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This paper presents a coevolutionary architecture for distributed op-
timization of complex coupled systems. This architecture is inspired by
the phenomena of coevolutionary adaptation occurring in ecological sys-
tems. The focus of this research is to develop flexible design architectures
for addressing the organizational and computational challenges involved in
optimization of large-scale multidisciplinary systems. In the proposed de-
sign architecture, the optimization procedure is modeled as the process of
coadaptation between sympatric species in an ecosystem. Each species is
entrusted with the task of improving sub-domain specific objectives and the
satisfaction of sub-domain constraints. Coupling compatibility constraints
are accommodated via implicit generalized Jacobi iteration, which enables
the application of the proposed architecture to systems with arbitrary cou-
pling bandwidth between the disciplines, without an increase in the prob-
lem size. A domain decomposition approach is presented for distributed
structural optimization to construct a class of test problems. Numerical
studies are presented to demonstrate that convergence to an optimal solu-
tion satisfying the sub-domain and coupling compatibility constraints can
be readily achieved.
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1. INTRODUCTION

Multidisciplinary design optimization (MDO) is an enabling methodology for the
design of complex systems, the physics of which involve couplings between various
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interacting disciplines/phenomena. The underlying focus of MDO methodology is
to develop formal procedures for exploiting the synergistic effects of the coupling in
the problem physics at every stage of the design process. One advantage offered by
this methodology is the achievement of calendar time compression via concurrency
in the product design and development cycle. It also allows for tradeoff studies be-
tween performance, manufacturing, supportability, economics, and life cycle issues
to be conducted at all stages of the design process. Hence, the adoption of MDO
methodology is not only expected to lead to better designs, but also the establish-
ment of a more physically meaningful design practice as compared to the traditional
sequential approach in which the synergistic effects of coupling are ignored.

A recent review of the state of the art in MDO has been presented by Sobieszczanski-
Sobieski and Haftka.! It was noted in this review that “organizational challenges”
and “computational cost” are generally perceived as the major obstacles to the
application of MDO methodology in design practice.

A good deal of earlier research work in MDO has focused on system optimiza-
tion approaches, also known as multidisciplinary feasible methods; see, for example,
reference.? These approaches require a suite of highly integrated disciplinary anal-
ysis tools connected to a single optimizer. The major disadvantages of this line of
approach include : (1) the high costs involved in software integration and main-
tenance of the integrated design system, (2) specialist disciplinary groups do not
have any decision making power in the design process, and (3) the increase in
computational cost and potential convergence problems due to the use of a single
optimizer to handle all the design variables. Another important factor is the mas-
sive computational cost incurred in such MDO approaches due to the requirement
of iterations between the disciplines to arrive at a multidisciplinary feasible solution
at each function evaluation.

These drawbacks to system optimization approaches, coupled with the ever in-
creasing requirement of addressing the organizational and computational challenges
in MDO have motivated the development of distributed optimization architectures.
Example architectures on which research has recently been pursued with particular
vigor are concurrent subspace optimization (CSSO)?* and collaborative optimiza-
tion (CO).5~7 These architectures enable the solution of large-scale MDO problems
in a distributed fashion and retain the advantages of division of labor.

Such multilevel optimization approaches® to MDO in general involve the use of
a system level optimizer, which guides a number of disciplinary optimizers to im-
prove the overall system performance, satisfy the disciplinary constraints, and en-
sure multidisciplinary feasibility of the converged solution. Since multidisciplinary
feasibility need not be enforced at each iteration, this approach circumvents the
problem of “disciplinary sequencing”, in which some of the disciplines have to wait
for data from the other disciplines before carrying out their design studies. Hence,
distributed optimization allows for the possibility of tackling MDO problems in a
concurrent fashion (thereby achieving calendar-time compression), and also retains
the autonomy of disciplinary specialists in the design process. The latter advan-
tage is widely acknowledged to be a crucial factor in the acceptance of formal MDO
methods by industry. Distributed MDO methods are also well suited to the hier-



archical organizational structure and heterogeneous computing platforms found in
many large industries.?

Following the discussion presented in Alexandrov and Kodiyalam?, MDO meth-
ods can be broadly classified on the basis of the design architecture or formulation,
the optimization algorithms used for design space search (DSS), methods used for
constructing approximation models to accelerate DSS, and the framework employed
for managing variable-fidelity analysis models. The area of MDO architectures is
closely related to the fields of system decomposition and optimization. The research
work reported here focuses on the first two points, i.e., the MDO architecture and
the optimization algorithm.

