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Multiobjective Evolutionary Computation for Supersonic
Wing-Shape Optimization

Shigeru Obayashi, Daisuke Sasaki, Yukihiro Takeguchi, and Naoki Hirose

Abstract—This paper discusses the design optimization of a
wing for supersonic transport (SST) using a multiple-objective
genetic algorithm (MOGA). Three objective functions are used to
minimize the drag for supersonic cruise, the drag for transonic
cruise, and the bending moment at the wing root for supersonic
cruise. The wing shape is defined by 66 design variables. A Euler
flow code is used to evaluate supersonic performance, and a poten-
tial flow code is used to evaluate transonic performance. To reduce
the total computational time, flow calculations are parallelized
on an NEC SX-4 computer using 32 processing elements. The
detailed analysis of the resulting Pareto front suggests a renewed
interest in the arrow wing planform for the supersonic wing.

Index Terms—Aerodynamics, aircraft, genetic algorithms, opti-
mization methods.

I. INTRODUCTION

T HE development of next-generation supersonic transport
is being considered worldwide to respond to the increasing

demand on air traffic. The aerodynamic design of such aircraft
must account for drag reduction as well as sonic boom min-
imization. However, drag reduction is in conflict with sonic
boom minimization. Since the acceptability of supersonic trans-
port is very sensitive to sonic booms over populated areas, one
of the design choices is to allow supersonic flight over sea, and
to only have transonic flight over land. Although such a decision
excludes the sonic boom from the design consideration, the de-
sign is now faced with transonic performance of the aircraft.

This paper considers the multipoint aerodynamic optimiza-
tion of a wing shape for supersonic aircraft, both at a super-
sonic cruise condition and at a transonic cruise condition. Aero-
dynamic drag will be minimized at both cruise conditions under
lift constraints. The aerodynamic optimization of the wing plan-
form, however, drives the wing to have an impracticably large
aspect ratio. In reality, the aspect ratio of the wing is constrained
by other disciplines, such as structure and equipment.

In standard aircraft design procedure, the wing planform
shape has to be determined at an early stage because the
planform shape is closely related to aircraft sizing. In this stage,
designers should account for tradeoffs among aerodynamic
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performance, structural strength and weight, fuel storage, and
so on. Therefore, an automated design of the wing planform
shape requires multidisciplinary design optimization (MDO)
based on a system composed of aerodynamics, structural dy-
namics, etc. [1]. Because cross-disciplinary tradeoffs are built
into the MDO model implicitly, a highly sophisticated MDO
model is needed to obtain realistic wing planform shapes.

For the simplicity of the present wing model, however, the
MDO model of a wing is not considered. Instead, the aerody-
namic load is minimized by assuming that less aerodynamic
load will lead to a lighter, sustaining wing structure. There-
fore, minimization of the wing root bending moment is added
as a third design objective. On the other hand, the present wing
model does not have any built-in cross-disciplinary tradeoffs
originally because no wing structure is specified. This means
that each design objective may be treated independently.

The present optimization problem can be regarded as mul-
tiobjective (MO) optimization. MO optimization seeks to opti-
mize the components of a vector-valued objective function. Un-
like single-objective optimization, the solution to this problem is
not a single point, but a family of points known as the Pareto-op-
timal set. Thus, it is more natural to find a set of compromise so-
lutions, known as Pareto solutions, than to find a single optimal
solution corresponding to a particular tradeoff.

By maintaining a population of solutions, genetic algorithms
(GA) (or other evolutionary algorithms) can search for many
Pareto-optimal solutions in parallel. This characteristic makes
GA’s very attractive for solving MO problems. As a solver for
MO problems, the following two features are desired: 1) the
solutions obtained are Pareto optimal, and 2) they are uniformly
sampled from the Pareto-optimal set. To achieve these, MOGA’s
have been introduced successfully in [2].

Furthermore, it was shown that the so-called bestselection
helps to find the extreme Pareto solutions [3]. This form of se-
lection picks up the best individuals among parents and
children for the next generation in a manner similar to CHC [4].
The extreme Pareto solutions are the optimal solutions of the
single objectives. By examining the extreme Pareto solutions,
the quality of Pareto solutions can be measured. The present
MO problem will be solved by using MOGA coupled with the
best selection.

