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5.4 GENETIC ALGORITHMS FOR FUZZY PARTITION OF 

 PATTERN SPACE 

In this section, we also introduce another genetic-algorithm-based method for adjusting the 

membership functions of antecedent fuzzy sets in fuzzy classification rules [36,37]. Both the 

number of fuzzy rules and the membership function of each antecedent fuzzy set are determined 

simultaneously. By this method, an appropriate fuzzy partition of a pattern space is 

automatically generated from numerical data. The consequent class of the fuzzy rule 

corresponding to each fuzzy subspace is determined according to the given training patterns in 

that fuzzy subspace [45]. We introduce a new coding method for fuzzy partitions of a pattern 

space. The coding method is a modified and extended version of Nomura’s coding method [86] 

that was proposed for function approximation problems. The differences between these two 

coding methods are as follows: 

(i) The types of fuzzy rules are different. We use fuzzy rules with class labels in the 

consequent part for pattern classification problems while Nomura et al.[86] employed 

simplified fuzzy rules with real numbers in the consequent part for function 

approximation problems. 

(ii) Our coding method can represent a “don’t care attribute” by utilizing the whole domain 

of that attribute as an antecedent fuzzy set. The “don’t care attribute” is represented by an 

interval with the full membership value in the whole domain. 

(iii) Our coding method uses not only triangular membership functions but also trapezoidal 

membership functions. 

(iv) We use different mutation probabilities for increasing and decreasing the number of 

membership functions. The probability of adding a new membership function is less than 

that of eliminating existing one. 

(v) We introduce a mutation operator for fine tuning of membership functions. The 

mutation slightly modifies the shape of a membership function by exchanging adjacent 

two bit values. 

The aim of the modifications in (ii) ~ (iv) is to reduce the number of membership functions for 

classification problems. On the other hand, the aim of introducing the new mutation in (v) is to 

improve the classification performance of fuzzy rules. While Nomura et al.[86] applied their 
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method to approximation problems of single-input functions (i.e., single-dimensional problems), 

we apply the method introduced in this section to classification problems with multiple 

attributes (i.e., multi-dimensional problems). We also combine the error-correction learning 

procedure [87,88] with the genetic algorithm as in the previous section. High performance of 

our method is illustrated by computer simulations on the iris classification problem [13]. 

 

5.4.1 Coding of fuzzy partition 
Nomura et al.[86] proposed the determination method of the fuzzy partition of an input space. 

There is a restriction on their definition of membership functions. Therefore we modify their 

definition. 

Let µ ji ix( )  be the membership function for the fuzzy set Aji  in the fuzzy rule Rj  in 

(5.1) ( j r= 1 2, ,..., , where r is the total number of generated fuzzy rules). Fig. 5.11 shows 

membership functions defined by Nomura’s method [86]. In Fig. 5.11, all the membership 

functions are triangular. The width of each membership function is defined by the length 

between the centers of neighboring membership functions. The arrangement of membership 

functions can be expressed in terms of a string L l l li lengthi= 1 2L  consisting of “0” and “1” 

where lengthi  means the prespecified length of the string Li  ( i n= 1 2, ,..., ). In the string Li , 

lk = 1 means that the k-th position in the string Li  is the center position of a membership 

function ( k lengthi= 1 2, ,..., ). A string of lengthi = 10 is shown in Fig. 5.11 where Nomura’s 

coding method is used. In Nomura’s coding method, there is the restriction that there must be 

the value “1” at both edge positions of the string Li  as shown in Fig. 5.11. Let riset  be the 

number of fuzzy sets on the i-th axis. This means that riset  is the number of 1’s in the string 

Li . Therefore the restriction in Nomura’s coding method leads to riset ≥ 2 . 
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Fig. 5.11  Membership functions defined by Nomura’s method. 
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Fig. 5.12  Membership functions defined by the extended coding method. 
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Fig. 5.13  Special membership function defined by Li  where riset = 1. 

 

 

In this section, we relax this restriction on the values at both edge positions of the string Li . 

That is, there can be “0” at both the edge positions. Fig. 5.12 shows example membership 

functions µ ji ix( )  defined by the extended coding method. In Fig. 5.12, the shape of the 

membership function on the right edge of this axis is trapezoidal since the value of l10  is 0. 

When the number of 1’s in the string Li  is less than two, we specially define just one 

membership function for the i-th axis as follows: 
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           (5.33) 

 

The shape of this fuzzy set is illustrated in Fig. 5.13. When this membership function is 
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assigned for a certain attribute, we can ignore that attribute because the membership value is 

always equal to 1 for all its possible attribute values. 

