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Abstract


As multiobjective optimization problems have
many solutions, evolutionary algorithms have been
widely used for complex multiobjective problems
instead of simulated annealing. However, simulated
annealing also has favorable characteristics in the
multimodal search. We developed several simulated
annealing schemes for the multiobjective optimization
based on this fact. Simulated annealing and
evolutionary algorithms are compared in
multiobjective NK model. The preliminary results of
the simulated annealing developed show that
simulated annealing method performs well and
sometimes better than evolutionary algorithms. More
systematical analyses to the various problems are
discussed as further researches.
Keywords: Multiobjective Optimization, Evolutio- nary
Algorithms, Simulated Annealing, Pareto Optimality,
NK model


1. Introduction


The multiobjective optimization problem has a rather
different aspect to scalar-objective one. Instead of
finding one global optimum, which is a general aim in
scalar-objective optimization, multiobjective
optimization must find a set of solutions, which is called
the Pareto set, or Pareto optimal frontier, as all the
Pareto solutions are equivalently important and all of
them are the global optimal solutions. As many
engineering and economical problems are often complex
and have this multiple objectives characteristic, which
must be optimized simultaneously, conventional
optimization techniques, such as the steepest-descent
method, conventional simplex method, many
conventional evolutionary algorithms, and the simulated
annealing method, have difficulties in extending
themselves to the multiobjective case because they are
not originally designed to find multiple solutions.
Typically multiobjective problems are often solved with
conventional single-objective optimization methods by


using penalty or weighted sum methods [4,13,22,33,36].
However, the penalty and weighted sum methods also
have difficulties in selecting proper penalty functions
and weighting factors respectively. The other problem of
using the weighted sum method is it cannot find a
solution in a concave region [6]. To solve this problem,
many researches for multiobjective optimizations have
been suggested and new concepts introduced [9,10]. One
of these concepts, Pareto optimality, is widely used in
many multiobjective optimization algorithms including
evolutionary algorithms.


Evolutionary algorithms (EAs) have many interesting
properties and have been widely used in various
optimization problems from combinatorial problems
such as job shop scheduling to real valued parameter
optimization [2,3]. Also many evolutionary algorithms
for solving the multiobjective problem have been
suggested [19,20]. The success of evolutionary
approaches in multiobjective optimization is mainly
based on the population concept with the ability of
finding multiple optima simultaneously, which matches
the idea of multiobjective optimization. However, the
simulated annealing method, which is reported to give
good performance a many single-objective problems, has
been seldom used for the multiple objectives problems.
The main reason is that simulated annealing usually
finds only one solution instead of set of solutions and
this is a critical handicap in multiobjective optimization
[30].


There are four important properties for a good
algorithm in multiobjective optimization.
1) Searching precision. The algorithm must find the


Pareto optimal solutions, which are global optima in
multiobjective optimization. When this is hard to
achieve because of problem complexity, it must find
the possible near solutions to the optimal solutions set.


2) Searching time. It must find the optimal set efficiently.
3) Uniform probability distribution over the optimal set.


The solutions found must be widely spread, or
uniformly distributed over the real Pareto optimal set
instead of converging to one point because every
solution is important in multiobjective optimization.


4) Information about Pareto frontier. The algorithm must
give as much information as possible about the Pareto
frontier.
Simulated annealing has been applied for