II. A PPROACH

In GA’s, the natural parameter set of the optimization problem
is coded as a finite-length string. Traditionally, GA’s use binary
numbers to represent such strings: a string has a finite length,
and each bit of a string can be either 0 or 1. For real-valued
function optimization, however, it is more natural to use real
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Fig. 1. Pareto ranking method for maximization off andf .

numbers (as might be done with evolution strategies or evolu-
tionary programming). The length of the real-number string cor-
responds to the number of design variables.

A. Crossover and Mutation

A simple crossover operator for real-valued strings is the av-
erage crossover [5], which computes the arithmetic average of
two real numbers provided by the mated pair. In this paper, a
weighted average is used as

Child1 Parent1 Parent2

Child2 Parent1 Parent2 (1)

where Child1, 2 and Parent1, 2 denote encoded design variables
of the children (members of the new population) and parents
(a mated pair of the old generation), respectively. The uniform
random number in [0, 1] is regenerated for every design
variable.

Mutation takes place at a probability of 0.2 initially, and the
rate declines linearly during the evolution. Equation (1) will
then be replaced by

Child1 Parent1 Parent2

Child2 Parent1 Parent2

(2)

where is also uniform random numbers in [0, 1] and
determines the range of possible mutation.

B. Multiobjective Pareto Ranking

To search Pareto-optimal solutions by using MOGA, the
ranking selection method [6] can be extended to identify the
near-Pareto-optimal set within the population of GA. To do
this, the following definitions are used: supposeand are
in the current population, and is the set of
objective functions to be maximized.

1) is said to be dominated by (or inferior to) if is
partially less than , i.e.,

and
2) is said to be nondominated if there does not exist any

in the population that dominates

Fig. 2. Wing planform definition based on six design variables.

TABLE I
DOMAIN FOR WING PLANFORM DESIGN

VARIABLES

Nondominated solutions within the feasible region in the objec-
tive function space give the Pareto-optimal set.

Let us consider the following optimization:

maximize:

subject to: and

The Pareto front of the present test case becomes a quarter arc
of the circle at .

Consider an individual at generation (Fig. 1) which
is dominated by individuals in the current population.
Following [2], its current position in the individuals’ rank can
be given by

(3)

All nondominated individuals are assigned rank 1, as shown
in Fig. 1. The fitness values are reassigned according to rank
as an inverse of their rank values. Then the stochastic universal
sampling (SUS) method [7] takes over with the reassigned
values.

C. Fitness Sharing

To sample Pareto-optimal solutions from the Pareto-optimal
set uniformly, it is important to maintain genetic diversity. The
model used here to accomplish this is called fitness sharing (FS)
[6]. The sharing function depends on the distance between indi-
viduals, which can be measured with respect to a metric in ei-
ther genotypic or phenotypic space. A genotypic sharing mea-
sures the interchromosomal Hamming distance. A phenotypic
sharing can further be classified into two types. One measures
the distance between the decoded design variables. The other, in
constrast, measures the distance between the designs’ objective
function values. Here, the latter phenotypic sharing is employed
since we seek a global tradeoff surface in the objective function
space.
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Fig. 3. Pareto solutions in the objective function space defined by supersonic and transonic drag coefficients and bending moment along with the sample wing
planform shapes.

This scheme introduces a new parameter, the niche size
. The choice of has a significant impact on the per-

formance of MOGA’s. Reference [2] gave a simple estimation
of in the objective function space as

(4)

where is a population size, is a dimension of the objective
vector, and and are maximum and minimum values of
each objective, respectively. This formula has been adapted suc-
cessfully here. Since this formula is applied at every generation,
the resulting is adaptive to the population during the evo-
lution process. Niche counts can be consistently incorporated
into the fitness assignment according to rank by using them to
scale individual fitness within each rank.

D. Physical Model

Aerodynamic forces acting on aircraft can be obtained from
integrating the pressure and friction of air on the aircraft sur-
face. The pressure and friction can be calculated by solving the
governing equations of fluid. The fluid model determines the
complexity of physics considered. For the aircraft design, the
potential flow is often assumed. This fluid model is used for
the transonic flow in this study. For the supersonic flow, a more
complicated fluid model is used here to allow more shape vari-
ations of wing planforms. Such fluid is governed by the Euler
equations.

The present optimization problem can be stated as follows.
Objective Functions:

1) Supersonic drag coefficient .

Fig. 4. Tradeoffs between supersonic and transonic drag coefficients
represented by the projection of Pareto solution.

