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Abstract

Multiobjective Genetic Algorithm based on Fonseca-
Fleming's Pareto-based ranking and fitness sharing
techniques has been applied to aerodynamic shape
optimization of cascade airfoil design. Airfoil performance
is evaluated by a Navier-Stokes code. Evaluation of GA
population is parallelized on Numerical Wind Tunnel, a
parallel vector machine. The present multiobjective
design seeks high pressure rise, high flow turning angle,
and low total pressure loss at a low Mach number. Pareto
solutions that perform better than existing Control
Diffusion Airfoil were obtained.

Introduction

Improvements in turbomachinery is important for the
present and future aerospace industry. Design of
compressors plays an important role in the
turbomachinery development since flow fields through
compressors are more sensitive than those through
turbines. Aerodynamic design of compressor blade shape
is thus vital to thrust performance.

Development of aerodynamic design methods for
compressor blades has always been of strong interest.
Successful design methods have been reported, for
example, in [1,2]. Most of them are based on an inverse
approach. The inverse design method determines the
shape from a prescribed pressure distribution. This is a
powerful design tool for those with insights who are able
to describe a favorable pressure distribution.

However, this approach leaves the problem of
specifying an appropriate pressure distribution to
designers at large. An arbitrarily prescribed pressure
distribution may correspondingly result in an unrealistic
geometry, such as a fishtail airfoil. In addition, it is
difficult to include geometric constraints. Therefore, in
this paper, a direct approach is employed. Direct
numerical optimization methods are formed by coupling
acrodynamic  analysis methods with numerical
optimization algorithms. They minimize (or maximize) a
given aerodynamic objective function by iterating directly

on the geometry.

Goal of the compressor design is to produce the
highest pressure rise at the lowest total pressure loss.
The pressure rise is achieved by energy exchange from
the flow velocity. Flow fields in the compressor
inevitably have adverse pressure gradients and often
experience boundary layer separation or shock wave. In
such situations, the efficiency of energy exchange will be
greatly diminished. Thus, tradeoff between high pressure
rise and low total pressure loss must come to the best
compromise. The design of compressors is inherently a
multiobjective optimization problem.

Multiobjective optimization (MO) seeks to optimize
the components of a vector-valued objective function.
Unlike the single objective optimization, the solution to
this problem is not a single point, but a family of points
known as the Pareto-optimal set [3]. Each point in this
set is optimal in the sense that no improvement can be
achieved in one objective component that doesn't lead to
degradation in at least one of the remaining components.

Pareto-optimal solutions might be obtained by
solving appropriately  formulated  single-objective
optimization problems on a one-by-one basis. In
contrast, by maintaining a population of solutions,
Genetic Algorithms (GAs) can search for many Pareto-
optimal solutions in paraliel [4]. Several approaches have
been proposed to solve MO problems using GAs [3-9].
The keys to finding the Pareto front among these various
procedures are the Pareto-based ranking and fitness
sharing techniques. The Pareto-based ranking method,
proposed by Fonseca and Fleming [6] as Multiple
Objective Genetic Algorithm (MOGA), is adapted to the
present MO problem.

To demonstrate the feasibility of the present
optimization method, an existing compressor cascade
model (stator airfoil) is redesigned. To evaluate the
performance of each airfoil during the evolutionary
process, an accurate prediction of the total pressure loss is
important. Thus, a Navier-Stokes solver similar to [10]
is used here. Although the present problem is two
dimensional, use of the Navier-Stokes solver in MOGA
requires tremendous computational time. To overcome
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this, evaluations in MOGA were parallelized on
Numerical Wind Tunnel (NWT, used by winners of
IEEE's 1995/1996 Gordon Bell Prize), a parallel vector
machine at peak performance of 279 GFLOPS with 166
processing elements, located at National Aerospace
Laboratory in Japan.

MOGA

1. Coding, Crossover and Mutation

In GAs, the natural parameter set of the optimization
problem is coded as a finite-length string. Traditionally,
GAs use binary numbers to represent such strings: a
string has a finite length and each bit of a string can be
either 0 or 1. Since it is more natural to use real numbers
for real function optimization, real-number coding is used
here. The length of the real-number string corresponds to
the number of design variables.