multiobjective optimization by using the weight sum
method in limited applications. Whidborne used the
simulated annealing to solve a problem formulated as the
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method of inequalities (MOI) [38]. The objective of this
paper is to construct a simulated annealing method to
find all the Pareto solutions, which satisfies the above
properties. First, simulated annealing method, which is
suggested in this paper, uses the concepts of Pareto
optimality and domination to achieve high searching
precision. The main drawback of simulated annealing is
searching-time, as it is generally known that simulated
annealing takes long time to find the optimum. Though it
is also reported that long searching-time is not always
needed, the second property remains as a main problem
of simulated annealing. Simulated annealing has an
interesting advantage in its uniform probability
distribution property as it is mathematically proved that
it can find each of the global optima with the same
probability in a scalar finite-state problem [12,29].
Considering that evolutionary algorithms generally use
additional algorithms such as fitness sharing, niche
induction for spreading the solutions, simulated
annealing can have a more simple and compact structure.
The last property comes from the difference between the
properties of scalar-objective and multiobjective
optimization. In solving scalar-objective problems, there
is no need to find all the global optima except some
special cases because every global optimum has the
same value. The only thing needed is the optimal cost
and parameters with which the cost is evaluated.
However, the situation is different in multiobjective case.
As all the Pareto solutions have different cost vectors
that have a trade-off relationship, a human or a decision-
maker must select a proper solution from the found
Pareto solution set or sometimes by interpolating the
found solutions.


The rest of this paper is organized as follows. Section
2 formulates the multiobjective optimization problem
including the concept of Pareto optimality and
domination, and describes some previous works about
evolutionary algorithms and the simulated annealing
method. Section 3 shows the idea of multiobjective
simulated annealing method and preliminary results
from it. Comparison results to an evolutionary approach
are presented. Further research directions are discussed
in the section 4 and section 5 summarizes the simulated
annealing method in multiobjective optimization and
discusses the comparisons with the evolutionary
approach.


2. Survey of Stochastic Multiobjective
Optimization Algorithms


2.1 Multiobjective optimizations
For most multiobjective problems, there exists a set of


non-dominated solutions that have a trade off relationship
each other, and one of the multiple objectives of each
solution cannot be improved without sacrificing any of
others. This concept is known as the Pareto optimality
[29].


Definition 1 Consider, without loss of generality, the
minimization of the n components fk, k = 1,… , n, of a
vector function f of a vector variable x in a universe A,
where


1( ) ( ( ), , ( ))nf f= Kf x x x .
Then a decision vector u ∈Ax  is said to be Pareto


 optimal if and only if there is no vx  for which 


1( ) ( , , )v nv v= = Kv f x  dominates 1( ) ( , , )u nu u= = Ku f x ,
 that is, there is no v ∈x A such that


{1, , }i iv u i n≤ ∀ ∈ K  and {1, , }i iv u i n< ∃ ∈ K


(a) function graph w.r.t. parameter
f2


f1


Pareto optimal
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Figure 1. The concept of the Pareto optimal frontier


The set of all Pareto-optimal decision vectors is called
the Pareto optimal set, efficient set, admissible set or the
Pareto frontier of the problem. The corresponding set of
objective vectors is called the non-dominated set. In
practice, however, it is not unusual for these two terms to
be used interchangeably to describe solutions of a
multiobjective optimization problem. The notion of
Pareto optimality is only a first step towards the practical
solution of a multiobjective problem, which usually
involves the choice of a single compromise solution
from the non-dominated set according to some
preference information. Figure 1 shows the concept of
the Pareto optimal set clearly. Considering the specified







multiobjective optimization, figure 1 (a) shows each
function value with respect to the parameter x  and
figure 1 (b) is a plot in which the x-axis is 1f  and the y-
axis is 2f . The middle solid curved segment of figure
1(b) is the Pareto optimal frontier - non-dominated set
and the two outer dashed curved segments are dominated
solutions.


The simultaneous optimization of multiple, possibly
competing, objective functions deviates from scalar-
objective optimization. Instead of finding one perfect
solution, multiobjective optimization problems tend to be
characterized by a family of alternatives that must be
considered equivalent in the absence of information
concerning the relevance of each objective relative to the
others.


Therefore, the first objective in multiobjective
optimization is to find the Pareto set, and the next is to
select a proper solution from the found Pareto solution
set.


