.21 
  101.10 
  101.26 
  101.27 
  101.51 

  101.03 
  100.14 
  100.12** 
  100.18 
  100.19 
  100.28 
  100.52 
  100.25 
  100.20 
  100.22 
  100.12* 
  100.23 
  100.17 
  100.20 

  100.71 
   99.85* 
   99.82** 
   99.92 
   99.97 
  100.01 
  100.24 
   99.92 
   99.93 
   99.96 
   99.87 
   99.92 
   99.92 
   99.94 

 

** and * show the best result and the second best result in each column, respectively. 
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Fig. 3.13  Simulation results by the GA, the GLS (α = 75), and the GSA ( k = 6 ). 
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2, 4, 6, 8, 10, 20) candidate solutions were selected from the neighbor of the current solution, 

and the transition to the best solution was examined with the acceptance probability in (3.13) of 

the simulated annealing algorithm. When k = 1, the simulated annealing in the GSA is the same 

as the standard algorithm. In this section, the constant temperature in the GSA was specified as 

c = 2 . In Fig. 3.13 we plotted the results obtained by the GA, the GLS (α = 75), and the GSA 

( k = 6). From the comparison between the results in Table 3.4 and Table 3.6, we can see that 

the performance of the genetic algorithm was improved by combining it with local search or 

simulated annealing. Table 3.6 shows that the modification of the local search procedure in the 

GLS is effective to improve the performance of the GLS. Table 3.6 also shows that the 

introduction of k into the simulated annealing improved the performance of the genetic 

simulated annealing algorithm. From Table 3.4 and Table 3.6, we can see that the best result 

was obtained by the GLS with α = 75%. It should be noted that not only genetic algorithm but 

also the local search and the simulated annealing were improved by the hybridization (compare 

Table 3.4 with Table 3.6). 

 

3.6.4 Sensitivity of the performance of the genetic local search 

 algorithm to parameter specifications 
As we have already shown in Section 3.4, careful parameter specifications are required for 

constructing GAs with high performance. In this section, it is shown that we can construct the 

GLS without careful parameter specifications. 

 

A. Specifications of a test problem and a genetic algorithm 

As a test problem, we randomly generated a flowshop scheduling problem with 20 jobs and 

10 machines in the same manner as in Subsection 3.4.1. The processing time of each job at each 

machine was randomly specified as an integer in the closed interval [1, 99]. We applied the 

genetic algorithm to this test problem 10 times. We employed the two-point order crossover 

and the shift change mutation as genetic operators in the GA and the GLS. In the GLS, the 

neighborhood structure based on the shift change was used. We examined the following 

crossover and mutation probabilities. 

 

  Pc = 01 0 2 0 3 10. , . , . , ..., . , Pm = 01 0 2 0 3 10. , . , . , ..., . . 
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Then the number of combination of crossover and mutation probabilities is 10 10 100× = . In 

the GLS, we examined α%  neighborhood solutions of the current solution where 

 
  α = 3 5 10 25 50 75 100, , , , , , . 

 

B. Simulation results 

In this subsection, we employed the modified local search procedure with multiple start 

solutions (MLS) in order to compare the performance of the GLS. In the case of α = 100  in 

the MLS, the algorithm can be regarded as the standard local search algorithm. Both the 

algorithms were stopped when 100,000 solutions were evaluated. 

Simulation results obtained by the GA and the GLS with 100 probability combinations are 

shown in Fig. 3.14 and Fig. 3.15. In Fig. 3.14, α  was specified as α = 0. In this case, the 

GLS can be regarded as the GA with no local search algorithm. In Fig. 3.15, we specified α  

as α = 50 . We used the average makespan over 10 times as a performance measure. From 

these figures, we can observe that the performance of the GLS does not depend on probability 

specifications while the performance of the GA highly depends on those. From this observation, 

we can see that the performance of the GLS is not sensitive to the parameter specifications. 

In order to clarify the robustness of the GLS, we plotted the average performance of each 

algorithm over α  in Fig. 3.16. In Fig. 3.16, the best results were obtained by the GLS where 

the best probability combination was employed. The worst results were obtained by the GLS 

where the worst combination was employed. The average results were calculated from the 

results over all results. From this figure, we can observe that the results obtained by the GLS 

are always better than that of the standard local search algorithm (i.e., α = 100  in the MLS). 

We can also observe that the difference between the best results and the worst results decreases 

by incorporating the local search in the GAs. 



- 61 - 

 

 

0.1 0.3 0.5 0.7 0.9
0.1

0.3
0.5

0.7
0.9

1580

1590

1600

1610

1620

1630
A

ve
ra

ge
 m

ak
es

pa
n

Mutation
  probability

Crossover
  probability

 
 

Fig. 3.14  The average makespan obtained by the GA over 100 probability combinations. 
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Fig. 3.15  The average makespan obtained by the GLS over 100 probability combinations. 
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Fig. 3.16  The relation between α  and average performance of the MLS and the GLS. 
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3.7 SUMMARY 

In this chapter, we considered genetic algorithms with a single objective for flowshop 

scheduling problems. First we examined seven crossover operators and five mutation operators 

for permutation strings. By computer simulations, we pointed out that the combination of high 

performance crossover and mutation operators did not always lead to a high performance 

genetic algorithm. We illustrated how high performance genetic algorithms could be 

constructed by utilizing the positive combination effect of crossover and mutation operators. 

From simulation results in this chapter, we can conclude the following:  

(i)  The combination of high performance crossover and mutation operators did not always 

mean a high performance genetic algorithm (see, Table 3.1, Table 3.2 and the combination 

of PBX and Shift in Table 3.3). This suggested the existence of the negative combination 

effect of crossover and mutation operators. 

(ii)  A high performance genetic algorithm could be constructed by crossover and mutation 

operators each of which is not highly evaluated (see, Table 3.1, Table 3.2 and the 

combination of CX and Adjacent 2 in Table 3.3). This suggested the existence of the 

positive combination effect of crossover and mutation operators. 

(iii) When each of the crossover and mutation probabilities was independently specified by 

computer simulations using genetic algorithms with either crossover or mutation operator 

(not both operators), the selected values were not appropriate (i.e., too large) for 

constructing a high performance genetic algorithm (see the results in Subsection 3.4.6 

( Pc 0.9= , Pm 0.4= ) and Subsection 3.4.7.A ( Pc 0.3= , Pm 0.2= ). 

Our intention in this chapter was not to find the best specifications of crossover and mutation 

of the simple genetic algorithm for a specific class of permutation problems (i.e., flowshop 

scheduling). We performed many runs of the genetic algorithm with various specifications of 

crossover and mutation operators in order to clearly demonstrate that the selection of genetic 

operators and the specifications of their probabilities could not be appropriately done by 

independent examinations of one genetic operator (i.e., crossover or mutation) from the other. 

We believe this is true for various classes of combinatorial optimization problems. 

Next, we compared the genetic algorithm, which was constructed for flowshop scheduling, 

with other search algorithms such as local search, simulated annealing [90], and tabu search 

[108,119]. It was shown that the genetic algorithm was a bit inferior to the other search 
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algorithms [82]. We examined two hybrid genetic algorithms to improve the performance of the 

genetic algorithm [82]. One is a genetic local search algorithm and the other is a genetic 

simulated annealing algorithm. We also introduced some modifications of search mechanisms 

in these hybrid genetic algorithms [82]. From the computer simulations, we observed that the 

performance of the GLS did not depend on probability specifications while the performance of 

the GA highly depended on those. 

 