We use the fuzzy sets defined by the string Li  as the antecedent fuzzy sets Aji ’s for the 

i-th attribute. Since there are riset  fuzzy sets for each axis of the n-dimensional pattern space 

[ , ]0 1 n , we can generate r r rset set nset
1 2⋅ ⋅ ⋅...  fuzzy rules. Therefore the total number r of the 

fuzzy rules in (5.1) is r r r rset set nset= ⋅ ⋅ ⋅1 2 ... . The fuzzy classification system that has the 

r r rset set nset
1 2⋅ ⋅ ⋅...  fuzzy rules is denoted by a combined string as S L L Ln= 1 2L . In this 

section, the combined string S is treated as an individual in the genetic algorithm. Therefore, an 

individual S denotes a rule set (i.e., a classification system) for pattern classification problems. 

Hereafter, S and Li  are called a string and a substring, respectively. It should be noted that the 

consequent class C j  and the grade of certainty CFj  of the fuzzy rule Rj  in (5.1) 

corresponding to each fuzzy subspace are determined according to the given training patterns in 

that fuzzy subspace using the rule generation method in Subsection 5.2.1. Therefore the 

combined string S does not include the consequent part of each fuzzy rule. 

 

5.4.2 Genetic algorithm for adjusting membership functions 
Our problem is to find a compact fuzzy classification system S with high classification power. 

Therefore our problem has the same objectives as in (5.10) and (5.11): (i) to maximize the 

number of correctly classified training patterns by the fuzzy rules in S, and (ii) to minimize the 

number of the fuzzy rules in S. By combining these two objectives, the following problem is 

formulated in the same manner as in (5.12): 

 

  Maximize w NCP S w SNCP S⋅ − ⋅( ) | | ,          (5.34) 

 

where wNCP  and wS  are non-negative constant weights assigned to the two objectives 

NCP S( ) and | |S , respectively. As we have already explained in the last subsection, | |S  is 

calculated from the combined string S L L Ln= 1 2 ...  as | | ...S r r rset set nset= ⋅ ⋅ ⋅1 2  where riset  is 

the number of fuzzy sets specified by Li . A similar problem was formulated for function 

approximations in Fukuda et al.[18]. 

The value of the objective function in (5.34) is used as the fitness value of each individual. 
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That is, the fitness function f S( )  is defined as 

 

  f S w NCP S w S( ) ( )= ⋅ − ⋅NCP S .           (5.35) 

 

In order to maximize the fitness function defined by (5.35), we construct the following 

genetic algorithm where t is the number of generations and tmax  is the maximum number of 

generations that is prespecified to terminate the algorithm. 

 

Step 0 (Initialization): Let t:= 0 . Generate an initial population containing N pop  strings (i.e., 

N pop  individuals) where N pop  is the number of strings in each population. In this 

operation, each string S is generated by assigning “1” with the probability P1  and “0” 

with the probability P0  to each bit in S where P P1 0 1+ = . The fitness value of each 

string S is calculated by (5.35). 

Step 1 (Selection): Let Ψt  be the population in the t-th generation. Select N pop /2 pairs of 

strings from the current population Ψt . The selection probability P Ss( )  of a string S in 

the population Ψt  is specified as 
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where 

  f f S St tmin ( ) min{ ( ) }Ψ Ψ= ′ ′ ∈ | .           (5.37) 

 

Step 2 (Crossover): For each of the selected pairs, randomly choose substrings Li ’s from one 

string. Each substring Li  is chosen with the probability of 0.5. Interchange the substring 

Li  between the selected pair. Fig. 5.14 shows an example of this crossover operator.  

 Step 3 (Mutation): To each bit value of the generated strings by the crossover operator, apply 

the following two mutation operations:  

Step 3.1 : Exchange adjacent bit values in Li  with the probability Pswap .  

Step 3.2 : Reverse the value of each bit with the probabilities Preverse ( )1 0→  and  
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Fig. 5.14  Crossover operator. 
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Fig. 5.15  Mutation operators. 

 

Preverse (0 )→ 1 : 

 
l l Pk k= → = →1 0 1 0   with the probability ( )reverse , 

l l Pk k= → = →0 1 1   with the probability (0 )reverse . 

 
These mutation operators are illustrated in Fig. 5.15. 

Step 4 (Elitist strategy): Randomly remove one string from the N pop  strings generated by the 

above genetic operations, and add the string with the maximum fitness value in the 

previous population to the current one. 

Step 5 (Termination test): Let t t:= + 1. If t t= max , stop the algorithm. Otherwise, return to 

Step 1.  



- 109 - 

The characteristics of the proposed genetic algorithm are as follows. 
 