2.2 Evolutionary algorithms
Many multiobjective optimization problems have been


successfully solved using traditional mathematical
optimization procedures, such as linear programming,
integer programming, and nonlinear programming.
However, many real-world problems involve complex
and nonlinear properties that do not fit readily into one
of these traditional frameworks. Recently, non-gradient,
stochastic based search techniques such as simulated
annealing and evolutionary algorithms have been
successfully employed to solve real-world optimization
problems. There have been four important multiobjective
search criteria in the history of evolutionary algorithms
[9].
Plain aggregating approaches: as conventional
evolutionary algorithms can solve the problem when it
has single objective, it is required to make scalar fitness
functions on which to work. In most problems, where no
global criterion directly emerges from the problem
formulation, scalarization of the objective function has
been achieved by aggregating the multiple objectives
with weighting factors. Several applications of
evolutionary algorithms in the optimization of
aggregating functions have been reported from the
beginning of 1990s, and almost every multiobjective
problem used this method in the first era of the
multiobjective evolutionary history [13,22,36]. There are
two advantages of using this method. The first is, of
course, the simplicity of this method. There is no need to
change the algorithm itself except making a single
objective by using the weighted sum method. The second
is, there is no need for post-processing such as decision-
making because there is only one solution already. Even
though this algorithm is still widely used, the difficulty in
selecting proper weights, and the inability to find
solutions in a concave Pareto region are the main
drawbacks of this algorithm.


Population-based non-pareto approaches: Schaffer
was probably the first to recognize the possibility of
exploiting populations to treat multiple, conflicting
objectives separately and search for multiple non-
dominated solutions concurrently in a single run [33]. In
this case, his algorithm uses the concept of speciation
instead of Pareto optimality. The entire population is
divided into several sub-populations (speciation) and the
divided sub-population was selected using a selection
mechanism which considered only one objective function
for each sub-population. The selected speciation makes a
new population (next generation) which is divided into
sub-populations again after mutation and crossover
operations. Schaffer suggested this algorithm – Vector
Evaluated Genetic Algorithm (VEGA) and his
simulations showed good results in multiobjective
optimization. As this algorithm is also very simple, uses
the concept of population well, and is able to find Pareto
solutions including the concave region just in one run,
there have been many researches based on the population
concept [11,17,25]. However, there are also weaknesses
in this algorithm. One is the biasing phenomenon: final
solutions have a tendency to be located on the edge of the
Pareto frontier. Also the performance of this algorithm is
severely affected by the objective values because
selection is determined according to one of the values in
the objective vector not the domination relationship.
Pareto-based approaches: Goldberg suggested a
multiobjective optimization algorithm using the concept
of Pareto optimality in 1989 [13]. This search algorithm,
which considers all the objectives simultaneously and
selects the non-dominated solutions with a high
probability, can find a good Pareto optimal frontier by the
Pareto ranking technique. Soon many research results
about the algorithms based on the Pareto concept were
published [10,19,35]. The advantage of this algorithm is
its ability to find the Pareto optimal frontier indifferent to
the parameter value, that is, this algorithm works well
when there is large difference of average or variance
between objectives. The second possible advantage of
this Pareto ranking approach is that solutions that exhibit
good performance in many objective dimensions are
more likely to be produced by recombination.
Niche induction techniques: this algorithm uses the
niche and sharing concepts to spread the searching agents
uniformly over the Pareto optimal frontier. Also this
method has a tendency to prohibit the genetic drift
phenomenon by forcing the searching agents not to
converge to one point from the beginning of the search.
Though it is very helpful for the decision-making to
spread out the solution uniformly, this algorithm has a
weakness also. As the sharing technique is affected by the
scale difference severely, spreading out the solution is
generally dominated by the objective function with the
largest variation. This property seems to be opposite to
the philosophy of Pareto optimality and domination.
Therefore, it is necessary to control the scales of each
parameter before search but it is generally difficult. There







have been many promising results from this algorithm by
the many researchers in the 1990s [10,17,19,35].


2.3 Simulated annealing
Simulated annealing (SA) is one of the stochastic


search algorithms, which is designed using a spin glass
model by the Kirkpatrick [24]. It has been used in wide
areas from the combinatorial problems to the real world
problems because it performs well on most of
optimization problems, especially on complex problems
[1,26,30].