Recently, stochastic nongradient optimization techniques such as evolutionary
algorithms (EAs) have been successfully applied to some nonconvex design opti-
mization problems; see, for example, references.!®~12 Even though this class of
optimization techniques offer many advantages as compared to gradient search, the
number of function evaluations required to converge to an optimal solution is con-
sidered prohibitive for many problems. This problem of high computational cost
has led to very few applications of EAs to MDO using high-fidelity analysis models.
In reference!!, a feedforward neural network was first constructed to map the de-
sign space before the optimization studies, with inevitable restrictions on the scope
and fidelity of the final optimum. Hence, when the difficulties of high computa-
tional cost are coupled with nonconvex design spaces, standard EA approaches are
impractical and more advanced strategies are required. The development of com-
putational frameworks for construction and management of approximation models
to accelerate EAs has been the focus of some recent research; see, for example,
references.!®1 It is expected that the computational cost of using EAs could be
significantly reduced by using such DSS strategies.

As a consequence of the high computational cost involved in using EAs for DSS,
its application to multilevel optimization becomes computationally prohibitive. A
genetic algorithm (GA) approach based on predator-prey coadaptation was applied
to bilevel optimization problems by Venter and Haftka.'® It was shown that this
approach could lead to savings in the computational cost. The decomposition tech-
nique proposed by Lee and Hajela'! could also be interpreted as a coevolutionary
search strategy. These techniques fall under the broad banner of coevolutionary
computation. An excellent description of the theoretical aspects of coevolutionary
computation and results for some application areas can be found in the dissertation
of Potter.16

This paper introduces the paradigm of coevolutionary adaptation in the context
of distributed optimization of complex coupled systems. Inspired by this paradigm,
it is shown that the design process can be modeled as the process of coadaptation
between sympatric species in an ecosystem, i.e., species which live in the same place,
rather than being geographically isolated. Each discipline is modeled as a species
which collaborates with the other species to improve the discipline specific objec-
tives and satisfy local constraints. Here, in order to allow applicability to systems
with arbitrary coupling bandwidth, the coupling variables are not explicitly repre-
sented as design variables. The implicit, generalized Jacobi iteration strategy used
in the present research allows for the satisfaction of the coupling compatibility con-



straints at the optima under rather mild assumptions. Further, it is assumed that
the design variables are decomposed into disjoint sets, i.e., the disciplinary species
are responsible for evolving independent sets of design variables. A Coevolutionary
Genetic Algorithm (CGA) is then used to model the patterns of interaction between
the various species.

A domain decomposition scheme is employed to construct test problems for study-
ing the performance of the proposed coevolutionary MDO (CMDO) architecture.
Results are presented for structural optimization problems, wherein the concept of
substructuring can be used to reformulate the problem in terms of coupled systems.
It is shown that the CMDO architecture successfully converges to an optimal solu-
tion satisfying the disciplinary as well as coupling compatibility constraints. The
effects of coupling bandwidth and increase in problem size on the performance of
the CMDO architecture are also examined.

2. THE PRESENT APPROACH

The main focus of the research work reported here is the development of flexible
MDO architectures, with the specific aims of - (1) disciplinary autonomy in both
analysis as well as optimization, and (2) applicability to systems with arbitrary
coupling bandwidth without an increase in the problem size. The features of a
canonical CGA are first described in order to delineate the fundamentals under-
pinning the CMDO architecture. In the subsequent sections, the issues involved in
application of this coevolutionary search paradigm to distributed optimization of
coupled systems are addressed.

2.1. Coevolutionary Genetic Algorithms (CGAs)

A CGA models an ecosystem consisting of two or more sympatric species having
an ecological relationship of mutualism. Consider the problem involving maximiza-
tion of f(x), which is a function of n variables. Potter and Dejong!” used an
approach in which the problem is decomposed into n species - one species for each
variable. Hence, each species contain a population of alternative values for each
variable. Collaboration between the species involves selection of representative val-
ues of each variable from all the other species and combining them into a vector
which is then used to evaluate f(z). An individual in a species is rewarded based
on how well it maximizes the function within the context of the variable values
selected from the other species. This procedure is analogous to the univariate opti-
mization algorithm wherein 1-D search is carried out using only one free variable.
Note here that it is also possible to decompose the original problem variables into
several blocks, with each species evolving a block rather than a single variable; see,
for example, reference.!®

The steps involved in a canonical CGA (see also Figure 1) may hence be sum-
marized as:

Step 1 : Initialize a population of individuals for each species randomly or based
on some previous design knowledge.

Step 2 : Evaluate the fitness of the individuals in each species. Fitness evaluation
in a CGA involves the use of the following algorithm:
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FIG. 1. Flow chart of Coevolution of a Species within a Collaborative Process.

Choose representatives from all other species.

FOR each individual 7 in the species being evaluated DO

e Form collaboration between individual i and the (fixed) representatives from
other species.

e Evaluate the fitness of the collaborative design by applying it to the target
problem, and assign it to the individual 3.

ENDDO

Step 3 : If the termination criteria is not met, then apply a canonical GA involv-
ing the operators of reproduction and genetic recombination to arrive at a new
population for each species. Go to Step 2.

