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Abstract- Although many methods for dealing with
multi-objective optimisation (MOO) problems are avail-
able [Deb01] and successful applications have been re-
ported [Coe01], the comparison between MOO meth-
ods applied to real-world problem was rarely car-
ried out. This paper reports the comparison between
MOO methods applied to a real-world problem, namely,
the optimisation of a micro heat exchanger ( � HEX).
Two MOO methods, Dynamically Weighted Aggrega-
tion (DWA) proposed by Jin et al. [Jin01, Jin01b] and
Non-dominated Sorting Genetic Algorithms (NSGA-II)
proposed by Deb et al. [Deb00, Deb02], were used for
the study. The commercial computational fluid dynam-
ics (CFD) solver called CFD-ACE+1 is used to evalu-
ate fitness. We introduce how to interface the commer-
cial solver with evolutionary computation (EC) and also
report the necessary functionalities of the commercial
solver to be used for the optimisation.

1 Introduction

In the real world, there are many problems to be optimised.
The problems have several objectives which generally con-
flict with each other. In general, such problems do not offer
one optimal solution. One of the methods for dealing with
such optimisation problems is Multi-Objective Optimisation
(MOO). Many methods for MOO have been proposed in the
literatures [Deb00, Deb01, Deb02, Jin01, Jin01b].

Comparative studies of several MOO methods, often
called Performance Indices (PIs), have become popular in
the recent years. Many PIs have been proposed for several
purposes, i.e. accuracy, distribution, spread, efficiency etc.
The details can be seen in the recent survey papers, for ex-
ample [Zit02, Oka03]. With some of PIs, the comparison
of MOO methods were carried out on several test functions,
(refer [Oka03]).

The final target of the MOO technology is the optimisa-
tion of real-world problems to achieve optimal designs, op-
timal running conditions etc. However, optimisation should
not only contribute to new and innovative designs, but must
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also be a tool towards better understanding its phenomena.
Recently many papers reported the success of the optimisa-
tion for real-world problems [Coe01]. The comparison be-
tween different MOO methods applied to real-world prob-
lems has been rarely carried out. The reason for this might
be the time-consuming fitness evaluation. In this paper, an
attempt is made to compare two MOO methods applied to a
real-world problem, namely the Dynamically Weighted Ag-
gregation (DWA) by Jin et al. [Jin01, Jin01b] and the Non-
dominated Sorting Genetic Algorithm (NSGA-II) by Deb et
al. [Deb00, Deb02].

The real-world problem chosen for this study is the op-
timisation of a micro heat exchanger ( � HEX). The trend to-
wards miniaturisation has led to the use of micro devices
in industry and technology. Micro heat exchangers have
very high heat transfer surface area against volume ratio that
leads itself to very compact designs. The micro heat ex-
changers are widely spread in the fields of chemical, elec-
tronic and aerospace industries. In the chemical process-
ing industries, micro heat exchangers have been used as
fuel processors, combustors and evaporators [Dro97, Hol02,
Pal02], It is known that the performance of a micro-channel
heat exchanger depends very much on the geometric param-
eters of the micro-channels [Apa90, Wei02].

The objective of this paper is to optimise a � HEX us-
ing MOO. The physical phenomena in � HEX is multi-
disciplinary and involves conjugate heat transfer. In order to
solve the conjugate heat transfer problem, we used a com-
mercial computational fluid dynamics (CFD) solver called
CFD-ACE+ developed by Computational Fluids Dynam-
ics Research Corporation in the USA [CFD02]. This CFD
solver was interfaced with our in-house developed evolu-
tionary algorithms (EAs). In this paper we shall also discuss
the difficulties associated with interfacing the CFD solver
with our optimisation package.

The rest of this paper is organised as follows: In sec-
tion 2 some published works related to heat exchanger opti-
misation, multi-objective optimisation, and the comparative
studies of MOO are presented. Section 3 deals with the
governing equations that describe the fluid flow and heat
transfer in a heat exchanger. Section 4 describes models



and objectives. This section will go into the details of how
the two software packages are interfaced to form an optimi-
sation software block. Thus, we explain the necessary func-
tionalities in this section. Some preliminary results obtained
with DWA and NSGA-II and the discussion of these results
are presented in Section 5 and 6. Finally, we conclude this
paper in Section 7.

2 Related Works

2.1 Micro Heat Exchanger Optimisation

Several studies about the application of MOO have been re-
ported [Coe01] but little have been published on optimisa-
tion of micro heat exchangers.

