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Abstract. This paper elaborates on new ideas of a scatter search al-
gorithm for solving multiobjective problems. Our approach adapts the
well-known scatter search template for single objective optimization to
the multiobjective field. The result is a simple and new metaheuristic
called SSMO, which incorporates typical concepts from the multiob-
jective optimization domain such as Pareto dominance, crowding, and
Pareto ranking. We evaluate SSMO with both constrained and uncon-
strained problems and compare it against NSGA-II. Preliminary results
indicate that scatter search is a promising approach for multiobjective
optimization.

1 Introduction

Most optimization problems in the real world involve the optimization of more
than one function, which in turn can require a significant computational time
to be evaluated. This feature and the fact that the search space tends to be
very large in multiobjective problems (MOPs) make deterministic techniques
difficult to apply in order to obtain the Pareto-optimal solutions of MOPs. As
a consequence, stochastic techniques have been widely proposed and applied in
this domain. Among them, evolutionary algorithms have been investigated by
many authors, and some of the most well-known algorithms for solving MOPs
belong to this class (e.g. NSGA-II [1], PAES [2], SPEA-2 [3], and micro-GA [4]).

Many evolutionary algorithms for solving MOPs are some kind of genetic al-
gorithm. This implies they use the concepts of population, crossover, mutation,
and similar genetic operators (an exception is PAES, which is an (1+1) evolu-
tion strategy). We are interested in studying the application of scatter search,
another kind of population-based evolutionary algorithm, to solve MOPs. Scatter
search has proved to be very effective for solving a diverse set of single objective
optimization problems from both classical and real world settings [5], but little
attention has been paid to its use in multiobjective optimization (existing works
almost reduce to [6-8]).

Scatter search is based on using a small population known as the reference set,
whose individuals are combined to construct new solutions which, in contrast to
other evolutionary algorithms, are obtained in a systematic way (i.e., stochastic



procedures such as crossover and mutation are not used). Furthermore, these
solutions can be improved by applying a local search method. The reference set
is initialized from an initial population composed of dispersed solutions, and it
is updated taking into account the results of the local search improvement.

The scatter search template presented in [9] has served as the main reference
for most of the scatter search implementations to date. The template consists
of five methods: diversification generation, improvement, reference set update,
subset generation, and solution combination. This template is used in [10] to de-
sign a scatter search procedure for single objective optimization problems with
continuous bounded variables. In this paper, we have taken this implementation
as the basis of a scatter search algorithm for multiobjective optimization, trying
to modify it as little as possible with the idea of getting a simple algorithm.
We have named this algorithm SSMO (Scatter Search for Multiobjective Opti-
mization). Our main goal is to identify and study new issues that can affect the
performance of the algorithm for MOPs.

The contributions of our work can be summarized as follows:

— We propose a scatter search algorithm for solving constrained as well as
unconstrained MOPs. The algorithm is based on incorporating the concepts
of Pareto dominance, ranking, and crowding, and they are applied to define
the improvement and reference set update methods of the scatter search
algorithm.

— Two strategies for building the reference set are studied. The first one uses
ranking and crowding to carry out a sorting of the population to obtain the
best individuals, while the second strategy is based on applying a clustering
technique to get a set of centroids of the individuals with best rank.

— The algorithm is evaluated using a benchmark of constrained plus uncon-
strained MOPs, and it is compared against the NSGA-II algorithm.

The remaining of the paper is organized as follows. In Section 2, we discuss
related works concerning multiobjective optimization and scatter search. In Sec-
tion 3, we describe our proposal. Experimental results are presented in Section 4.
Finally, in Section 5 we give some conclusions and lines for future research.

2 Related Work

The application of scatter search to multiobjective optimization has received
little attention until recently. We analyze here the proposals presented in [6], [7],
and [8]. We use the following terminology: P is the initial set, k is the number
of objective functions, and the reference set is composed of p + ¢ individuals,
which are obtained by selecting the best p solutions of P, while the remaining
¢ individuals are selected from both P and the current reference set by using a
mechanism promoting diversity.

MOSS [6] is an algorithm that proposes a tabu/scatter search hybrid method
for solving nonlinear multiobjective optimization problems. Tabu search is used
in the diversification generation method to obtain a diverse approximation to



the Pareto-optimal set of solutions; it is also applied to rebuild the reference set
after each iteration of the scatter search algorithm. To measure the quality of
the solutions, MOSS uses a weighted sum approach. This algorithm is compared
against NSGA-II, SPEA-2, and PESA on a set of unconstrained test functions.

