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ABSTRACT

This paper examines the evolutionary approach for aircraft
design optimization. Several niching and elitist models are first
applied to Multiple-Objective Genetic Algorithms (MOGAS).
Numerical results suggest that the combination of the fitness
sharing and the best-selection leads to the best performance.
The resulting MOGA is then applied to multidisciplinary
design optimization problems of transonic and supersonic wing
planform shapes. The results confirm the feasibility of the
present approach.

1. INTRODUCTION

Aircraft design presents a grand challenge to numerical optimi-
zation. It is in nature multidisciplinary among aerodynamics,
structure, control and propulsion. Each disciplinary model has
to be accurate enough to predict aircraft performance. Espe-
cially, aerodynamic calculation is computer intensive and the
resulting aerodynamic performance is very sensitive to the
geometry. Therefore, a robust optimization algorithm is indis-
pensable to this field.

Evolutionary algorithms, Genetic Algorithms (GAs) for ex-
ample, are known to be robust [1] and have been enjoying
increasing popularity in the field of numerical optimization in
recent years. GAs have been applied to aerodynamic optimiza-
tion using Computational Fluid Dynamics (CFD) (for example,
see [2]).

Furthermore, GAs can search for many Pareto-optimal so-
lutions in parallel, by maintaining a population of solutions [1].
Most real world problems require the simultaneous optimiza-
tion of multiple, often competing objectives. Such multiobjec-
tive (MO) problems seek to optimize components of a vector
valued objective function. Unlike the single-objective optimi-
zation, the solution to MO problem is not a single point, but a
family of points known as the Pareto-optimal set. Each point in
this set is optimal in the sense that no improvement can be
achieved in one objective component that doesn't lead to de-
gradation in at least one of the remaining components.

GAs can be very efficient, if they can sample solutions uni-
formly from the Pareto-optimal set. Since GAs are inherently
robust, the combination of efficiency and robustness makes
them very attractive for solving MO problems. Several ap-
proaches have been proposed [3-5] and one of them to be
employed here is called Multiple Objective Genetic Algorithms
(MOGAsS) [4].

Performance of MOGAs can be measured by variety of Pa-
reto solutions and convergence to the Pareto front. To construct
a better MOGA, several niching and elitist models are exam-

ined in this paper through numerical tests. The resulting GA
will be applied to multidisciplinary design optimization (MDO)
of aircraft planform shapes.

2. MOGAS

The first three sections below describe basic GA operators used
here. Then the extension to MO problems are discussed. Fi-
nally, the niching and elitist models are introduced.

Coding
In GAs, the natural parameter set of the optimization problem
is encoded as a finite-length string. Traditionally, GAs use
binary numbers to represent such strings: a string has a finite
length and each bit of a string can be either 0 or 1. For real
function optimization, it is more natural to use a vector repre-
sentation of real numbers. The length of the real-number string
corresponds to the number of design variables.

As a sample test case, let's consider the following optimiza-
tion:

Maximize: f(x,y)=x+y

Subjectto:  x*+y?<land 0<xy<1l

Each pointX, y) in the GA population is encoded by a string (
6) in the polar coordinates since the representation of the
constraints will be simplified..

Crossover and Mutation

A simple crossover operator for real number strings is the
average crossover which computes the arithmetic average of
two real numbers provided by the mated pair. In this paper, a
weighted average is used as

Child1 =ranl-Parentl + (tanl)-Parent2

@
Child2 = (1¥anl)-Parentl +anl-Parent2

where Child1,2 and Parent1,2 denote encoded design variables
of the children (members of the new population) and parents (a
mated pair of the old generation), respectively. The uniform
random numberanl in [0,1] is regenerated for every design
variable. Because of Eqgs. (1), the number of the initial popula-
tion is assumed even.