The powerfulness of SA originates in the good
selection scheme and annealing technique. Generally SA
used two kinds of selection scheme. One is the
Metropolis algorithm and the other is the logistic
selection algorithm [27]. Originally any kind of selection
that satisfies the detailed balance equation can be used as
a selection scheme because the detailed balance equation
guarantees the convergence of SA [29]. Another reason
why SA performs well is annealing, that is, the gradual
temperature reducing technique. As the temperature and
the cost difference mainly determine the amount of
mutation in generating the next searching point, SA can
do local fine-tuning towards the end of the search to give
finer results. The disadvantage of SA is, as is well known,
the long annealing time. There are, of course, many
algorithms to compensate for this such as fast simulated
annealing (FSA), very fast simulated re-annealing
(VFSR), new simulated annealing (NSA) [21,37,41].


However, there is little research into using the
simulated annealing method for multiobjective
optimization. The first and most significant problem is
that SA uses only one search agent. As solving
multiobjective problem generally requires finding all the
solutions at the same time, using many search agents
will be effective in general. Though SA was designed
originally to use only one search agent, there have been
also many techniques for using multi search agents or for
parallelization [1]. To use a population in SA, however,
has a possibility to lose the merits of SA a little because
those kinds of methods usually entail redundant search.


3. Multiobjective Simulated Annealing


EAs have been widely used in various static
optimization problems from combinatorial optimization
to real parameter optimization as a powerful and robust
optimization technique. There have been a lot of
researches showing that EAs are good optimization
methods, which has resulted in fast enlargement of their
application areas [7,8,18,32,34]. Many EA researchers
have been trying to characterize EAs’ mechanisms and
landscape. One result of this research is simulation
results with Royal road functions [28]. Though the Royal
road function was designed in favor of crossover
operations, evolutionary search do not always
outperform variations of the hill climbing method and a
well-designed hill climbing method shows better


performance than evolutionary algorithms. In 1995,
Wolpert and Macready published the No Free Lunch
theorem and the theorem showed mathematically that all
algorithms perform equally well over all the functions in
the finite search space [39,40]. According to this
theorem, discussion about the performance between
different algorithms can be meaningless as they perform
equally from an average point of view. However, the
situation is different in treating real world problems, as
there are general tendencies in ordinary problems.
Droste, Jansen and Wegener showed that a particular
algorithm performs better over a subset of the entire
function set in their paper [5]. It means that there can be
a better algorithm to solve restricted problems.


Many researchers also have found that EAs are very
promising algorithms for solving multiobjective
optimization problem as they can find many good
solutions (the Pareto set) in one simulation. However the
SA algorithm has been hardly used for multiobjective
optimization because SA was originally constructed to
use only one searching agent. This is known to be a
critical weakness of SA as it betrays the philosophy of
multiobjective optimization – searching for all the Pareto
solutions instead of only one solution. As the result of
this weakness, SA has remained as one of the improper
or not favorable  algorithms for multiobjective
optimization.


It is, however, a question whether SA cannot be used
at all for multiobjective optimization though it performs
well and sometimes better than EAs in solving single
objective optimization problems [31]. In this section, a
possible method for SA is suggested to solve
multiobjective optimization and its advantages and
disadvantages are shown by simulation results.


3.1 Extension from Single-objective to Multiobjective
Multiobjective SA (MOSA) uses the domination


concept and the annealing scheme for efficient search.
The main obstacle for SA in multiobjective optimization
is its inability to find multiple solutions. However, SA can
do the same work by repeating the trials as it converges to
the global optima with a uniform probability distribution
in the single objective optimization. Figure 2 shows this
characteristic of SA. When there are two global optima, it
is proved that SA can find each optimum with probability
0.5 [29]. When this fact is also true in multiobjective
optimization, SA has advantages over EAs because it
does not need large memory to keep the population; nor
does it use additional algorithms to spread the solutions
over the Pareto frontier. Additionally MOSA can find a
small group of Pareto solutions in a short time with the
demand of urgent simulation and then find more solutions
by repeating the trials for detailed information about the
Pareto frontier. The mathematical tasks of showing the
uniform convergence to the Pareto frontier of MOSA is
not completed and remains as a future work. In this paper,
simulation results on a simple test-bed will be presented
to show this property.