(i) The crossover operator in Step 2 interchanges substrings Li ’s between the selected pair 

of strings. This means that our crossover is a multi-point crossover with crossover points 

between substrings. Because crossover points are not chosen within substrings, the 

membership functions of antecedent fuzzy sets are not destroyed by the crossover 

operator. It is possible to implement an alternative crossover operation by randomly 

selecting crossover points within substrings as well as between substrings. In this case, 

the membership functions are destroyed by the crossover operator. 

(ii) The mutation operation in Step 3.1 is for fine tuning of membership functions. The 

shape of a membership function is slightly modified by this mutation. 

(iii) The mutation operation in Step 3.2 is to generate a new membership function or to 

eliminate existing one. By assigning a larger value to the mutation from lk = 1 to 

lk = 0  (i.e., Preverse ( )1 0→ > Preverse (0 )→ 1 ), we can reduce the number of fuzzy rules 

in S. 
 
5.4.3 Computer simulations 

In this section, we apply the genetic algorithms with the extended coding method to a 

two-dimensional pattern classification problem and the well-known iris data [13] in the 

four-dimensional pattern space. 
 
A. A two-dimensional pattern classification problem 

First let us consider the two-class classification problem in Fig. 5.16. For this classification 

problem, a fine fuzzy partition is required for the left half of the pattern space but a coarse 

fuzzy partition is appropriate for the right half. The genetic algorithm with the extended coding 

method described in the last section was applied to the classification problem with the 

following parameter specifications. 
 

Length of each substring Li  of the string t t= max : lengthi = 21, 

Weights in the fitness function: wNCP = 10 , wS = 1, 

Population size: Npop = 10 , 

Assigning probabilities of “1” and “0” in the initial population: P1 0 5= . , P0 05= . , 
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This figure is inserted by cut-and-paste. 

 

 

 

Fig. 5.16  A two-class classification problem in the two-dimensional pattern space [ , ]0 1 2 . 

 
 

Crossover probability: 1.00, 

Mutation probabilities: Pswap = 01. , Preverse ( ) .1 0 01→ = , and Preverse ( ) .0 1 0 05→ = , 

Stopping condition: tmax = 500  (i.e., 500 generations). 

 
For examining the effect of the coding restriction of l1 1=  and llengthi = 1, we also applied 

the genetic algorithm with Nomura’s coding method. Fig. 5.17 (a) shows the fuzzy partition and 

the classification boundary between two classes obtained by the genetic algorithms with 

Nomura’s coding method. Fig. 5.17 (b) shows those obtained by the extended coding method. 

The hatched areas, the dotted areas, and the painted areas in Fig. 5.17 indicate that the 

consequents of the corresponding fuzzy classification rules are Class 1, Class 2 and φ , 

respectively. All the given patterns were correctly classified by each method in Fig. 5.17. The 

genetic algorithm with Nomura’s coding method generated sixteen fuzzy rules, while the 

algorithm with the extended coding method found eight fuzzy rules. From Fig. 5.17 (b), we 

observe that the extension to trapezoidal membership functions reduced the number of fuzzy 
rules effectively. The genetic algorithm with the extended coding method could find the 

appropriate fuzzy partition for this problem. 

 

B. Iris classification problem 

We also applied the genetic algorithm with the extended coding method to the well-known 

iris data [13]. The same preprocessing procedure in Subsection 5.3.3 was applied to the data. In 

the coding method, the length of each substring Li  (i.e., l l Pk k=→= →10 10   with the probability ()reverse ) should be prespecified. 

When 
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 (a) Nomura’s coding ( riset ≥ 2 )  (b) The extended coding ( riset ≥ 1) 

Fig. 5.17  The fuzzy partitions and classification boundaries. 

 
 
a large value is used for lengthi , the genetic algorithm can adjust membership functions 

elaborately, but its execution requires long computation time. On the contrary, if a small value 

is used for lengthi , the computation time can be reduced but the tuning of membership 

functions is not fine. In order to examine the effect of the specifications of lengthi  on the 

performance of the genetic algorithm, we employed the following five values of lengthi  as 

follows: 

Length of each substring Li  of the string S L L L L= 1 2 3 4 : lengthi = 6 11 16 21 31, , , , .  

In order to generate almost the same number of initial fuzzy rules in these five trials, we 

specified the assigning probabilities of “1” and “0” in the initial population as P lengthi1 4= /  

and P P0 11= − . This means that each substring has four positions with “1” on the average. 

Therefore, each string S has 44  fuzzy rules on the average in the initial population. 

In the same manner as in the last subsection, we applied the genetic algorithm to the iris 

classification problem. We employed the same parameter specifications of the genetic 

algorithm except for the length of each Li . All the 150 patterns of the iris classification 

problem were used for constructing a fuzzy-rule-based classification system by the genetic 

algorithm. Table 5.2 shows the classification rate, the number of fuzzy rules and CPU time. 