Mutation takes place at a probability of 20% (when a ran-
dom number satisfiesan2 < 0.2). Equations (1) will then be
replaced by



Child1 =ranl-Parentl + (tanl)-Parent2 {ran2-0.5)
Child2 = (1¥anl)-Parentl +anl-Parent2 m{ran3-0.5) (2)

whereran2 andran3 are also uniform random numbers in [0,1]
and m determines the range of possible mutation. In the fol-
lowing test casean was set to 0.4 for the radial coordinate
andrv3 for the angular coordinate

Ranking

For a successful evolution, it is necessary to keep appropriate
levels of selection pressure throughout a simulation [1]. Scal-
ing of objective function values has been used widely in prac-
tice. However, this leaves the scaling procedures to be deter-
mined. To avoid such parametric procedures, a ranking method
is often used. In this method, the population is sorted according
to objective function value. Individuals are then assigned an
offspring count that is solely a function of their rank. The best
individual receives rank 1, the second best receives 2, and so
on. The fitness values are reassigned according to rank, for
example, as an inverse of their rank values. Then the usual
stochastic universal sampling method takes over with the
reassigned values. The method described so far will be hereon
referred to as SOGA (Single-Objective Genetic Algorithm).

Pareto Ranking for MO Problems

SOGA assumes that the optimization problem has (or can be
reduced to) a single criterion (or objective). Most engineering
problems, however, require the simultaneous optimization of
multiple, often competing criteria. Solutions to MO problems
are often computed by combining multiple criteria into a single
criterion according to some utility function. In many cases,
however, the utility function is not well known prior to the
optimization process. The whole problem should then be
treated with non-commensurable objectives. MO optimization
seeks to optimize the components of a vector-valued objective
function. Unlike single objective optimization, the solution to
this problem is not a single point, but a family of points known
as the Pareto-optimal set.

By maintaining a population of solutions, GAs can search
for many Pareto-optimal solutions in parallel. This characteris-
tic makes GAs very attractive for solving MO problems. As
solvers for MO praoblems, the following two features are de-
sired: 1) the solutions obtained are Pareto-optimal and 2) they
are uniformly sampled from the Pareto-optimal set. To achieve
these with GAs, the Pareto-ranking and fitness sharing tech-
nigues were successfully combined into MOGAs [4].

To search Pareto-optimal solutions by using MOGA, the
ranking selection method described above for SOGA can be
extended to identify the near-Pareto-optimal set within the
population of GA. To do this, the following definitions are
used: supposex; and x; are in the current population and

f =(f, f,) is the set of objective functions to be maximized,

1. x; is said to be dominated by (or inferior te); , if f(x;)
is less thanf (x; ), i.e., fix)< filx;)0fa(x) < falx;)
and f(x;)#f(x; ).

2. x; is said to be non-dominated if there doesn't exist any
X inthe population that dominates; .

Non-dominated solutions within the feasible region in the
objective function space give the Pareto-optimal set.
As the first test case in this paper, let's consider the follow-
ing optimization:
Maximize: fi=x, f,=y
Subject to: x?+y?=1and 0sx,y<1

The Pareto front of the present test case becomes a quarter arc
of the circle x2 +y? =1 at 0<x,y<1.

Consider an individuak; at generatiort (Fig. 1) which is
dominated byp' individuals in the current population. Its
current position in the individuals' rank can be given by

rankx;,t)=1+p;' 3

All non-dominated individuals are assigned rank 1 as shown in
Fig. 1. The fitness assignment according to rank can be done
similar to that in SOGA.

Fig. 1. Pareto ranking method.

Fitness Sharing

To sample Pareto-optimal solutions from the Pareto-optimal set
uniformly, it is important to maintain genetic diversity. It is
known that the genetic diversity of the population can be lost
due to their stochastic selection process. This phenomenon is
called the random genetic drift. To avoid such phenomena, the
niching method has been introduced [1]. In this paper, two
specific niching models are examined for MOGAs.

The first model is called the fithess sharing (FS). A typical
sharing function is given by Goldberg [1]. The sharing function
depends on the distance between individuals. The distance can
be measured with respect to a metric in either genotype or
phenotypic space. A genotype sharing measures the interchro-
mosomal Hamming distance. A phenotypic sharing, on the
other hand, measures the distance between the designs' objec-
tive function values. In MOGAs, a phenotypic sharing is
usually preferred since we seek a global tradeoff surface in the
objective function space.

This scheme introduces a new GA parameters, the niche
size 0, The choice ofoy,,.has a significant impact on the
performance of MOGAs. Fonseca et al. [4] gave a simple
estimation ofay, .. in the objective function space. It has been
successfully adapted here. Since this formula is applied at
every generation, the resulting,,,. is adaptive during the
evolution process. Niche counts can be consistently incorporat-



ed into the fitness assignment according to rank by using them
to scale individual fitness within each rank.