Fig. 5. Tradeoffs between bending moment and supersonic drag coefficients
represented by the projection of Pareto solutions.
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(a)

(b)

(c)

(d)

Fig. 6. Comparison of selected Pareto solutions with NAL’s design. (a) NAL’s
design performance plotted on the projection of Pareto solutions in Fig. 7 and
Pareto solutionsA toF selected for comparison. (b) Planform shapes of selected
Pareto solutions having similar transonic drag coefficients as NAL’s design has.
(c) Planform shapes of selected Pareto solutions having similar supersonic drag
coefficients as NAL’s design has. (d) Planform shape of Pareto solutionF that
performs better than NAL’s design in all three objective functions.

2) Transonic drag coefficient .
3) Bending moment at the wing root .
Constraints:

1) Lift coefficients and at cruise conditions.
2) Wing area.
3) Wing thickness.

TABLE II
PERFORMANCECOMPARISON AMONG SELECTED PARETO SOLUTIONS

A–F AND NAL’s DESIGN

The supersonic drag to be minimized is evaluated by using a
Euler flow solver [7]. The transonic drag is evaluated by using a
full potential flow solver [8]. The bending moment is evaluated
by directly integrating the pressure load at the supersonic cruise
condition. The flow conditions are and
for supersonic cruise, and and for
transonic cruise. The lift is necessary for supporting the aircraft
weight at each cruise condition. The wing area is restricted for
the takeoff and landing performance, and the wing thickness is
restricted for the structural indignity.

The wing planform is determined by six design variables
as shown in Fig. 2. The variable ranges are summarized in
Table I. A wing area is fixed at . A chord length at
the wing tip is determined automatically due to the given
wing area. An airfoil shape is defined by its thickness distri-
bution and camber line. The thickness distribution is given
by a Bezier curve defined by nine polygons. The maximum
thickness is constrained from 3 to 4% chord lengths. The
location of the maximum thickness is also constrained from
15 to 70% chordwise locations. The thickness distributions
are defined at the wing root, kink, and tip. They are linearly
interpolated in the spanwise direction. The total number of
polygons is 27 for the thickness definition. The camber sur-
faces are defined at the inboard and outboard of the wing
separately. Each surface is given by the Bezier surface using
four polygons in the chordwise direction and three polygons
in the spanwise direction. The complete camber surface is
represented by 48 polygons. Finally, the wing twist is defined
by a -spline curve with six polygons. A monotonic vari-
ation is enforced by rearranging the polygons in numerical
order in the spanwise direction. In total, 66 design variables
are used to control those polygons and the planform shape
(note that the end polygons are fixed, except for the twist).
The chromosome is therefore the string of 66 real numbers.

III. RESULTS

A. Pareto Front

MOGA is used as a design optimizer. Flow calculations were
parallelized on 32 processing elements of an NEC SX-4 com-
puter at the Computer Center of Tohoku University using the
simple Master–Slave concept. The population size was set to 64,
and 70 generations were run. The evolution was stopped after
the progress of the Pareto front was saturated for several gener-
ations. To constrain the lift coefficient, three flow calculations
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Fig. 7. Various planform shapes proposed for the supersonic wing design.

were used per drag evaluation. The total computational time was
roughly 100 h.

Fig. 3 shows the resulting Pareto solutions in the three-di-
mensional objective function space. They form an approximate
tradeoff surface. Typical planform shapes are also plotted in the
figure. The extreme Pareto solutions (denoted as bending mo-
ment minimum, minimum, minimum) have physi-
cally reasonable shapes: a very short span length (corresponding
to a large taper ratio as well as a low aspect ratio) for mini-
mizing bending moment, high aspect ratios for minimizing in-
duced drag, and larger sweep angles for minimizing wave drag.
These results indicate the validity of the present optimization.

Tradeoffs between the objectives can be observed more easily
in the two-dimensional projections, as shown in Figs. 4 and 5.
Fig. 4 presents the tradeoffs between supersonic and transonic
drag coefficients. The Pareto solutions are plotted in different
symbols according to the aspect ratio. Lower drag coefficients
are obtained from larger aspect ratios in general, as suggested
by the standard aerodynamic theory.

