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ABSTRACT


In this paper, a multiobjective simulated annealing 


(MOSA) method is introduced and discussed with the 


multiobjective evolutionary algorithms (MOEAs). Though 


the simulated annealing is a very powerful search 


algorithm and has shown good results in various single-


objective optimization fields, it has been seldom used for 


the multiobjective optimization because it conventionally 


uses only one search agent, which is inadequate in finding 


many solutions of the Pareto set. With the idea that the 


simulated annealing has a uniform state probability over 


global optima, a new multiobjective simulated annealing 


method is suggested. The experimental performance of the 


developed algorithm is compared with multiobjective 


evolutionary algorithms and shows that the proposed 


simulated annealing has good uniformity properties. 


1. INTRODUCTION 


This paper will address a simulated annealing method for 


solving multiobjective optimization problems and 


compare it with evolutionary methods. The multiobjective 


optimiza-tion problem has a bit different aspect to the 


scalar-objective one. Instead of finding one global 


optimum, which is a general aim in scalar-objective 


optimization, multiobjec-tive optimization must find a set 


of solutions, which is called Pareto set, or Pareto optimal 


frontier, as all the Pareto solutions are equivalently 


important and all of them are the global optimal solutions 


[1]. Many engineering and economical problems are often 


complex and have this characteristics of the multiple 


objectives, which must be optimized simultaneously. 


Typically multiobjective problems are solved with 


conventional optimization methods by using the penalty 


method or the weighted sum method [1]. However, the 


penalty method and the weighted sum method also have a 


difficulty in selecting proper penalty functions and 


weighting factors respectively. The other problem of using 


the weighted sum method is that it cannot find a solution 


of concave region [2]. To solve this problem, many 


researches for multiobjective optimizations have been 


suggested and new concepts are introduced [1]. One of 


these concepts is the Pareto optimality and it is widely 


used in the many multiobjective optimization algorithms 


including the evolutionary algorithms. 


We suggest four important properties for the 


multiobjective optimization. 


1) Searching precision. The algorithm must find the 


possible Pareto optimal solutions, which are global optima 


in multiobjective optimization. 


2) Searching time. It must take less time to find the 


optimal set. 


3) Uniform probability distribution over the optimal set.


The solutions found must be widely spread, or uniformly 


distributed over the real Pareto optimal set instead of 


converging to one point. 


4) Information about Pareto frontier. The algorithm must 


give the information about the Pareto frontier as much as 


possible. 


The objective of this paper is to construct a simulated 


annealing method to find all the Pareto solutions, to verify 


the property of the suggested algorithm, and to compare 


the performance of it with the evolutionary algorithms. 


Simulated annealing method, which is suggested in this 


paper, uses the concept of Pareto optimality and 


domination, which is widely used in evolutionary 


approaches in multiobjective optimization, to have more 


searching power in many complex problems, which 


satisfies the searching precision property. Though it is 


reported that the main drawback of the simulated 







annealing is the searching-time, it is also reported that


long searching-time is not always true [3]. The third


property, uniform probability distribution property, is also


very important in multiobjective optimization. The


simulated annealing has an interesting advantage at this


point as it is mathematically proved that it can find each 


of the global optima with the uniform probability [4, 5].


Considering that evolutionary algorithms generally use


additional algorithms such as fitness sharing, niche 


induction for spreading the solutions, the suggested


simulated annealing have more simple and compact


structure.


Therefore, the first objective in the multiobjective


optimization is to find the Pareto set, and the next is to


select a proper solution from the found Pareto solution set.


3. MULTIOBJECTIVE SIMULATED ANNEALING 


BY USING THE PARETO-BASED COST 


One of the good properties of simulated annealing in


single objective problem is that its properties are well


proved by mathematical approaches. Geman and Geman


[4] showed its convergence property to global optimum in


finite state optimization using Markov chain analysis.


Also Mitra, Romeo, and Sangiovanni-vincentelli [5]


showed the same result in his paper with different


approaches and also showed finite time analysis. One of


the main results in their works is summarized in the next


theorem [5].


2. MULTIOBJECTIVE OPTIMIZATION


For most multiobjective problems, there exists a set of 


non-dominated solutions that have a trade off relationship


each other, and one of the multiple objectives of each


solution cannot be improved without sacrificing any of


others. This concept is known as the Pareto optimality


[1].