Coevolutionary Shared Niching

Coevolutionary shared niching (CSN) is an alternate, new
niching method proposed in Goldberg et al. [6]. The technique
is loosely inspired by the economic model of monopolistic
competition, in which businessmen locate themselves among
geographically distributed populations — businessmen and
customers — where individuals in each population seek to
maximize their separate interests thereby creating appropriately
spaced niches containing the most highly fit individuals. The
customer population may be viewed as a modification to the
original sharing scheme, in which the sharing function and
Oyare @re replaced by requiring customers to share within the
closest businessman’s service area. The evolution of the busi-
nessman population is conducted in a way that promotes the
independent establishment of the most highly fit regions or
niches in the search space. The businessman population is
created by arimprint operator that carries the best of one
population over the other. Simply stated, businessmen are
chosen from the best of the customer population.

This model introduces a new GA parametgy, that deter-
mines the minimum distance between the businessmen. In the
following test cases, this parametky, was tuned by the try-
and-error basis and kept constant during the evolution. Niche
counts was incorporated into the fitness assignment according
to rank similar to the fitness sharing.

Elitist Models

To examine effects of generational models, three models are
considered here. The first one is the simple generational (SG)
model that replacedl parents simply withN children. The
second one is the elitist recombination (ER) model that selects
two best individuals among two parents and their two off-
springs. The final model is the so-called B¥BN) model

that selects the be#{ individuals amongN parents and\
children similar to CHC [7]. The population size was kept to
100 in all test cases.

3. COMPARISON OF NICHING AND ELITIST
MODELS

From the techniques described above, five optimization results
are shown here for the first test case. Figures 2 to 4 show the
results obtained from the simple generational model with the
fitness sharing (SG + FS), the elitist recombination with the
fitness sharing (ER + FS) and the bidstith the fitness shar-

ing (BN + FS), respectively. The GA population is represented
by dots and the Pareto front is indicated by a solid arc. When
FS was used, the results were improved by stronger elitist
models. Among the three models examined here, theNbest-
selection BN was the best elitist model.

Figure 5 shows the result obtained from SG + CSN. It
shows that the coevolutionary shared niching CSN provides a
significant improvement over FS. However, when CSN is
combined with BN as shown in Fig. 6, the result is slightly
worse than that by BN + FS.

Note that the present FS uses the adamiyg, From the
observation, the performance of the niching models can be
summarized as

constantoy,,.< constantl,,,, < adaptivegy, .

This leads to a speculation: “adaptivg,. < adaptived,,, ?"

CSN is very promising but further investigations will be
needed, especially in the area of how to determine its parame-
terd

min

Fig. 2. Pareto solutions obtained from SG + FS.
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Fig. 3. Pareto solutions obtained from ER + FS.

Fig. 4. Pareto solutions obtained from BN + FS.
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Fig. 5. Pareto solutions obtained from SG + CSN.
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Fig. 6. Pareto solutions obtained from BN + CSN.

4. MULTIDISCIPLINARY OPTIMIZATION OF WING
PLANFORM DESIGN

Transonic Wing Planform Design
Aerodynamic optimization often has to account for constraints,
for example, structural strength. Such structural constraints
might be derived from design optimization in the structural
discipline. However, a simple sequential optimization that
executes each disciplinary optimization task in sequence can-
not take advantage of beneficial cross-disciplinary tradeoffs.
Therefore, MDO approach is desired. Formulation of such
approach presents organizational challenges for coupling
analysis codes in each discipline. Furthermore, MDO requires
multiobjective, system-level optimization.

An application of MOGA to MDO of transonic wing plan-
form design [8] is first examined in this section. The present
MO optimization problem is described as follows:

1. Minimize aerodynamic drag (induced + wave drag)
2. Minimize wing weight
3. Maximize fuel weight (tank volume) stored in wing

under these constraints:

1. Lift to be greater than given aircraft weight
2. Structural strength to be greater than aerodynamic loads

Since the purpose of the present design is to examine the
performance of MOGAs as a system-level optimizer, the
number of design variables for wing geometry is greatly re-
duced. First, aircraft sizes were assumed as wing area @525
total maximum takeoff weight of 45,000 at cruise Mach
number of 0.75. Next, as a baseline geometry, a transonic wing
was taken from a previous research [9]. The original wing has
an aspect ratio of 9.42, a taper ratio of 0.246 and a sweep angle
at the quarter chord line of 23.7 deg. Its airfoil sections are
supercritical and their thickness and twist angle distributions
are reduced toward the tip. Then, only two parameters are
chosen as design variables: sweep angle and taper ratio.