Similarly to MOSS, SSPMO [7] is a scatter search algorithm which includes
tabu search, although they differ in the use of different tabu search algorithms.
SSPMO obtains a part of the reference set by selecting the best solutions of the
initial set P for each of the k objective functions. The rest of the reference set
is obtained by using the usual approach of selecting the remaining solutions in
P that maximize the distance to the solutions already in the reference set. In
contrast to MOSS, the set P is updated with solutions generated in the scatter
search main loop. SSPMO is evaluated by using a benchmark of unconstrained
test functions.

Compared to MOSS and SSPMO, our proposal is also applied for solving
MOPs with continuous bounded variables, but we additionally consider con-
strained MOPs. We use a non-dominating sorting procedure to build the refer-
ence set from the initial set P, and a local search based on a mutation operator
is used instead of a tabu search to improve the solutions obtained from the
reference set. MOSS and SSPMO do not seem to search a Pareto front with a
bounded number of solutions, as it is usual in many evolutionary algorithms for
solving MOPS, but they search as many solutions as possible; we consider the
former goal, and it is achieved by using the set P as a population where all the
non-dominated solutions found in the scatter search loop are stored.

In [8] a scatter search algorithm for solving the bi-criteria multi-dimensional
knapsack problems is proposed. This algorithm is tailored to solve a specific
problem, so the scatter search methods differ significantly of those used in this
work.

Concerning evolutionary algorithms, the micro-GA [4] is similar to our pro-
posal in the sense that they two use a small population and a reinitialization
process. However, in the micro-GA this population is very small (typically four
members), it is obtained by randomly choosing individuals of another popula-
tion composed of non-variable and variable parts, and crossover and mutation
operators are used to generate new individuals. In contrast, in SSMO the size of
the reference set ranges between ten to twenty solutions, which are selected from
an initial population choosing the best p individuals according to two different
strategies, and new individuals are obtained from the reference set by apply-
ing a systematic combination procedure. Finally, the micro-GA uses an external
archive to store the non-dominated solutions found, while SSMO uses the initial
set P already included in the standard scatter search template.

3 Non-Dominated Sorting Scatter Search Algorithm

SSMO is based on the scatter search template proposed in [9] and its application
to solve bounded continuous single objective optimization problems [10]. The
template consists of the definition of five methods, as depicted in Fig. 1. We
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Fig. 1. Outline of the standard scatter search algorithm.
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first describe these methods, focusing mainly in the improvement and reference
set update procedures, which constitute the basis of our proposal. Then, we
detail how the initial population P is managed. Finally, we outline the overall
algorithm.

3.1 Scatter Search Methods

Diversification Generation Method This method is basically the same one
proposed in [10]. The goal is to obtain an initial set P of diverse solutions. The
method consists in dividing the range of each variable in a number of sub-ranges
of equal size; then, each solution is obtained in two steps. First, a sub-range is
randomly selected, with the probability of selecting a sub-range being inversely
proportional to its frequency count (the number of times the sub-range has been
selected); second, a value is randomly generated within the selected range.

Improvement Method The idea behind this method is to use a local search
algorithm to improve the solutions in the initial set P. In contrast to [10], where
a simplex method is used, we have to deal with MOPs which have constraints, so
simplex seems not adequate. Instead, we propose an improvement method based
on a mutation operator and a Pareto dominance test. We describe the method
in Fig. 2.

The improvement method is simple. Taking as an argument an individual,
this is repeatedly mutated with the aim of obtaining a better individual. The
term “better” is defined here in a similar way as the constrained-dominance
approach used in NSGA-II [1]. The constraint violation test checks whether two



Individual improvement(Individual originalIndividual, int iter) {
Individual improvedIndividual
repeat iter times {
mutatedIndividual = mutation(originalIndividual)
if (the problem has constraints) {
evaluateConstraints (mutatedIndividual)
best = constraintTest (mutatedIndividual, originalIndividual)
if (none of them is better than the other one) {
evaluate (mutatedIndividual)
best = dominanceTest (mutatedIndividual, originalIndividual)
Yy /7 if
else if (mutatedIndividual is best)
evaluate (mutatedIndividual)
Y /7 if
else { // the problem has no constraints
evaluate (mutatedIndividual)
best = dominanceTest(mutatedIndividual, originallndividual)
} // else
if (mutatedIndividual is best)
originalIndividual = mutatedIndividual
else if (originalIndividual is best)
delete (mutatedIndividual)
else { // both individuals are non-dominated
add originallndividual to P
originalIndividual = mutatedIndividual
} // else
} // repeat
return originalIndividual
} // improvement