Potter and Dejong!” showed that a CGA approach to function optimization could
lead to faster convergence as compared to a conventional GA, for low to moderate
levels of variable interdependencies (also referred to as epistasist in the GA liter-
ature). This can be primarily attributed to the attendant reduction in the active
search space due to coevolution of each variable concurrently, e.g., for the function
optimization problem described earlier the original search space of size (2F)" has

#In the context of function optimization, epistasis can be defined as the extent to which the
contribution of one variable to the fitness depends on the values of the other variables.
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FIG. 2. Data Flow Diagram for a Typical MDO Problem.

been reduced to a series of n constrained search spaces, each of size 2¥, where k
is the number of bits used to represent each variable. The underlying premise of
the CGA approach is that, when the optimization problem under consideration
has a moderate degree of epistasis, faster progress in the search can be made by
decomposing the design space.

In CGA-based search, the term generation is used to refer to a cycle involving
selection, recombination and fitness evaluation for a single species, and the term
ecosystem generation refers to an evolutionary cycle through all the species being
coevolved. The reader is referred to Potter'® for a more detailed description of the
theoretical aspects of CGAs. Further details, including applications of coevolution-
ary algorithms can be found in the literature.!318-20

2.2. Analysis of Coupled Systems

To illustrate the design architecture developed here, consider a coupled system
involving two disciplines (or subsystems) shown in Figure 2. The coupling shown
here is typical of aerodynamics-structures interaction encountered in aeroelastic
analysis of flexible aircraft wings. For this problem, x denotes the vector of multi-
disciplinary design variables (i.e., variables which are common to both disciplines).
x; and x5 are the vectors of disciplinary design variables corresponding to sub-
system 1 and 2, respectively. fi; and f are the objective functions corresponding
to discipline 1 and 2, respectively. g1 and g» are the constraint functions corre-
sponding to discipline 1 and 2, respectively. y12 is the vector of coupling variables
computed in discipline 1 which is needed for analysis of subsystem 2. Similarly, yo;
denotes the vector of coupling variables computed in discipline 2 which is required
for analysis of subsystem 1.

Note here that arriving at a multidisciplinary feasible solution for given values of
X1, X2 and x, would involve iterating between both the disciplines using an initial
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FIG. 3. Distributed Multidisciplinary Analysis.

guess for either yq5 or yo;. This sequential iterative scheme can be interpreted as
a Generalized Gauss-Seidel (GGS) approach; see Arian?! for a detailed exposition.

The state equations for the two disciplines can be mathematically expressed as :
A].(X,Xl,lll,ygl(llQ)) =0, (1)

and

A2(x, %2, uz,y12(u1)) = 0, (2)
where u; and uy are the state variables for subsystem 1 and 2, respectively.

In order to eliminate the couplings between the disciplinary analysis modules,
the original system can be decomposed as shown in Figure 3. For given values
of x1, X2, and x, multidisciplinary analysis now requires an initial guess for both
yi2 and yo2;. Iterations involving aerodynamic and structural analysis converge
to a multidisciplinary feasible solution when the coupling compatibility constraints
are satisfied, i.e., when ||y12 — ¥i2|| = 0 and ||y21 — y3;|| = 0. Here y12 and
yo1 are the values of the coupling variables used at the current iteration, and y7,
and y3; are the new values of coupling variables after disciplinary analysis using
the current values of y2; and yi2, respectively. This decomposition of the original
coupled system makes it possible to concurrently analyze a design and thus perform
distributed optimization. As discussed in Arian?!, this parallel iterative scheme for
multidisciplinary analysis can be interpreted as a Generalized Jacobi (GJ) approach.
Further, it was also shown that the GJ scheme will take more iterations than the
GGS scheme to converge.



2.3. Some Issues in Coevolutionary MDO

The issues which need to be addressed in order to apply a coevolutionary search
strategy to optimization of this coupled system are discussed next.

[A] Problem Decomposition : This issue is mainly concerned with how the coupled
system should be decomposed into various species. A natural procedure for decom-
position would be to divide the design variables into groups on disciplinary lines.
The chromosome of each species consists of the variables it is allowed to control.
In general, it may be preferable to decompose the multidisciplinary design variable
vector x into completely disjoint sets to circumvent the difficulty of arriving at a
consensus on the independently evolved multidisciplinary variables.

[B] Choice of Representative Individuals : As mentioned earlier in the description
of CGAs, the species interact with each other via representative individuals. The
evolution of each species is thus constantly driven by evolutionary changes in the
species it interacts with. In the genetics literature, this is referred to as the Red
Queen hypothesis, wherein each species must constantly adapt just to remain in
parity with the others. Hence, a fundamental issue in coevolutionary computation
is how to choose the representative individuals from each species.

In reference!®, two strategies were suggested for choosing representative individ-
uals. The first strategy was to select the individual with the highest fitness in a
species as its sole representative. In the second strategy, two representative indi-
viduals were chosen. The first representative was the individual with highest fitness
while the second representative was chosen randomly. Both the representatives are
used for fitness evaluations, and the maximum fitness of the two possible collabo-
rations is assigned to the individual under consideration. Notice that this will lead
to the requirement of 2™~! fitness evaluations for each individual in a discipline,
where m is the total number of species. It was found via numerical experiments
that the first strategy, although superior in terms of convergence speed, may not
be robust for problems with high epistasis. In contrast, the second strategy is more
robust at the expense of slower convergence. Of course the number of representa-
tives need not be the same for each species nor remain fixed during optimization.
However, the computational cost of fitness evaluation grows with increase in the
number of representatives, since a domain specific analysis must be carried out for
each combination of collaborating representatives considered.