Figure 3. Pseudo-code of multiobjective simulated annealing


General scheme:
The general SA algorithm involves the following three


steps. First, the objective function corresponding to the
energy function must be identified. Second, one must
select a proper annealing scheme consisting of decreasing
temperature with increasing of iterations. Third, a method
of generating a neighbor near the current search position
is needed. In single objective optimization problems, the
transition probability scheme is generally selected by the
Metropolis and logistic algorithms [27,29]. However, the
situation is different in multiobjective optimization and
choosing a proper transition probability is difficult. This
problem will be treated detail in the transition probability
paragraph. The algorithmic description of the MOSA is
outlined in figure 3 where s represents the current search
position (or the current state in a finite state search
problem) and T is the temperature parameter, which is
gradually decreased as time goes on. A new search
position s’ is generated by the N(s) function, its cost is
evaluated and compared with the previous cost. When it is
determined to be a good solution by the domination test,
the new state is accepted. Even when the new position is
not proper (meaning the new position is dominated by the
current state), it is accepted with some acceptance
probability. When there is no superiority between the
current state and the next state, the new state is accepted
instead of the current one because moving in the non-
dominated situation helps increase the spread


performance and evade local optima. This fact will be
shown with simulation results. When whether to move or
stay is determined, the algorithm repeats its loop with
lower temperature until termination conditions are
satisfied.
Neighbor generating and annealing:


In finite state problems like combinatorial problems
(TSP, QAP, NK-model), a general neighbor generating
method is the permute operation (or the bit flip operation
in a binary problem), which must satisfiy the reachability
and symmetry conditions. The following geometric
cooling is widely employed for the annealing scheme in
this kind of problem.


0
k


kT Tα= (1)
where 0 1α< <  is a cooling rate. For combinatorial
problems (including the NK-model), it is usual to
generate a neighbor by flipping one bit at a random
position and use the geometric annealing scheme.
Transition probability:


General transition rules such as the Metropolis or
logistic method cannot be applied directly to the
multiobjective problems because they support only a
scalar cost function. The suggested transition rule in this
paper is very similar to the Metropolis method except that
they used a different cost criterion for the multiobjective
cost function. The transition probability from state i  to
j  is,


( , ) min{exp( ( , ) / ),0}tP i j c i j T= − (2)
where ( , )c i j  is the cost criterion for transition from state
i  to j , and T  is the annealing temperature.


Six criteria for MOSA are suggested and evaluated.
The schemes are as follows:


Minimum cost criterion
( , ) min( ( ) ())k kk


c i j c j c i= − (3)


where ( )kc i  is k th cost value in the objective vector of
i th state.


Maximum cost criterion
( , ) max( ( ) ())k kk


c i j c j c i= − (4)


Random cost criterion


1
( , ) ( ( ) ())


D


k k k
k


c i j c j c iα
=


= −∑ (5)


where D  is the dimension of the objective vector and
kα is a random variable with uniform probability


distribution.
Self cost criterion


1
( , ) ( )


D


k
k


c i j c i
=


= ∑ (6)


Average cost criterion


1


( ( ) ( ) )


( , )


D


k k
k


c j c i


c i j
D


=


−


=
∑


(7)


(a)                       (b)


Figure 2. Uniform distribution property in SA


a) the graph of the objective function; b) State probability of the
Markov chain as time goes to infinity. As there are only two global
optima, SA finds each global optimum with the same probability 0.5


s=s0
T=T0
Repeat


Generate a neighbor s’=N(s)
If C(s’) dominates C(s)


move to s’
else if C(s) dominates C(s’)


move to s’ with transition probability
Pt(C(s), C(s’), T)


else if C(s) and C(s’) do not dominate each other
move to s’


endif
T=annealing(T)