The objective functions and constraints are computed as
follows. First, drag is evaluated, using a potential flow solver
called FLO27 [10]. The code can solve subsonic and transonic
flows. From the flow field solution, lift and drag can be post-
processed. Since the flow is assumed inviscid, only a sum of
the induced and wave drag is obtained. Second, wing weight is
calculated, using an algebraic weight equation as described in
Torenbeek [11]. Third, the fuel weight is calculated directly
from the tank volume given by the wing geometry. Finally, the
structural model is taken from Wakayama et al. [12]. In this
research, the wing box is modeled only for calculating skin
thickness. Then the wing is treated as a thin-walled, single cell
monocoque beam to calculate stiffness. Flexibility of the wing
is ignored. The objective function values and constraints'
violations are now passed on to the system-level optimizer.
MOGA is employed as the system-level optimizer here. When
any constraint is violated, the rank of a particular design is
lowered by adding 10.

In this section, the elitist model was frozen to BN and the
results were compared between two niching models, FS and
CSN. Figure 7 shows the resulting Pareto front obtained from
BN + FS. BN + CSN gave a similar Pareto front and thus the
result is not presented here. The major difference of the two,
however, appears in the convergence history. As shown in Fig.
8, FS was able to converge the population to the Pareto front,
but CSN was not. This is probably because of the adaptive
O4are US€d in FS. This result again suggests a need of an adap-
tive d,,,, Figure 9 shows wing planform shapes of the resulting
Pareto solutions. The extreme Pareto solutions are physically
reasonable and the center of the Pareto front gives a good
compromise.
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Fig. 9. Planform shapes of Pareto solutions.

Supersonic Wing Planform Design
To show the applicability of MOGA to supersonic wing plan-
form design, the next MDO problem considers to

1. Minimize aerodynamic drag
2. Minimize wing weight
3. Minimize aspect ratio for structure

under a geometric constraint of the semispan-to-length ratio.

The definition of the supersonic wing planform geometry is
also simplified here. The planform parameters were assumed as
the semispan-to-length (lifting length of the wing) ratio of 0.45
and the root chord of 1418 at cruise Mach number of 2.0. A
symmetric airfoil section was assumed. Then, only four
parameters are chosen as design variables: inboard and out-
board sweep angles, chord length of the kink, and spanwise
location of the kink. The tip chord length can be calculated
from the specified parameters. These parameters can still
produce a wide variety of planform shapes.

The objective functions and constraint are computed as
follows. First, drag is evaluated, using the linearized theory for
supersonic flows [13]. Second, wing weight is calculated, using
the transonic algebraic weight equation [11]. The weight
formula will be upgraded to a more adequate model for super-
sonic wings in future. Third, the aspect ratio is used instead of
evaluating the structure, assuming that a lower aspect ratio
provides stronger stiffness. Only the BN + FS was used.

Figure 10 shows the Pareto front in the objective function
space and the planform shapes of the extreme Pareto solutions.
The planform shape which gives the minimum drag has the
largest aspect ratio. It also has a small wing area, and thus it is
similar to the minimum wing-weight design. One of the com-
promised solutions is given by the center of the Pareto front. It
tries to minimize the drag as well as to minimize the aspect
ratio. Although the present disciplinary models are too simple
to produce realistic designs, the extreme Pareto solutions are
physically reasonable. These results confirm the feasibility of
the present approach for solving MDO problems of aircraft
wing planform shapes.

5. CONCLUSION

Niching and elitist models have been examined for multiobjec-
tive Genetic Algorithms (MOGASs). The fithess sharing and
coevolutionary shared niching models were considered for
niching. The simple generational model, elitist recombination,
and the best-N selection were compared as the elitist model.
The test results indicate that the combination of the fithess
sharing and the bebt-selection provides the best performance
for MOGAs so far.

The resulting MOGA has been applied to MDO problems of
transonic and supersonic wing planform shapes successfully.
The extreme Pareto solutions are found physically reasonable
and the center of the Pareto front gives a good compromise.
The results confirm the feasibility of the evolutionary approach
for aircraft design optimization.
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Fig. 10 Pareto front and extreme Pareto solutions.