A comparison study of strategies for choosing representative individuals in coevo-
lutionary computation can be found in Bull.?? In the present research, the individual
with the highest fitness in a species is chosen as its representative.

[C] Coupling Variables : A fundamental issue in distributed optimization of cou-
pled systems is how to ensure multidisciplinary feasibility of the optimal solution.
Existing MDO architectures such as CSSO and CO explicitly treat the coupling
variables as auxiliary design variables. The major disadvantage of this strategy is
that the problem size grows significantly with increase in the coupling bandwidth.
In the present research, the aim is to circumvent this fundamental difficulty by
treating the coupling variables implicitly in the optimization process. Details of
the strategy used for handling the coupling variables are described in subsequent
sections. In contrast to other distributed MDO formulations, a major advantage



of the the present approach is that it can therefore tackle problems with arbitrary
coupling bandwidth without an attendant increase in the problem size.

[D] Fitness Evaluation : The fitness of the disciplinary species is defined as a
function of the respective disciplinary objectives and constraints. In the present
research, a penalty function approach is used for handling constraints. Alterna-
tive constraint handling strategies for evolutionary algorithms are available in the
literature. %24

3. THE COEVOLUTIONARY MDO ARCHITECTURE

Based on the earlier discussion, various MDO architectures adopting different
considerations for tackling the coupling compatibility constraints and problem de-
composition characteristics can be developed within the framework of the coevolu-
tionary genetic adaptation paradigm. However, to ensure applicability to systems
with broad coupling bandwidth, here the coupling variables are not explicitly con-
sidered as design variables. The coupling variables are instead initialized to values
computed from system analysis of a baseline design. In the subsequent stages of
the coadaptation procedure, the disciplinary species exchange values of the coupling
variables computed during the disciplinary analysis of their respective representa-
tive individuals. This implicit iteration scheme reduces the extent of violation of
the coupling compatibility constraints as the coevolution reaches stasis.

Further, in the architecture developed here, the design variables are decomposed
into disjoint sets, and hence no variables are shared between the disciplines. The
chromosome of the disciplinary species are hence composed of independent sets of
variables. The chromosome representation and fitness evaluation details for both
the species are summarized below. Here, the variables x! and x2 are the disjoint
sets formed from decomposing the vector of multidisciplinary variables x, i.e., all
the elements of x are placed in x! or x2.

Disciplinary Species 1

Genotype: [x!, x1], i.e., the first part of the multidisciplinary design vector and

the variables local to discipline 1.

Fitness Fvaluation: Computation of the objective and constraint functions for
discipline 1 (f; and g1) requires the values of x!, x;, x?, and y2;. The values of x!
and x; are readily available since they are directly controlled by species 1. In the
first ecosystem generation, the value of y»; is initialized either from system analysis
of a baseline design or randomly. Similarly, x2 could be initialized randomly in the
first ecosystem generation, or set to the value corresponding to a baseline design.
In the subsequent ecosystem generations, the values of ys; and x? provided by
discipline 2 for their representative individual are used.

Disciplinary Species 2

Genotype: [x2, x3], i.e, the second part of the multidisciplinary design vector and
the discipline specific variables.

Fitness Evaluation: To compute the objective and constraint functions for dis-
cipline 2 (f2 and g»), the values of x2, x5, x!, and yi2 are required. The values
of x? and x» are readily available. The value of y;2 computed via system analysis



of a baseline design (or randomly initialized values) is used in the first ecosystem
generation. The subset of multidisciplinary variables controlled by discipline 1, i.e.,
x! is either initialized randomly or set to the baseline values. In the subsequent
ecosystem generations, the values of y;» and x!' provided by discipline 1 for their

representative individual are used.

It can be observed that the implicit procedure used here to ensure satisfaction
of the interdisciplinary coupling compatibility constraints turns out to be similar
to the GJ scheme discussed earlier for distributed multidisciplinary analysis. It is
known that the GJ scheme may fail to converge for some problems; see, for ex-
ample, Arian.?! Hence, it becomes important to examine when the the implicit
procedure used in the CMDO architecture may fail. The approach used here for
satisfying the coupling constraints may be interpreted as a randomly restarted gen-
eralized Jacobi iteration scheme. The term ‘random’ is used here to indicate that
the coupling variables y12 and y2; are reset based on the progress of the coevolution
procedure, i.e. they may change radically as the representatives change. However,
as the coevolutionary process reaches stasis (i.e., as x1, x2 and x converges), the
implicit procedure reduces to the conventional GJ scheme. For the example prob-
lems considered in this paper, it is observed that an optimal solution satisfying the
interdisciplinary compatibility constraints can be readily found. However, for prob-
lems where difficulties arise in satisfying the compatibility constraints, alternative
iterative schemes (such as successive over relaxation or Newton-based algorithms?®)
may have to be employed in the later stages of the coevolutionary search.