Theorem 1. Uniform searching probability on the optima.


The probability of the searching agent to be located on the


global optima e is uniform over the global optima. That


is,
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The set of all Pareto-optimal decision vectors is called the


Pareto optimal set, efficient set, admissible set or the


Pareto frontier of the problem. The corresponding set of


objective vectors is called the non-dominated set. The


notion of Pareto optimality is only a first step toward the


practical solution of a multiobjective problem, which


usually involves the choice of a single compromise


solution from the non-dominated set according to some


preference information.


with is normalizing factor of generation function


which is usually considered to be one. 


( )g y


The proof of this theorem is shown in the [5]. This results


show that the searching agent will be located to every


global optimum with the uniform probability in the state 


space when the neighbor generating function is not biased. 


This indicates one important property for SA to be used in


the multiobjective optimization - uniform distribution


over all the global optima.


The simultaneous optimization of multiple, possibly


competing, objective functions deviate from scalar-


objective optimization. Instead of finding one perfect


solution, multiobjective optimization problem tend to be


characterized by a family of alternatives that must be


considered equivalent in the absence of information


concerning the relevance of each objective relative to the


others. 3.1 Pareto-based Cost 







We suggest a new multiobjective optimization method


that satisfies the detailed balanced condition of the SA. 


Instead using the cost functions directly, we used the


Pareto-based Cost Simulated Annealing (PCSA). The 


following is the Pareto-based cost (or Pareto cost in brief)


of the state :x
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Figure 1: The concept of the Pareto-based cost 
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and the transition probability is 
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Figure 1 shows the concept of Pareto-based cost of two-


objective optimization. The Pareto-based cost of state


is the area S


x


,x in which all states dominate state 


divided by whole state area 


,x


.S


The costs of state y  and z are also determined to be 


,S Sy 0 respectively as there are no state that dominates


the state .z We can also know that Pareto-based cost of 


state is higher than Pareto-based cost ofx .z  As these


two states are in the relation of undominated, it is clear 


that state z  is closer to the Pareto optimal than .x


.


M


3.2 Implementation 


However, there are significant problems in using the


Pareto-based cost algorithm practically. First, this


algorithm is a little ridiculous because calculating one


Pareto-based cost requires cost information of all the


states including optimal states. It means that it is much


worse than the full search algorithm. Second, when the


states have real values, it is impossible to calculate exact 


Pareto-based cost with digital computer, as the Pareto-


based cost requires integration on the state space. 


Therefore, we deal with these two significant problems by


the sampling. After sampling N states, the Pareto-based 


cost is calculated as follows. 
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We suggest two methods for calculating the sampled


Pareto-based cost. 


3.2.1 Neighbor Sampling


Neighbor sampling takes N samples within the small


boundary of current state and reduces the boundary as


time goes on. When a solution approaches the Pareto 


frontier, almost every sample is dominated by the solution.


As only dominating samples have meanings in the Pareto-


based cost algorithm, taking samples in a large area is 


wasteful. When the state transition is considered between


states  and neighbor sampling takes N  samples


within the boundary of hyper-sphere with radius of 


,x


x ,y


−x y  and center on the middle point of  Generally


the position of the next transition state  becomes nearer


to the current state  the radius becomes smaller.


,x y


y


,x


3.2.2 Population Sampling


If one wants to find many Pareto solutions at the same


time, using population information is a reasonable choice.


In this case, additional sampling is dispensable for


calculating the Pareto-based cost as population itself gives


enough information of the samples. Using population is


very simple in the PCSA. PCSA does not need any


information exchange like crossover of the genetic


algorithms. If someone wants to find M  Pareto solutions,


running independent PCSA is enough. Calculating


Pareto-based cost from the population information is also


simple: take 2M  solutions ( M  current solutions and M


next transition solutions which are generated by neighbor


generation) as the samples for Pareto-based cost. Also 







additional sampling will be helpful when the population 


size is too small.
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Figure 2: The concept of the neighbor sampling (left) and 


population sampling (right)


4. EXPERIMENTAL COMPARISON 


Even though comparing algorithms by simulation is not


always good approach because it has some problems, i.e. 


limitation of the simulation conditions, finite test-bed


functions, dependency of the simulation environment, it


must be helpful to understand the mechanism of the


algorithm and to find proper algorithm for a specific


problem.  In this section, we compare the performance of


the MOEAs and PCSA for the multiobjective


optimization. The difficulties of comparisons lie mainly


on the measures in the multiobjective optimization. In the


experiment, we only test the uniformity performance


between the well-known multiobjective genetic 


algorithms and the proposed simulated annealing method.