Fig. 2. Pseudocode describing the improvement method.

individuals are feasible or not. If one of them is feasible and the other one is
not, or both are infeasible but one of them has an smaller overall constraint
violation, the test returns the winner. Otherwise, a dominance test is performed
to decide whether one of the individuals dominates the other one. If the original
individual wins, the mutated one is deleted; if the mutated individual wins, it
replaces the original one; finally, if they are both non-dominated, the original
individual is moved into the initial set P and the mutated individual becomes
the new original one.

We can point out several features of the proposed improvement method. First,
mutated individuals are only evaluated if they are going to replace the original
individual. Second, in the case of finding several non-dominated solutions in the
procedure, they are inserted into P, which could eventually fill. The strategy we
propose to deal with this issue is explained in Section 3.2. Finally, we can adjust
the improvement effort by tuning the parameter iter.



referenceSetUpdate (bool build) {
if (build) { // build a new reference set
select the p best individuals of P
build the RefSetl with these p individuals
compute Euclidean distances in P to obtain q individuals
build the RefSet2 with these q individuals
Y /7 if
else { // update the reference set
for (each new solution s) {
test to insert s in RefSetl
if (test fails)
test to insert s en RefSet2
if (test fails)
delete s
} // for
} // else
} // referenceSetUpdate

Fig. 3. Pseudocode describing the reference set update method.

Reference Set Update Method The reference set, RefSet, is a collection of
both high quality solutions and diverse solutions that are used to generate new
individuals by applying the solution combination method. The set itself is com-
posed of two subsets RefSet; and RefSet, of size p and ¢, respectively. The first
subset contains the best quality solutions in P, while the second subset should
be filled with solutions promoting diversity. In [7] the RefSet, is constructed by
selecting from P those individuals whose minimum Euclidean distance to the
RefSet, is the highest. We keep the same strategy for building the RefSet,, but,
as is usual in the multiobjective optimization domain, we have to define the con-
cept of “best individual” to build the RefSet;. On the other hand, the reference
set update method is used to generate the reference set, but also to update it
with the new solutions obtained in the scatter search main loop (see Fig. 1). A
scheme of this method is included in Fig. 3.

To select the best p individuals in P we propose the following two strategies:

1. The first approach is to carry out a non-dominated sorting of P. However, as
there will typically be several individuals per rank, some kind of niching value
can be assigned to them to decide which are the most promising solutions.
We have used the crowding distance used in NSGA-II, but other kind of
niching measurement are valid (e.g., the density applied in SPEA-2). Thus,
the RefSet; is composed of the best ranked individuals, being the individuals
with the same rank ordered by its crowding distance.

2. The second strategy consists in ranking the population P and then applying
a clustering algorithm, such as k-means or a minimum spanning tree method,
to obtain p centroids of the set composed of individuals with best rank. The
centroids are individuals which are representative of the set of solutions
they derive, so they can be promising elements to compose the RefSet;. We



// Test to update the RefSetl with individual s
bool dominated = false
for (each solution r in RefSetl)
if (s dominates r)
remove r from RefSetl
else (if r dominates s)
dominated = true
if (not dominated)
if (RefSetl not full)
add s to RefSetl
else
add s to P
else // the individual s is dominated
// test to update the RefSet2 with individual s

Fig. 4. Pseudocode describing the test to add new individuals to RefSet;.

use the Euclidean distance as the metric to assess the similarity among the
individuals.

Once the reference set is completed, its solutions are combined to obtain new
solutions which, after applying the improvement method to them, are checked
against those belonging to the reference set. According to the scatter search
template, a new solution can become a member of the reference set if either one
of the following conditions is satisfied:

— The new individual has better objective function value than the individual
with the worst objective value in RefSet; .

— The new individual has a better distance value to the reference set than the
individual with the worst distance value in RefSets.

While the second condition holds in the case of multiobjective optimization,
we have again the decide about the concept of best individual concerning the
first condition. To determine whether a new solution is better than another one
in RefSet; (i.e., the test to insert a new individual s in RefSet;, as it appears in
Fig. 3) we cannot use a ranking procedure because the size of this population
usually is small (typically the size of the whole reference set is 20 or less). Our
approach is to compare each new solution 4 to the individuals in RefSet; using
a dominance test. This test is included in Fig. 4. (For the sake of simplicity,
we do not consider here constraints in the MOP. The procedure to deal with
constraints is as explained in the improvement method in Fig. 2.)