3.1. Data Coordination, Surrogate Modeling, Decomposition, and
Other Issues

A common blackboard model for the coupling variables is used for transferring
data between the disciplines. The disciplinary species post the values of the coupling
variables and multidisciplinary design variables corresponding to their representa-
tive individuals on this blackboard during the coadaptation procedure. It is to
be noted here that, since EAs constitute a global search paradigm, high quality
space-filling computational data can potentially be obtained as a by-product of the
coevolution procedure. Such data can be used for constructing simulation meta-
models to accelerate disciplinary DSS and archive the design space - see reference!*
for an approach to construction and management of metamodels in evolutionary
optimization algorithms. A more detailed discussion of problem solving environ-
ments for multidisciplinary design which bring together such capabilities has been
presented in Keane and Nair.26

It is also of interest to examine the possibility of using the information generated
during the coevolutionary adaptation procedure to make decisions on how the set
of multidisciplinary design variables should be decomposed. This would allow for
the possibility of the optimal problem decomposition structure to emerge rather
than be fixed a priori by the designer. However, it is not clear at this stage of
the research how to develop such an algorithm. An alternative procedure would be
to decompose the multidisciplinary variables into disjoint sets by computing their
main effects for the disciplinary objectives via orthogonal array-based experimental
designs before starting the optimization.



Since the various species can interact via a single representative individual, the
optimization algorithms which may be used within the CMDO architecture are not
restricted to evolutionary methods alone. In fact, arbitrary optimization formula-
tions/algorithms may be used within the disciplines.

The CMDO architecture allows two avenues for massive parallelization of the op-
timization process. Firstly, the evolution of the disciplinary species may be carried
out concurrently. Further, there also exists the possibility of computing the fitness
of the individuals in each species concurrently.

4. DISTRIBUTED STRUCTURAL OPTIMIZATION VIA
SUBSTRUCTURING

To illustrate the application of some of these ideas in practice, a distributed struc-
tural optimization formulation based on domain decomposition is presented in this
section. Consider the finite element mesh of a general structural system which is
decomposed into two non-overlapping substructures by a solid line, as shown in Fig-
ure 4. The solid line passes through nodes which lie in substructure 1. The dashed
line is drawn through the nodes in substructure 2 which are directly connected to
these nodes in substructure 1. In Figure 4, N1 and N2 are the total number of
degrees of freedom (dof) in substructure 1 and substructure 2, respectively. x; and
x5 are the vectors of local design variables corresponding to substructure 1 and sub-
structure 2, respectively (e.g., geometry variables, material properties, etc). Note
that x; and x5 are disjoint sets. The variables corresponding to the interface region
between the two substructures are denoted by x, e.g., x might correspond to the
area and geometry of the elements in the interface region.

The equations for static equilibrium of the structure in Figure 4 can be written

in partitioned form as
ERAIARH
Ko Ka2 d; £, ]’

where K11 € RNIXNI, Ko € RNIXNQ, Ky € RNZXNI, and Kqs € RY2*N2 are the
submatrices of the partitioned global stiffness matrix, d; € RV and d, € R™V? are
the displacements corresponding to the nodes of each substructure, and f; € RV
and f, € R™? are the external forces acting at the substructure degrees of freedom.

Equation (3) can be rewritten as two simultaneous matrix equations of the form

Klldl = fl - K12d2 (4)

K22d2 = f2 - K21d1 (5)

The second term on the right hand side of the above equations indicates a coupling
between the displacements in the two substructures. In general, K;5 and Ko are
highly sparse matrices. Hence, only a few components of d; and ds are required to
compute the coupling terms.
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The nature of the coupling between equations (4-5) is depicted more clearly by
rewriting them as

Al(dl,Xl,X, dzl(dz)) = 0 : Kll(Xl,X)dl = f1 — K12(X)d21 (d2), (6)
and
Al(dz,Xz,X, d12(d1)) = O M K22(X2,X)d2 = fz — K21 (X)d12 (dl); (7)

where A1l and A2 symbolically denote the analysis equations to be solved for sub-
structure 1 and 2, respectively. Solution of the analysis equations A1 and A2 lead
to the displacement vectors d; and ds, respectively. ds; denotes the vector of dis-
placements at those nodes in substructure 2, which are directly connected to the
nodes in substructure 1, i.e., the nodes which lie on the dashed line in Figure 4.
Similarly, d;» is the displacement vector at the nodes in substructure 1 which are
directly connected to the nodes in substructure 2, i.e, the nodes which lie on the
solid line in Figure 4. The coupling variables in equations (6-7) are da; and dj».
The coupling bandwidth resulting from the substructuring strategy would depend
on the total number of dof corresponding to the elements in the interface region.