Endrepeat (until the termination are satisfied)


Global optimum Global optimum


Function


Global optimum Global optimum


0.5


1.0
State probability







Fixed cost criterion
( , ) fixed valuec i j = (8)


We tested the above six criteria on the simple test-beds
and found that the random, average, fixed criteria
generally show good performance. The performances of
the minimum, maximum, self cost criteria change greatly
dependent on the test-beds. In the following simulations,
we used the average cost criterion. The main problem
with using the weighted sum method – the inability to
find a concave region – does not occur in the suggested
MOSA as it uses the domination test first.
Move or Stay in non-dominated situation:


When the new state is the same level of value as the
current state, there can exist two schemes – move to the
new state or stay in the current state. The analysis of this
problem shows that the move scheme is better than the
stay one. With the stay scheme, search will end on both
edges of the Pareto frontier not entering the middle of the
frontier. However, with the move scheme, search will be
continue into the middle part of the frontier, move freely
between non-dominated states like a random walk when
the temperature is low and eventually will be distributed
uniformly over the Pareto frontier as time goes to infinity.


3.2 EA techniques – the niche induction algorithm
The specifics of the Niche Pareto algorithm are


localized to the implementation of selection - the use of
Pareto domination tournaments, where two candidates for
selection are compared against each individual in the
comparison set. In tournament selection a set of
individuals is randomly chosen from the current
population and the best of this subset is chosen to be
represented in the next population. In order to obtain a
Pareto optimal surface, tournament selection must be
altered to use multiple objectives. Selection pressure is
mainly determined by the size of the comparison set tdom;
if the size of the comparison set is large, there is high
selection pressure which possibly lead to local optima in
many cases, if the size is small, there is low pressure
which make the convergence of population slow. The
Pareto rank is the number of elements in the comparison
set dominated by the candidate. For example, if the
candidate dominates three elements of the comparison set
of size ten, the Pareto rank of the candidate is 3 [13].
Although the Pareto rank scheme encourages the
exploration in the direction of non-dominated individuals,
they have a tendency to converge on one point as time
goes on and will suffer from population drift because this
is the property of most conventional evolutionary
algorithms. To find uniformly distributed solutions along
the Pareto frontier, Goldberg and Richardson, Deb,
Goldberg have incorporated fitness sharing method by the
niche scheme [14,15,16]. Fitness sharing degrades the
individual fitness by a sharing function as /i if m ,
dividing the objective fitness if , by the niche count im ,


which reflects the neighborhood crowding around an
individual. In this paper, this scheme was adopted in a
simplified form. Instead of recalculating the fitness
function by the sharing method, the niche count of one
candidate is directly compared to the niche count of the
other. As the sharing function encourages the candidate
that is located in the sparse space, gradually all the
solutions of the population become uniformly distributed
as the algorithm goes on.


3.3 Comparison on the NK fitness model
In this section we discuss whether or not simulated


annealing is a promising tool for solving to solve hard
optimization problems by comparing its performance
with evolutionary algorithms on the multidimensional
version of Kauffman’s NK fitness landscape model [23].
The NK-model of fitness landscapes can be regarded as
combinatorial optimization problems defined on the
binary space {0,1}N, where N is the length of binary string.
The fitness function, f:{0,1}N→R is defined by the
average of fitness contributions of all bits as shown in
equation (9)


1


1 N


i
i


f f
N =


= ∑ (9)


where the fitness contribution if  of the i-th bit is
determined by a random number drawn from uniform
distribution in the interval [0,1], depending on the values
of itself and K other bits. That is, if  has ( 1)2 K+  different
random numbers. In the NK model, K is the most
important parameter that influences the statistical
property of the NK fitness landscape. K is used to tune the
ruggedness of the landscape. For example, when K = 0,
the landscape has a unique global optimum but as K
increases (up to N-1), it becomes more rugged with an
increasing number of local optima. As the NK model was
originally designed to construct to single objective
landscape, we extend it to a multiobjective one. In
multiobjective NK model (NKD model), there is one
more parameter D that determines the dimension size of
multiple objectives.