Airfoil geometry is split into a mean camber line and
thickness distribution. These distributions are described
by B-spline polygons from the leading edge to the
trailing edge of the airfoil. Seven points are used for the
camber line and eight points are used for the thickness
distribution. Since locations of the leading edge and
trailing edge are frozen, the remaining points become
design variables. In addition, for the thickness
distribution, one more point is constrained at the trailing
edge so as to represent Control Diffusion Airfoils (CDAs)
[1,2] correctly. At this point, only the y coordinate is to
be determined. In total, 21 design variables are required
to give locations for two B-spline polygons. Each
polygon is constrained not to cross over itself. Thickness
distribution is also constrained to have a positive
thickness.

Crossover operator is defined by exchange of
corresponding design variables. All design variables are
subject to being exchanged independently at a probability
of 50%. Mutation operator produces random disturbances
to the design variable in the amount of £ 0.2 for the x
coordinate (the chordwise direction) and + 0.02 for the y
coordinate. Probability of mutation is initially 20% and
it decreases linearly to 1% over 100 generations.

2. Pareto Ranking

By maintaining a population of solutions, GAs can
search for many Pareto-optimal solutions in parallel.
This characteristic makes GAs very attractive for solving
MO problems. The following two features are desired to
solve MO problems successfully: 1) the solutions
obtained are Pareto-optimal and 2) they are uniformly
sampled from the Pareto-optimal set. To achieve these
with GAs, the following two techniques are combined
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into MOGAs [6].

To search Pareto-optimal solutions by using MOGA,
the ranking selection method can be extended to identify
the near-Pareto-optimal set within the population of GA.
To do this, the following definitions are used: suppose
x;=(x,y;) and x,=(x,y;) are in the current population
and f=(f.f,) is the set of objective functions to be

maximized,

l.x, is said to be dominated by (or inferior to) x,, if
flx,) partially than  f(x,),
fi{3,) s (6 A £ (%, )<y (x; ) and £ (x; )= £ (x; ).

2.x, is said to be non-dominated if there doesn't exist

is less i.c.,

anyx; in the population that dominates x ;.

Non-dominated solutions within the feasible region in
the objective function space give the Pareto-optimal set.

Consider an individual x; at generation ¢ which is
dominated by p/ individuals in the current population
(Fig. 1). Its current position in the individuals' rank can
be given by :

rank(x , H)=1+p/ ¢))

All non-dominated individuals are assigned rank 1 as
shown in Fig. 1.

3. Fitness Sharing
To sample Pareto-optimal solutions from the Pareto-
optimal set uniformly, it is important to maintain genetic
diversity. It is known that the genetic diversity of the
population can be lost due to their stochastic selection
process. This phenomenon is called the random genetic
drift [4].

To avoid genetic drift, a practical scheme is given by
taking the raw fitness and dividing through by the
accumulated number of shares

e
s )
J

where s(d) is a sharing function that determines the
neighborhood and degree of sharing. The distance
d=d(x ,x,) can be measured with respect to a metric in
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either genotypic or phenotypic space. A genotypic
sharing measures the interchromosomal Hamming
distance. A phenotypic sharing, on the other hand,
measures the distance between the designs' objective
function values. In MOGAs, a phenotypic sharing is
usually preferred since we seek a global tradeoff surface in

the objective function space.
A typical sharing function is given by
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This scheme introduces new GA parameters, the niche
Size Ogpgre and the exponent . In the following, the
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niche size Oy, is evaluated in the objective function
space similar to [6] and the exponent o is set to 0.25 to
emphasize the niche count.

Niche counts can be consistently incorporated into the
fitness assignment according to rank by using them to
scale individual fitness within each rank. Selection
operator is defined by using the nonlinear function
suggested in [11]. By implementing fitness sharing in
MOGAs, one can expect to evolve a uniformly
distributed representation of the global tradeoff surface.

The best-N selection [12] is incorporated further,
where the best N individuals are selected for the next
generation among N parents and N children. The Pareto
solutions will be kept once they are formed.

Results

1. Inverse Design by Optimization

To validate the present optimization procedure, an
inverse design by optimization is first performed.
Aerodynamic inverse problem is to obtain airfoil
geometry that produces prescribed target pressure
distribution. Here, a pressure distribution computed by a
Navier-Stokes code about one of CDAs [13] was used as
a target. Initial designs were created randomly and the
corresponding pressure distributions were computed by
using the same Navier-Stokes code. Then the inverse
problem was solved by minimizing differences between
the target and computed pressures through a single
objective GA.

For Navier-Stokes computations, the H-type grid is
used, where 201 points are used in the streamwise
direction and 65 points are used in the direction normal
to the airfoil surface. Flow condition is set to inlet Mach
number of 0.25, Reynolds number of 0.7 million based
on the chord length, inlet flow angle of 40 deg, blade
stagger angle of 14.4 deg, and blade pitch of 0.5988,
similar to the experiment [13]. For the GA calculation, a
population size of 64 is used and CFD evaluation of each
member is distributed to one processing element of
NWT. The CPU time necessary for one generation was
roughly 20 min. 'In addition, since this is a single
objective optimization, the basic roulette-wheel selection
was used.