For given values of x1, X2, and x, iterating between equations (6) and (7) from
an initial guess for either ds; or di5 leads to a solution for the global displacement
vector d which satisfies the physics of the problem. This implies satisfaction of
force equilibrium at the interface region between the two substructures.
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In the context of distributed analysis using the decomposition strategy discussed
earlier (see Figure 3), the coupling compatibility constraints can be written as

[[di2 — dis|| + [|d21 — d3;]| =0, (8)

where di5 and d»; are the values of the coupling displacements at the current
iteration, and dj, and d%, are the new values of the coupling variables after solving
A1l and A2, respectively.

The domain decomposition approach used here enables the application of the
CMDO architecture to distributed structural optimization. In particular, for the
structure in Figure 4, the optimization problem can be posed as a simulated MDO
problem with two coupled disciplines. The optimization procedure in this setting is
shown in Figure 5. In the decomposition strategy chosen here, each species handle
disjoint sets of design variables. This is achieved by decomposing the variables
corresponding to the interface region (x) into two disjoint sets x! and x2. The
first species controls the variables x; and x!, while the second species controls the
variables x, and x2. The mesh corresponding to the interface region is modeled
by both substructures, so as to enable it to compute the submatrices Ki» and Ko;
independently.

In the first step of the distributed optimization procedure, the coupling variables
ds; and dj, are either initialized using the results of system analysis of a base-
line design, or randomly. Similarly, the design variable vector x common to both
substructures can also be initialized. Analysis of the first subsystem involves the



solution of equation (6) for the substructure displacement vector d;. The analysis
results can then be used to compute the objective and constraint functions of in-
terest within substructure 1. Similarly, the second subsystem analysis involves the
solution of equation (7) for the displacement vector ds. These results are used in
conjunction with the current value of dis to compute the objective and constraint
functions for substructure 2.

In the subsequent ecosystem generations, each species posts the values of the cou-
pling variables corresponding to its representative individual on a common black-
board. The values of x! and x? controlled by the two species independently are
also posted on the blackboard. This facilitates timely exchange of data between
the two species as they coevolve to optimum values of X1, X2, and x. As shown
in the subsequent section, this data transfer enables both the species to arrive at
a solution which satisfies the coupling compatibility constraints, even though the
coupling variables are not explicitly represented as design variables. In summary,
the application of the CMDO architecture in conjunction with the substructuring
strategy ultimately leads to the optimal values of the design variables, as well as
the values of the substructure displacement vectors d; and ds which satisfies the
physics of the coupling.

This decomposition based coevolutionary optimization strategy leads to signif-
icant savings in the computational cost, particularly for the optimum design of
large-scale structural systems. The procedure used here could of course be read-
ily extended to scenarios with more than two substructures. It is also of interest
to note that this procedure could be used for structures subjected to harmonic
excitation. The only difference in the formulation would be to replace K;; with
[K;; —w?M;; + jwC;;], where M;; and C;; are partitions of the mass and damping
matrix, respectively, w is the frequency of excitation, and j = v/—1.

As an aside, the formulation presented here for distributed structural optimiza-
tion can also be applied to more general problems involving optimization of systems
governed by partial differential equations (PDEs). Such an approach brings to-
gether techniques for optimization of coupled systems with domain decomposition
schemes?” for numerical solution of PDEs. It is of interest to note that such an ap-
proach has been studied in the context of parameter estimation problems by Dennis
and Lewis.?® Further, the approach used here can be employed to construct test
problems with varying levels of difficulty for testing MDO formulations by varying
the coupling bandwidth (i.e., the number of dof in the interface region) and the
number of design variables. In other words, domain decomposition appears to be
a natural approach for constructing MDO test problems.

5. DEMONSTRATION EXAMPLES, RESULTS AND DISCUSSION

This section presents the results of experimental studies conducted to generate
computational data on the performance of the proposed CMDOQO architecture. The
objective is to gain insights into its convergence characteristics and to make com-
parison studies with a system optimization approach. The test problems considered
here are constructed using the domain decomposition-based structural optimization
approach discussed in the previous section.
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For all the experiments conducted, a standard elitist GA with binary tourna-
ment selection, uniform crossover and bit mutation was used. The probability of
crossover and bit mutation were kept constant at 0.5 and 0.01, respectively. A
binary string of 10 bits is used to represent each of the continuous variables for
the examples considered. The stress constraints are incorporated into the fitness
functions using a penalty function formulation. The best design vector of a species
is chosen as its representative individual. The results obtained using the CMDO
architecture are compared to the optimal solution obtained using a standard GA
applied to the complete coupled/original structural model, which is referred to as
the system optimization approach. Convergence studies are presented for the ob-
jective functions, constraints, and the coupling compatibility constraint violation
corresponding to the fittest design. Note that that the coupling compatibility con-
straints are not incorporated into the fitness function. They are computed here
in the post-processing stage only for the purpose of tracking the multidisciplinary
feasibility of the optimal solution. Ten runs were carried out for each case to com-
pute the averaged convergence trends and other statistics. The computations were
carried out using a SGI Origin 2000 computer with R10000 processors.