Other measuring metrics for the multiobjective


optimization, i.e., accuracy, are researching and remained


as a future work. The comparison paradigms are as


follows.


4.1 Experimental Setup 


4.1.1 Objective of the comparison


First of all, this experiment is focused on the comparison


between the PCSA and the MOEAs. We used three types 


of well-known MOEAs for comparison, which are FFGA 


[6], NSGA [7], and NPGA [8], but we did not consider


the comparison of them because there have been already


many research results about that. We considered them as


variations of MOEAs, not specific algorithms even though


their performances are different. Also we used only the


proposed Pareto based PCSA for the comparison.


4.1.2 Test functions


The experiment is focused on the real-valued parameter


optimization. The test problems are well known 18


optimization functions with and without the constraints [9, 


10]. Almost problems have two parameters and two costs,


which means there are two-dimensional parameter space


and two-dimensional cost space. Also there are problems


of four-dimensional parameter space and three-


dimensional cost space. The range of the parameter varies


much dependent on each problem.


4.1.3 Experiment condition


Basically it is not easy to set the experimental conditions


of many algorithms equal because they have different 


parameters. For example, the initial temperature and


cooling schedule are important for the PCSA, but


selection scheme and mutation rate are important for the


MOEAs. Additionally, in the multiobjective optimization,


MOEAs have one more important parameter - niche size


that mainly determines the uniformity and coverage


characteristics. However, PCSA is not affected by the 


niche size because it does naturally maintain the 


uniformity and wide coverage characteristics. The


parameters of both algorithms were chosen by the


heuristic methods. Strictly speaking, by these reason, this


experimental comparison may not be fare. However, the


conditions are equal to both algorithms because there is 


no additional parameter tuning for the algorithms. Table 1 


shows the parameters of both algorithms.


4.1.4 Uniformity measure 


We propose uniformity metric for the two-dimensional


cost function and suggest an algorithm for the higher


dimensional case. In the two-dimensional problem, it is


possible to use the distance sequence with the sorted 


index that is used in the coverage metric.
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where the I is the sorted index of the found solutions as 


used in the coverage metric. There is no difference


between sorting with respect to the first cost and the


second cost. is the distance of the costs between the 


i-th solution and (i+1)-th solution and 


, 1i i+


is the average 


value of the distance sequence . However, this 


method cannot be used in the higher dimensional costs


because there is no easy sorting method for the problem


with over three-dimensional cost. An easy method to


solve this problem is the make a distance sequence with 


the following method. 1) Find a solution with maximum


norm. 2) Calculate distance sequence of the solutions


from that solution. 3) Sort the distance sequence and find


the variance of them. It is not such a good metric because 


it does not measure uniformity exactly, but it can be a


practically useful metric.


, 1i i+


4.2 Experimental Result 







We tested the 24 functions repeatedly by ten times and got


averaged results. The graph in the Figure 3 shows how 


5. CONCLUSION 


Table 1: Parameters for the experiment


Parameters of PCSA and Evolutionary Algorithms 


PCSA Evolutionary Algorithms


Pop size 100 Pop size 100


Initial


temperature


100.0 Mutation


rate


0.3


Neighbor


generating


Fast SA Crossover


rate


1.0


Cooling


method


Fast SA Selection


method


FFGA/NSGA/


NPGA


Acceptance


method


Metropolis Niche size Problem


dependent


Terminatio


n condition 


10,000


iterations


Termination


condition


10,000 iteration 


We developed a new multiobjective optimization


algorithm by using the simulated annealing method. To


make the single objective algorithm to multiobjective one, 


we developed the Pareto-based cost and the test results


showed that the proposed algorithm has good uniformity


performance.
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