In what follows, the parameters of simulated annealing
are described:
Initial temperature value: The initial temperature is
chosen to be 500 by heuristics from simulation results.
Annealing scheme: For the NKD model, the geometric
annealing method is used. 1k kT Tα+ =  ( 0.995α = ).
Neighbor generation: Generating a new search position is
done by flipping one bit of parameter string.
Chain length: The chain length represents the number of
allowable transitions before the temperature changes its
value. The length of the string (N) is used for the chain
length.
Termination condition: The algorithm finished its
calculation after pre-defined iteration. In this simulation,
we set its value to 5000.







Agent number: We used 100 independent searching
agents simultaneously. That is, 100 agents search for the
Pareto optimal without exchanging of information
between them.


The parameters for the evolutionary algorithm are as
follows:
Population size: The population size is set to 100 for all
the simulations.
Genetic operation: Conventional one point crossover is
used with crossover probability 0.1 and standard mutation
per bit is used with the mutation rate 0.3.
Selection: Pareto based tournament selection is used with
a comparison set size of 5 (5% of the population). As this
parameter determines the selection pressure, it must be
chosen carefully. However, as there is no systematic
method for choosing this by considering the landscape,
this value is chosen based on the empirical simulation
results. It is an open problem to choose a proper selection
power according to each problem and remains as future
work.
Niche size: The niche size that determines the size of the
hyper sphere around the candidate is set to 0.1.
Termination condition: The evolutionary algorithm was
designed to use the same number of iterations for
comparison with simulated annealing. The simulation
runs over 5000 iterations.


The first four tests are conducted on the small size
landscape model where the exact Pareto frontier can be
found by exhausitive search. The length of NKD model is
10, the epistatic parameter K changes its value to 0, 2, 4, 8
and the objective dimension is 2. The figure 4 shows a
(pseudo) Pareto optimal frontier that each algorithm
found. As it is difficult to show the performance of
multiobjective optimization except by showing the Pareto
frontier, a randomly chosen typical graph is presented as
an example. In the small size landscape model, the
simulated annealing method can find the Pareto frontier
more precisely at many times, and each solution spreads
widely over the Pareto frontier in spite of the fact that the
simulated annealing method does not use any sharing
method. However, it is true that the evolutionary
approach with the sharing technique has a tendency of
spreading more than simulated annealing. We can see this
tendency more easily with the large size landscape model.


We conducted the second tests to examine the
performance of the two algorithms in a large landscape.
By changing N to 20, 40, 80 with K, to 2, 8, the simulated
annealing and evolutionary algorithms have been
simulated and compared. Figure 5 shows the comparison
results of simulation. The conclusion is that the
evolutionary algorithm shows better performance as the
size of landscape becomes large with better searching
ability and better spreading characteristics. However,
simulated annealing also showed satisfactory results from
another point of view when considering that simulated
annealing does not use any additional algorithm and it can
be used independently.


(a) N=10, K=0, D=2 (Low epistatic problem)


(b) N=10, K=8, D=2 (Highly epistatic problem)
Figure 4. Simulation results on the small size NKD-model


4. Discussion and Future Work


4.1 Niche induction simulated annealing
Though the suggested simulated annealing method


gives satisfactory simulation results in multiobjective
optimization over a finite state optimization, the NKD
model, it is sometimes observed that simulated annealing
has difficulty in searching the Pareto optimal with
uniform distribution. That is, multiobjective simulated
annealing can find the solutions in the easier and non-
complex problem, but the performance is degraded in
complex problems with much randomness like highly
epistatic NKD models. One possible approach for
increasing the performance of simulated annealing is to
use the population information efficiently. The niche
induction method was reported as a powerful technique in
multiobjective evolutionary algorithms [19]. However,
using the information of the population like niche
induction should be designed carefully because it may
harm the advantages of the simulated annealing method.