Figure 2 shows the results of the inverse design after
80 generations. The GA process was stopped at 80
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generations since no improvement was obtained after 64
generations. Although there were minor differences in the
pressure distributions near the leading edge, the designed
geometry coincides with the original CDA geometry.

2. Cascade Optimization
Goal of the compressor design is to produce the highest
pressure rise at the lowest total pressure loss. In addition
to these two design goals, flow turning angle is
maximized in the present MO optimization. Flow
turning angle is an important design criteria in the
classical design procedure. In general, the pressure rise
increases as the flow turning angle increases. However,
there is a limit in the amount of flow turning due to flow
separation causing large total pressure loss.

The present MO problem can be described as
1. Maximize: Pressure rise (outlet pressure by inlet
pressure), p,/ p,
De Haller number to be greater than
0.72
Flow turning angle, AB
Total pressure loss, @

Subject to :

2. Maximize:
3. Minimize:

All objectives are subject to

1. Maximum airfoil thickness to be the same as that of
CDA, 7% of the chord length ¢
2. Airfoil area to be greater than that of CDA, 0.047c2

To maximize pressure rise, de Haller number (outlet flow
velocity by inlet flow velocity) is limited more than 0.72
as suggested in [14]. For all objectives, geometric
constraints based on the CDA geometry are applied as
the maximum airfoil thickness to be 0.07¢ and the airfoil
area to be more than 0.047¢2,

Figure 3 shows the Pareto front of the present MOGA
population after 80 generations. Each axis is linearly
scaled according to the maximum and minimum fitness
values. After 70 generations, the entire population
consists of Rank-1 individuals. The population can be
divided into two groups as marked in the figure. There
are Pareto solutions satisfying high pressure rise and high
flow turning angle. But they are not efficient solutions.
The Pareto solutions satisfying high pressure rise and
low total pressure loss generally give low flow turning
angle. This is apparent from the plot of total pressure
loss versus flow turning angle. It is very difficult to
increase both fitness values.

Figure 4 shows variations of airfoil geometries of the
Pareto solutions. To increase the pressure rise, the airfoil
tends to have a sharp leading and trailing edges. To



increase flow turning angle, the airfoil has a large camber
toward the trailing edge. On the other hand, to decrease
the total pressure loss, the airfoil camber becomes much
less near the trailing edge. This difference confirms the
difficuity in satisfying both objectives.

Table 1 summarizes the performance of airfoil designs
including the CDA performance. Figure 5 shows the
corresponding performance diagrams. The Pareto solution
having the highest pressure rise is found to give better
performance than CDA in all three objectives. Ifreduction
of total pressure loss is critical, the best Pareto solution
gives 40% reduction of loss compared to CDA. Figure 6
shows one of the Pareto solutions that gives relatively
high pressure rise and relatively low total pressure loss.
The resulting airfoil has a relatively sharp leading edge to
increase pressure rise and a blunt trailing edge to reduce
total pressure loss. These results confirm that the present
design procedure is capable of finding improved designs.

Conclusion

A new multiobjective optimization method for cascade
airfoil design has been developed. Pareto optimal
solutions are obtained from Genetic Algorithm based on
Fonseca-Fleming's Pareto-based ranking and fitness
sharing techniques. Airfoil performance is evaluated by a
Navier-Stokes code. The computations are parallelized on
Numerical Wind Tunnel. The method was validated by
an inverse design of Control Diffusion Airfoil.

The present multiobjective design seeks high pressure
rise, high flow turning angle, and low total pressure loss.
Pareto solutions better than CDA in all three objectives
are obtained. The solutions also suggests that it is
difficult to design an airfoil satisfying high flow turning
angle and low total pressure loss. From the Pareto
solutions computed, the decision maker will be able to
find a design that satisfies his design goal best.
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Table 1 Comparison of cascade airfoil performances

CASE /P, w | ApB(deg.)
CDA 1.0171] 0.0320[  38.6
High p/p, 1.0179| 0.0266{  41.0
Low w 1.0164] 0.0189]  29.4
High A 1.0152] 0.0337]  51.6
High p/p, & low w| 1,0173| 0.0222|  35.7
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Fig. 6 Comparison of high p2/pt

and low w solution with CDA