Let us note that a new individual does not replace another one in RefSet;.
Instead, it is inserted into that set if it is non-dominated by RefSet; and this
is not full; otherwise, it is sent to the set P. This way, we try to keep all non-
dominated solutions found by using P as a kind of archive of non-dominated
solutions. As we mentioned in the improvement method subsection, this can
lead the set P to fill. This issue is considered in Section 3.2.



Subset Generation Method This method generates subsets of individuals,
which will be used for creating new solutions with the solution combination
method. Several kinds of subsets are possible [10]. We restrict this method to
generate all pairwise combinations of solutions in the reference set.

Solution Combination Method The idea of this method is to find linear
combinations of reference solutions. Again, we use the same method proposed
in [10], where each pair of solutions z; and z, can lead to two, three, or four
new solutions, depending on whether z; and z belong to RefSet; or RefSets.

3.2 Managing the Initial Population

Prior to describing the full algorithm of SSMO, we still need to define a procedure
to manage the set P. In particular, when new non-dominated solutions are found
by the improvement and reference set update methods, they can be inserted in
P, which can eventually fill. This issue is also important because diversity can
be improved depending on the applied strategy.

Our approach is to allow the set P to grow until a certain limit. Therefore, if
P is intended to store up to ¢ individuals, we extend this limit to, for example, 2¢.
When a new individual is going to be added to P, a test checking whether there
is already an individual with the same objective function values is executed. If
the test is successful, the individual is deleted; otherwise, it is inserted into P.
If P has reached to its limit, a cutoff procedure is invoked.

The cutoff procedure performs a ranking of P and then it removes all indi-
viduals except those with the best rank (i.e., the individuals with rank equal to
0). If after the removing the size is greater than ¢, the crowding distance of the
individuals is calculated, P is ordered according to this value, and the solutions
falling into positions beyond ¢ are removed.

3.3 Outline of SSMO

Once the five methods of the scatter search have been proposed and a procedure
to manage the population P has been defined, we are now ready to give an
overall view of the technique. The outline depicted in Fig. 5 shows that the
SSMO algorithm is simple.

Initially, the diversification generation method is invoked to generate s initial
solutions, and each of them is passed to the improvement method. The result is
the initial set P. Then, a number of iterations is performed (the outer loop in
Fig. 5). In each iteration, the reference set is built, the subset generation method
is invoked, and the main loop of the scatter search algorithm is executed until
there are no new solutions. Then, the individuals in RefSet; are inserted into P.
The number of iterations can be fixed, or it can depend on other conditions; here,
we have used as stop condition the computation of a preprogrammed number of
fitness evaluations (see next section). Finally, the cutoff procedure is invoked to
remove dominated solutions from P.



construct the initial set P
// outer loop
until (stop condition) {
referenceSetUpdate (build=true)
subsetGeneration()
// scatter search main loop
while (new subsets are generated) {
combination()
for (each combinated individual) {
improvement () ;
referenceSetUpdate (build=false)
} // for
subsetGeneration()
} // while
add RefSetl to P
} // until
cutoff ()

Fig. 5. Outline of the SSMO algorithm.

4 Computational Results

This section is devoted to the evaluation of SSMO. We have chosen several test
problems taken from the specialized literature, and we have analyzed the results
taking as a reference those obtained with NSGA-II.

Given that SSMO is a real-coded evolutionary algorithm, we have used the
real-coded NSGA-II with the parameter settings suggested in [1]. A crossover
probability of p. = 0.9 and a mutation probability p,, = 1/n (where n is the
number of decision variables) are used. The operators for crossover and mutation
are simulated binary crossover (SBX) and polynomial mutation, with distribu-
tion indexes of 1, = 20 and 7,,, = 20, respectively. The population size is 100
individuals, and the algorithm is run for 250 iterations.

For SSMO we have chosen a reasonable set of values, and we have not made
any effort to find the best parameter settings. The size of P is 100, and it can
grow up to 200 individuals. The mutation operator used in the improvement
method is the same as in NSGA-II, polynomial mutation, with the same value
of N,. The size of the RefSet; and RefSets is 10 in both sets. The number of
iterations in the improvement method has a value of iter = 10. The algorithm
is run until 25000 function evaluations are computed.