4.2 Performance measures for multiobjective
optimization







One difficulty in comparing the algorithms in the
multiobjective test-beds is that there is no systematic
criterion to measure the performance of each algorithm.
This is mainly due to the fact that in multiobjective
optimization, the objective value itself does not have a
significant meaning. Instead, the configuration of
objective values is more important. Therefore, the
conventional measure is only the plotting of the Pareto
set, but it is impossible to draw the graph when the
dimensions of objectives are larger than three. (Even for
three-dimensional graph it is not so easy to determine


which is the better Pareto set) Even if it is possible to
plot the graph for more than three objectives, it is not a
good measure as there is no quantitative information. A
good performance measure for comparison must have
the following properties.
1) It must measure the closeness to the real Pareto frontier


in numeric value.
2) The uniformity of the distribution of solutions over the


Pareto frontier must be measured.
3) Additional information, e.g. separated frontiers number,


must be also measured.


a) N=20, K=2, D=2


b) N=20, K=8, D=2


c) N=40, K=2, D=2


d) N=40, K=8, D=2


e) N=80, K=2, D=2


f) N=80, K=8, D=2


Figure 5. Simulation results on the large size NKD-model







4.3 Mathematical Analysis
The most favorable property of simulated annealing is


that there is a complete convergence proof for it. The
ideal annealing and neighbor generating schemes are
deduced from the mathematical analysis of convergence.
Even though these ideal schemes have little meaning
from a practical point of view, for example, the
conventional simulated annealing uses the log-like
annealing scheme from the mathematical result and it
takes enormous simulation time for the algorithm to
converge, guaranteeing the convergence is a fundamental
step for constructing an algorithm. Unfortunately,
mathematical analyses about simulated annealing in
multiobjective optimization have seldom been studied
and remain as an open problem.


There are two main properties to be considered
mathematically: one is the convergence proof and the
other is uniformity of distribution. As the conventional
simulated annealing method satisfies the detailed balance
condition, it is guaranteed to have pseudo-stationary
probability and the global convergence probability is
represented as a simple equation [29]. However, in the
multiobjective case, finding a proper acceptance
probability criterion, which satisfies the detailed balance
condition, is difficult. Therefore, even though the
pseudo-stationary probability exists, it is not easy to find
the probability as an equation form.


It is also unclear whether the independent simulated
annealing algorithm gives uniformly distributed solutions
over the Pareto frontier or not. Though proving uniform
distribution over the connected Pareto set is clear and
easily explained by the random walk property, the
problem is not so easy when the Pareto set is not a
connected one. This problem also remains as further
work.


5. Conclusion


There have been many researches into using
evolutionary algorithms to solve multiobjective problems
and many efficient algorithms have been developed.
However, though simulated annealing is also a very
powerful searching algorithm and has given many good
results in various optimization fields, it has been seldom
used for the multiobjective optimization because it
conventionally uses only one search agent, which makes
the search for all solutions in the Pareto set difficult.


With the idea that simulated annealing has a uniform
probability distribution over global optima, a
multiobjective simulated annealing method is suggested.
The preliminary results of the developed algorithms are
compared with an evolutionary algorithm and show that
simulated annealing also has good properties in
multiobjective optimization. The first test with finite state
test-beds shows that independent simulated annealing
have a tendency of finding the solutions in the Pareto set
with uniform probability. This property was tested over a
more complex combinatorial problem – the


multidimensional NK model. When the size of problem is
small, simulated annealing showed good performance
compared to the evolutionary algorithm. However, the
evolutionary algorithm outperforms simulated annealing
when the problem size and the epistatsis become large.
Experimental results suggest that simulated annealing has
much potential in the multiobjective optimization field
also. Parallelizing techniques and using population
information will be good approaches for increasing the
performance of MOSA. Also, finding efficient
parallelizing techniques and performance measures for
multiobjective optimization remains as future work.
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