5.1. Problem 1

The first design problem considered is a 20 bar planar truss structure with 4 bays
(see Figure 6), parameterized in terms of the sizing variables. The cross-sectional
areas of the truss members are bounded between 0.1 and 15.0 in?. The structural
members have Young’s modulus E = 30000 psi/in?, mass density p = 0.1 1b/in?,
and yield stress o, = 25 ksi. The design objective is to minimize the weight
subject to stress constraints. This leads to a total of 20 design variables and 20
constraints for this problem.

The structure is decomposed into two coupled substructures as shown by the solid
line in Figure 6, i.e., the original analysis equations of size 16 x 16 are decomposed
into two sets of coupled equations of size 8 x 8. Two species which collaboratively
coevolve the variables corresponding to each substructure are set up to solve this
problem. The first species controls the cross-sectional areas of the ten truss mem-
bers in the first two bays. The analysis equation A1 for this species (see equation
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FIG. 7. Averaged Convergence Characteristics of Substructure Weights for Problem 1

(6)) involves the dof corresponding to nodes 1-4. Similarly, the second species con-
trols the cross-sectional areas of the ten truss members in the next two bays, and
the analysis equation A2 (see equation (7)) involves the dof corresponding to nodes
5-8. The sets of design variables corresponding to each substructure are defined as
the chromosomes of the two species. Each species is entrusted with the task of min-
imizing the substructure weight subject to constraints on the maximum permissible
stresses in the substructure elements, i.e., 10 constraints each.

A population size of 50 was used for each species and the termination criteria was
kept fixed at 250 ecosystem generations. The initial data for the coupling variables
were generated randomly in each optimization run. In the subsequent ecosystem
generations, the coupling variables were updated using the values posted by the
species representatives on the blackboard (see Figure 5). The results are compared
to a system optimization approach which uses a population size of 100, and a
termination criteria of 250 generations.

Figure 7 compares the averaged convergence characteristics (of the substructure
weights) of the two species which coevolve to the optima of this problem. It can be
seen from the figure that both species have converged quite rapidly to the optimal
solution. The statistics of the optimal solution obtained using the CMDO architec-
ture are compared with results obtained using the system optimization approach in
Table 1. It can be clearly seen that the CMDO architecture gives a better solution
on average, as compared to the system optimization approach. Note also that, in
spite of the small size of the analysis problem (16 dof), the decomposition-based
approach is nearly 1.5 times faster than the system optimization approach.
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TABLE 1

Comparison of Results for Problem 1

Approach System CMDO
Optimization  Architecture

Average 2970 2876

Weight

Standard 107 64

Deviation

Minimum 2778 2776

Weight

CPU 27 19

Time(sec)
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Figure 8 shows the averaged convergence trends of the coupling compatibility
constraint violation and the average percentage violation of stress constraints. It
can be seen from the figure that, even though the coupling compatibility constraints
are not explicitly enforced in the CMDO architecture, they rapidly converge close
to zero. These results also indicate that the proposed optimization architecture is
relatively insensitive to the initialization values used for the coupling variables.

5.2. Problem 2

The second problem involves weight minimization of a 4 bay 36 bar truss structure
(see Figure 9) again subject to stress constraints. The material properties of the
structural members are similar to those used for problem 1. The cross sectional
areas of the 36 truss members are considered as discrete design variables chosen
from the set 0.14,5 = 1,...,128 in%. The coordinates of the joints are considered as
continuous design variables varying between +90in from the baseline values. This
yields a total of 60 design variables and 36 constraints for this problem.

As shown in Figure 9, the structure is decomposed into two coupled systems using
the domain decomposition approach discussed earlier, i.e., the original analysis
equations of size 24 x 24 are decomposed into two sets of coupled equations of size
12 x 12. The first substructure involves the dof corresponding to nodes 1-6, and
the second substructure involves the dof corresponding to nodes 7-12. Since the
interface region between the two substructures is connected via 6 dof on each side,
the coupling bandwidth is higher than in problem 1.
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A CMDO architecture comprising of two species, each controlling the 30 design
variables corresponding to its substructure is set up to solve this problem. The first
species controls the cross-sectional areas of the 18 truss members in bays 1-2 and
the coordinates of nodes 1-6. The second species controls the areas of the 18 truss
members in bays 3-4 and the coordinates of nodes 7-12. Each species is entrusted
with the task of minimizing the substructure weight subject to stress constraints
for the substructure elements.

A population size of 100 was used for each species, and the termination criteria
was kept fixed at 250 ecosystem generations, The coupling variables were initialized
randomly for each optimization run. In the subsequent ecosystem generations, the
values posted by the species on the blackboard were used. The performance of the
CMDO architecture is compared to a system optimization approach which uses a
population size of 200, and a termination criteria of 250 generations.