SSMO is written in C++. We have compiled the software with GCC V3.2 and
optimization level -O3, and the experiments have been executed in a Pentium 4
at 2.8GHz with 512 MB of RAM, running Suse Linux 8.1 (kernel 2.4.19).

4.1 Test Problems

We have selected both constrained and unconstrained problems that have been
used in studies in this area. Given that they are widely known, we do not include
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full details of them here for space constraints. They can be found in the cited
references and also in books such as [11] and [12].

The selected unconstrained problems include the studies of Schaffer [13], Fon-
seca [14], and Kursawe [15], as well as the problems ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6, which are defined in [16]. Their formulation is provided in Table 1.
The constrained problems are Osyczka2 [17], Tanaka [18] (which are respectively
known as MOP-C2 and and MOP-C4 in [11]), Srinivas [19], Constr_Ex [1], and
Golinski [20]. They are described in Table 2.

4.2 Performance Metrics

Several metrics have been proposed for measuring the results of Pareto-based
multi-objective optimization algorithms. In this work we use the metrics My [16]
and A [1]. The former gives the average distance to the Pareto optimal set and
the latter is a diversity metric that measures the extent of spread achieved among
the obtained solutions. Their formulations are:

1 L
My =—= " min{||d - d||*;d € V'} (1)

Y|
dey!
where Y is the set of all possible objective vectors, Y' C Y is the set of objective
vectors found, and Y C Y is the set of solutions of the Pareto optimal set. This
metric ideally should be zero. A is defined as:
i+ TN |d - d]

df +d; + (N — I)CZ )




Table 2. Constrained test functions.
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where d; is the Euclidean distance between consecutive solutions, d is the mean
of these distances, and d;y and d; are the Euclidean distances to the extreme
solutions of the exact Pareto front in the objective space (see [1] for the details).
The ideal value of A is also 0, indicating a perfect spreadout of the solutions
along the Pareto front. To calculate these metrics we have used the true Pareto
fronts obtained by enumeration of the test problems (excepting the ZDTx family)
publicly available at http://neo.lcc.uma.es/software/esam.

4.3 Discussion of the Results

The results are summarized in Table 3 (M) and Table 4 (A). For each problem,
we have carried out 30 independent runs, and the tables include the mean z and
standard deviation o,,, as well as the result of an ANOVA (Analysis of Variance)
test with a 5% of significance level (marked as “+” in tables). An ANOVA [21]
tests the difference between the means of two or more sets of numeric values.

We have tested two versions of our algorithm. The first version, SSMOv1,
selects the best individuals from the reference set using ranking and crowding,
while the second version, SSMOv2, uses a clustering procedure to obtain the
centroids that will compose the RefSet! (see Section 3.1).



Table 3. Mean and standard deviation of the convergence metric M1*.

NSGA-II SSMOv1 SSMOv2
Problem T on T on T on A
Schaffer 0.0223 0.0011| 0.0225 0.0011| 0.0225 0.0012 -
Fonseca [0.0025  0.0002| 0.0021  0.0002| 0.0019  0.0002 +
Kursawe |0.0134 0.0027| 0.0531 0.0663| 0.0185 0.0036 +
ZDT1 0.0005 6.3e-5| 0.0004 5.7e-5| 0.0004 4.2e-5 +
ZDT2 0.0004 3.2e-5| 0.0004 2.9e-5| 0.0004 2.8e-5 +
ZDT3 0.0025 0.0002| 0.0016 9.3e-5| 0.0020 0.0002 +
7ZDT4 0.0044 0.0029| 25.6412 12.6266| 38.4334 11.1194 +
ZDT6 0.0764 0.0076| 0.5954 0.3170| 0.2604 0.1773 +
Tanaka 0.0044 0.0003| 0.0095 0.0010| 0.0096 0.0048 +
Osyczka2 |5.4688 8.6247| 16.8277 15.2031| 13.8621 11.9258 +
Srinivas |0.2570 0.0421| 0.2839 0.0489| 0.2274 0.0558 +
Constr_Ex|0.0053 0.0003| 3.5802 0.4226| 3.0383 0.2215 +
Golinski |4.0790 0.7839| 35.2460 24.9212| 10.9907 11.8089 +

We analyze first the two versions of SSMO. Considering the metric M1*, we
can observe that SSMOv2 converges better in 7 out of the 13 problems, while
SSMOv1 provides better results only in 3 problems. If we take into account
the metric A, SSMOv1 and SSMOv2 behave better in seven and six problems,
respectively. These observations indicate that the use of centroids for building
the reference set is a promising approach for improving the accuracy of the
algorithm that can be used as the basis of future developments.