CPU time in the fourth column were required for the genetic algorithm with each value of 
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lengthi . The classification rate was calculated for all the training patterns. From Table 5.2, we 

can see that large values of lengthi  deteriorated the ability of the genetic algorithm to generate 

good fuzzy classification rules. This deterioration may be explained as follows. Because the iris 

classification problem is a four-dimensional problem, the length of each string S is 4 × lengthi . 

Therefore the total number of possible solutions (i.e., possible combinations of “0” and “1” for 

S) is 24×lengthi . When lengthi  increases, 24×lengthi  exponentially increases. This 

exponential increase of the search space may deteriorate the ability of the genetic algorithm to 

generate good fuzzy classification rules. Of course, if we implement our genetic algorithm 

using a large number of population (e.g., 1000 strings) and a large number of generations (e.g., 

10,000 generations), we may have a elaborated fuzzy partition by a large number of lengthi . 

In order to find a rule set with high classification power, we performed another computer 

simulation with different weights in the fitness function and a different stopping condition. We 

defined the weights as wNCP = 1000 , wS = 1, and tmax = 1000 . The length of each substring 

Li  was specified as lengthi = 21. By this computer simulation, we got 56 fuzzy rules that 

correctly classified all the 150 training patterns. Fig. 5.18 shows the membership functions for 

each axis obtained by the genetic algorithm. We can see from Fig. 5.18 that the attribute x1  

can be negligible. 
 
5.4.4 Hybrid genetic algorithm 

The learning procedure of the grade of certainty CFj  [87,88] is combined with our genetic 

algorithm in the same manner as in Subsection 5.3.3. Since the learning procedure is applicable 

to any rule set S, we apply it to all the rule sets (i.e., all the strings) generated by the crossover 

and mutation operators in the genetic algorithm. That is, the following procedure is inserted 

between Step 4 and Step 5 of the genetic algorithm described in Subsection 5.4.2: 
 

Table 5.2  Performance of genetic algorithms with various lengthi ’s. 

 
lengthi  Classification rate (%) Number of rules in S CPU time (sec.) 

6 97.3 6 278.2 
11 98.0 12 755.9 
16 97.3 9 1776.9 
21 97.3 18 5524.3 
31 96.0 40 17458.0 
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Fig. 5.18  Membership functions for each attribute. 

 
 

Table 5.3  Performance of the hybrid genetic algorithm with various lengthi ’s. 

 
lengthi  Classification rate (%) Number of rules in S CPU time (sec.) 

6 100.0 24 2649.0 
11 98.7 12 6588.2 

 

 

[Learning procedure of the grade of certainty] 

Step 4.5 (Learning): Apply the learning procedure to each rule set S generated by the 

crossover and mutation operators. The learning procedure for each rule set S is 

iterated Nlearning  times for all the training patterns. 

 
The hybrid algorithm was applied to the iris data using the same parameter specifications as in 

the genetic algorithm in Subsection 5.4.3 except for the length of each substring Li  (i.e., 

lengthi ). We employed the hybrid genetic algorithms with lengthi = 6 11, . Table 5.3 shows the 

results of computer simulations with wNCP = 10 , wS = 1, and N learning = 10 . The learning 

algorithm improved the classification rate of the generated fuzzy classification rules while it 

required much longer computation time. Because of heavy computation load of the hybrid 

algorithm, large values of lengthi  are inappropriate. 
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5.5 SUMMARY 

In this chapter, we introduced two genetic-algorithm-based approaches for constructing fuzzy 

classification systems. We first applied a genetic-algorithm-based method to the construction of 

a fuzzy classification system with linguistic rules. The method was illustrated by computer 

simulations on a numerical example and the well-known iris data. A hybrid approach that 

incorporates a learning procedure [87,88] into the genetic algorithm was also designed in order 

to improve the performance of fuzzy classification systems. It was demonstrated by computer 

simulations on the iris data that the hybrid algorithm can find a small number of linguistic rules 

with high classification power. 

We also applied another genetic-algorithm-based method for adjusting the membership 

functions of antecedent fuzzy sets in fuzzy classification rules. Both the number of fuzzy rules 

and the membership function of each antecedent fuzzy set were determined simultaneously by 

this method. By this method, an appropriate fuzzy partition of a pattern space is automatically 

generated from numerical data. The consequent class of the fuzzy rule corresponding to each 

fuzzy subspace is determined according to the given training patterns in that fuzzy subspace 

[45]. We introduced a new coding method of fuzzy partitions of a pattern space. The new 

coding method was a modified and extended version of Nomura’s coding method [86] that was 

proposed for function approximation problems. We also combined the error-correction learning 

procedure [87,88] with the genetic algorithm. High performance of our method was illustrated 

by computer simulations on the iris classification problem [13]. 

 