The convergence trends of the substructure weights averaged over 10 runs are
shown in Figure 10. It can be seen from the figure that, species 1 which handles
the design variables corresponding to the first substructure shows slightly oscillatory
behavior. This is primarily due to the fact that the fitness function of species 1
depends on 19 parameters (displacements and geometry of nodes 7-9, and areas
of members connecting nodes 4-6 to 7-9), which are controlled by species 2. In
comparison, the fitness of species 2 depends on only 12 parameters (displacements
and geometry of nodes 4-6) in species 1.
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Constraint Violation and Average Percentage Stress Constraint Violation for Problem 2.

Figure 11 shows the convergence trends of the coupling compatibility constraint
violation and the average percentage violation of stress constraints, averaged over
10 runs. It can be seen that the coupling compatibility constraint violation re-
duces rapidly during the coevolution process. As mentioned earlier, the coupling
compatibility constraints are computed here only for the purpose of tracking the
multidisciplinary feasibility of the optimal solution.

The statistics of the optimal solution obtained using the CMDQO architecture are
compared with the system optimization approach in Table 2. It can be observed
that the CMDO architecture gives a much better solution as compared to the system
optimization approach. This can be attributed to the dynamic nature of the search
space when a distributed optimization approach is used. This could be a key factor
which enables the CMDO architecture to circumvent the problem of entrapment
in a suboptimal solution as compared to the system optimization approach. The
results for this problem indicate that the performance of the proposed optimization
architecture show no degradation with increase in the coupling bandwidth, even
though the convergence trends show slightly more oscillatory behavior. However,
it can be noted that the coupling compatibility constraint violation is only reduced
to the order of 10~2 (on an average) due to the high degree of coupling.

It is also of interest to note that, in spite of the small size of the analysis problem
(a total of 24 dof), the substructuring strategy combined with the CMDQO archi-
tecture is nearly twice as fast as compared to the system optimization approach,
while giving results that are 17% better on average.



TABLE 2

Comparison of Results for Problem 2

Approach System CMDO
Optimization Architecture

Average 7769 6432

Weight

Standard 185 182

Deviation

Minimum 7501 6218

Weight

CPU 160 85

Time(sec)

6. CONCLUDING REMARKS

This paper introduces a distributed MDO architecture inspired by the phenom-
ena of coevolutionary genetic adaptation in ecological systems. The advantages
offered by the proposed coevolutionary MDO (CMDO) architecture include retain-
ment of disciplinary autonomy, massive parallelism, reduced software integration
and interdisciplinary communication overheads, and accommodation of design pa-
rameterization with a mix of discrete and continuous variables. The most important
advantage offered by the approach is its applicability to systems with arbitrary cou-
pling bandwidth without an attendant increase in the problem size. It is suggested
that the architecture may be a useful tool for large-scale nonconvex MDO problems
with a mix of discrete and continuous variables.

A formulation is presented for distributed optimization of structural systems via
domain decomposition to construct MDO test problems. Numerical studies con-
ducted to examine the performance of the CMDO architecture for the two example
problems considered are very encouraging. These results also give some insights
into the convergence characteristics of the CMDO architecture. They indicate that
the performance of the method does not deteriorate with increase in the coupling
bandwidth. The formulation used for the example problems presented also suggests
a computationally efficient way to solve large-scale structural optimization prob-
lems via domain decomposition, since the dimension of the substructure analysis
equations is much lower than those of the original model. The computational cost
savings are expected to be particularly significant for optimization of large-scale
structural systems. Note that this approach could also be applied to optimization
of structures subjected to dynamic loading, and the design of nonlinear structural
systems.

It is to be noted that in this research the multidisciplinary design variables were
decomposed into completely disjoint sets. In contrast, the issue of developing coevo-
lutionary search frameworks for scenarios where the disciplines are allowed to share
design variables remains an open research area. Some ideas for achieving this have



been discussed in reference.2? However, the ability of such strategies to aid the dis-
ciplinary species in arriving at a consensus on the multidisciplinary design variables
remains to be seen. Results from the area of computational immunology®® may be
useful in this context. It is also of interest to examine the possibility of incorporat-
ing multi-objective decision making capability within the CMDO framework, based
on the wide body of research work in this area; see, for example, reference.?!

The CMDO architecture proposed here implicitly handles the coupling compat-
ibility constraints via randomly restarted generalized Jacobi iteration. Hence, for
some problems, difficulties may arise in converging to a solution which satisfies the
physics of the coupling. Clearly, for such problems, the present approach can only
give a rough indication of the optimal solution. However, such a solution could be
used as an initial guess for a distributed or a system-level gradient-based optimiza-
tion scheme. Alternatively, more robust iterative analysis schemes?3 or evolutionary
successive over relaxation techniques®? could be incorporated in the final stages of
the coevolutionary search. Finally, even though promising results were obtained for
the examples under consideration, more detailed numerical studies are required to
study the robustness of the CMDO architecture for a wider class of design problems.
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