We now turn to compare our algorithm with NSGA-IL. If we analyze the
unconstrained problems, we observe that, with the exception of the problems
ZDT4 and ZDT6, the two versions of SSMO obtain competitive performance. If
we consider that this is just a first approach of using scatter search for MOPs,
this sounds quite promising.

Concerning the constrained problems, the two metrics indicate that the re-
sults of SSMO are comparable to NSGA-II in terms of diversity, but they are
slightly worse in terms of convergence. With respect to the problems Tanaka and
Srinivas our two proposals show comparable performance to NSGA-II.

In order to better illustrate the working principles of SSMO, we show a
typical simulation result with the problem Kursawe. This problem has three dis-
continuous regions in the Pareto-optimal front. Fig 6 shows the true Pareto front
obtained by enumeration (left) and the solutions obtained by SSMOv2. Next,
we show the nondominated solutions of the problem Srinivas. The true Pareto
front yielded by the enumerative search appears in Fig 7 (left), while the right
part of that figure shows the resulting front from SSMOv2. Finally, in Fig. 8 we
show the results of solving the problem ZDT3 with NSGA-II (left) and SSMOv2
(right). This problem has a number of disconnected Pareto-optimal fronts.

We conclude that a more comprehensive study is still necessary to understand
the behavior of SSMO. The choice of a size of 10 for both the RefSet; and
RefSet, intends to keep a balance between intensification and diversification,



Table 4. Mean and standard deviation of the diversity metric A.

NSGA-II SSMOv1 SSMOv2
Problem T On T on T on A
Schaffer 0.4202 0.0264| 0.3984 0.0273| 0.4323 0.0268 +
Fonseca |0.3756 0.0259| 0.3448 0.0324| 0.3695 0.0359 +
Kursawe [0.5380 0.0285| 0.6720 0.0785| 0.5043 0.0542 +
ZDT1 0.5252 0.0333| 0.4855 0.0770| 0.4871 0.0455 +
ZDT2 0.5149 0.0385| 0.5981 0.1660| 0.4450 0.0371 +
ZDT3 0.6278 0.0288| 1.1508 0.0685| 0.7004 0.0582 +
7ZDT4 0.4843 0.1750| 0.9219 0.0544| 0.9766 0.0886 +
ZDT6 0.6078 0.0404| 1.3229 0.0604| 1.2989 0.1379 +
Tanaka 0.6427 0.0256| 0.8694 0.0463| 1.0619 0.0931 +
Osyczka2 |0.7884 0.0958| 1.0817 0.1451| 0.9398 0.2197 +
Srinivas |0.3843 0.0353| 0.3515 0.0347| 0.3964 0.0378 +
Constr_Ex|0.7655  0.0371| 0.9070  0.0468| 0.8057  0.0228 +
Golinski [0.7516 0.0289| 0.9908 0.1682| 0.6840 0.1137 +

but most probably other values would enhance the search. On the other hand,
our experiments reveal that using a different strategy to update the RefSet;
with new improved individuals allows better performance to be obtained with
some difficult problems; for example, in the case of the problem ZDT4, the mean
value of the metric M1* reduces from 38.4334 to 10.4382, and in 15 of the 30
experiments, the value of M1* is below 0.0038.

5 Conclusions and Future Work

We have proposed a first approximation to the utilization of a scatter search
method to solve multiobjective optimization problems. Two variants of our ap-
proach have been compared against NSGA-II in thirteen different difficult prob-
lems taken from the literature. In the unconstrained test functions used, our
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Fig. 6. Exact Pareto front for the problem Kursawe (left) and nondominated solutions
obtained with SSMOv2 (right).
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Fig. 8. Nondominated solutions obtained for the problem ZDT3 with NSGA-II (left)
and SSMOv2 (right).

algorithm has obtained comparable performance to NSGA-II in six of the eight
selected problems. In the unconstrained problems, a more obscure scenario ap-
pears, being acccurate for Tanaka and Srinivas, but showing difficulties to solve
the problems Constr_Ex, Osyczka2, and Golinski.

A deep study to find the best parameters defining the behavior of SSMO is a
matter of future work. In this sense, we also plan to study new strategies for the
improvement and reference set update methods, as well as other approaches to
store and manage the non-dominated solutions encountered during the execution
of the algorithm, such as using an external archive of nondominated solutions.
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