In Fig. 4, the edge of the projected Pareto surface I indicates
purely aerodynamic tradeoffs between supersonic and transonic
flights. This curve would be the Pareto front if only these two
objectives were used. However, as shown in Fig. 3, the extreme
Pareto solutions for supersonic and transonic drag have too large
aspect ratios, and thus they are impossible to build within a rea-
sonable structural weight. This is true for all solutions on the
edge I. The other edge of the projected Pareto surface II indi-
cates the tradeoffs between the supersonic drag and the bending
moment. (Note that the bending moment is evaluated at the su-
personic flight condition.) A practical wing shape is expected to
appear in this region.

Fig. 5 illustrates the tradeoffs between the bending moment
and the supersonic drag. The edge of the projected Pareto sur-
face forms a simple convex curve toward the lower left corner
of the figure, representing the pure tradeoffs between these two
objectives. The edge IV may be less interesting to aircraft de-
signers because it indicates severe penalties in the drag with
little improvements in the bending moment. On the other hand,
edge III represents more reasonable tradeoffs. The Pareto solu-
tions are plotted in different symbols according to the taper ratio.

To be on edge III, the taper ratio of the wing should roughly be
less than 0.4.

B. Comparison with the Existing Design

To evaluate the present Pareto solutions further, they are
compared with the aerodynamic design of the supersonic
wing for National Aerospace Laboratory’s Scaled Supersonic
Experimental Airplane [10]. The NAL SST Design Team has
performed the following four aerodynamic designs. The first
design was a selection of a planform shape among 99 dif-
ferent shapes by direct comparisons. The second design was
performed by the warp optimization based on the linearized
theory (the simplest fluid model). The third design was ob-
tained from an inverse design to yield a natural laminar
flow based on the Navier–Stokes code (the most compli-
cated fluid model). The fourth design was then performed
for a wing–fuselage configuration. Since the present opti-
mization is based on the inviscid flow codes (the potential
and Euler fluid models), NAL’s second design is chosen for
the comparison here. Its performance was evaluated by using
the same codes in this study.

Fig. 6 and Table II summarize the comparisons of six
Pareto solutions with NAL’s second design. It should be
noted that NAL’s design appears close to edge II in Fig.
4. This indicates that edge II represents a practical solution
area, as well as that the warp optimization of NAL’s design
has a good accuracy. Six solutions were picked up so as
to represent the sensitivity of the Pareto surface. Solutions

, and have transonic drag similar to NAL’s design,
but their supersonic drag is in the order of .
(Solution and NAL’s design perform alike.) To improve
the supersonic performance over NAL’s design, the taper
ratio of the wing becomes larger, and the root chord length
becomes smaller. However, there is an upper limit for the
taper ratio from the observation in Fig. 5.

Solutions , and have supersonic drag similar to NAL’s
design and transonic drag in the order of . To im-
prove the transonic performance over NAL’s design, the aspect
ratio of the wing becomes larger, and the root chord length be-
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comes smaller. However, the increase of the aspect ratio also
results in an increase of the bending moment, as indicated in
Table II.

Finally, solution is found to outperform NAL’s design in all
three objectives. A common geometric feature among the three
solutions , and is that their root chord lengths are shorter
than the root of NAL’s design. This means that they have larger
taper ratios. Aerodynamic theory generally suggests an increase
of the aspect ratio to improve the aerodynamic performance, as
mentioned before. However, the present solutions , and
all have smaller aspect ratios than NAL’s design does. The re-
sulting shape is somehow similar to the “arrow wing” planform
rather than the conventional “delta wing” planform.

The arrow wing shape was originally derived from re-
search in the late 1950’s, indicating that the optimum wing
planform would be a highly swept, highly tapered, arrowhead
shape [11]. Attempts to incorporate such arrow wing shapes
eventually failed due to design integration difficulties, aeroe-
lastic problems, and high structural weight. Studies from the
1970’s to 1980’s then resulted in the “cranked arrow” wing.
The cranked arrow retains the original arrow on the inboard
wing only. The “cranked” forward outboard wing provides
more span and a higher effective aspect ratio (Fig. 7). The
main interest in the supersonic wing development has been
an increase of the aspect ratio in compromise with the highly
swept planform.

The present results suggest a new type of the arrow wing
planform having a larger taper ratio instead of a larger as-
pect ratio. This means a less tapered arrow wing in contrast
to the original, highly tapered arrow wing as compared in
Fig. 7. In the present MOGA result, neither the cranked
arrow nor the modified delta survived as a Pareto solution.
The original arrow wing was abandoned due to structural
problems. After 40 years of development in the structural
dynamics and materials, the present arrow wing may be in-
teresting for further studies.
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