Rhu et al. reported numerical optimisation of a rectan-
gular micro-channel heat sink [Rhu02]. In this paper, the
random search technique [Van84] was used for searching
for the optimal solution. Its objective function was the min-
imal thermal resistance in the micro-channel heat sink. The
channel depth, the channel width, and the fin thickness of
micro channel were used as design parameters. They con-
cluded that the channel width appears to be the most crucial
parameter.

Jia, and Sundén reported the optimal design of com-
pact heat exchanger by an artificial neural network (ANN)
[Jia03]. With ANN, they built up the model of a compact
heat exchanger. In order to minimise the pressure drop in
the heat exchanger, they optimised the density and height of
fins. The optimisation was also used to maximise the tem-
perature of heated fluid at its outlet in the compact heat ex-
changer. In this study the operating conditions were used
as the design parameters. No details of the optimisation
method are provided in the paper.

2.2 Multi-Objective Optimisation

Many methods for solving multi-objective optimisation
have been proposed (see [Deb01] for an overview).

Jin et al. [Jin01, Jin01b] proposed DWA (Dynamically
Weighted Aggregation) for solving multi-objective optimi-
sation problems. In DWA, the aggregation is used as:����� �����
	 � ��� � �
���
	 � � (1)

where
� � and

� � are objective functions. The parameters� �����
	 and
� �
���
	 are time-dependent weights with

� �����
	��� � ���
	 ����� � . Here, � is generation.
By changing the weights dynamically according to the

generations, DWA can get not only the convex Pareto Front
but in many cases also the concave one. This method is
very easy to handle and shows good results on several test
functions. DWA can work with small population size, that is
preferable to be used on a real-world problem. Additionally,
by controlling the weight, we can get the preferable part of

the Pareto Front instead of the whole Pareto Front. In this
paper, we use DWA as one of the multi-objective optimisers.
Some theoretical analysis of DWA can be found in [Oka02].

As the second multi-objective optimiser, we use NSGA-
II (Non-dominated Sorting Genetic Algorithm) proposed by
Deb et al. [Deb00, Deb02]. This method often shows bet-
ter performance than others on several test functions. In
NSGA-II, the Crowded Tournament Selection Operator is
used. In this selection, individuals are sorted by a non-
domination rank at first. In the same rank, the crowding
distance is used for sorting them. After sorting by the rank
and the crowding distance, the best solutions are selected
deterministically. Deb proposed two versions of NSGA-II.
One is NSGA-II based on floating alleles with simulated bi-
nary crossover (SBX), and the other is with string alleles.
Since DWA is based on evolution strategy (ES) with float-
ing alleles, we use NSGA-II with string alleles.

2.3 Comparative Studies

Recently, the comparative studies of MOO methods, often
called Performance Indices (PIs), become popular [Oka03].
Several performance indices have been proposed in the lit-
eratures [Zit02, Oka03]. The target of MOO is to get an
accurate, well-distributed, and widely spread solution set ef-
ficiently. In order to evaluate the solution set from different
point of views, several PIs should be used.

In this paper, we use the hypervolume index ( � ) for the
accuracy [Zit98], the ��� index for distribution [Deb00], and
the spread index ( ���� ) for spread [Zit00].

The � index is the area of the dominated region by the
solution set, � . The schematic image is shown in Figure 1.
The larger � is better.
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Figure 1: The definition of � index for the minimisation
problem. � is the area generated by the solution set � and
the defined origin � � , which needs to be specified.

The �!� index is calculated as follows: At first, the Eu-
clidean distance "$# ��% �&�
'(�)�*�)',+ � +.-/� 	 between consecutive
solutions in � are calculated. After that, the average of dis-
tance 0" is calculated. Finally, � � � 	 � is calculated according
to the following equation:
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The smaller �!� is better.
The � �� index is the Euclidean distance between the end

points in � given by:

���� 2�4 5 9 ���� �@ � B >
	�
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������� <��
� 2��.5�� � (3)

The larger � �� is better.

3 Micro Heat Exchanger Model

The problem under consideration is the forced convection
through a micro heat exchanger. A schematic model of the
micro heat exchanger is shown in Figure 2.
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Figure 2: A schematic model of the micro heat exchanger.

It consists of two channels with hot and cold fluid flow-
ing through alternate channels. The dimensions of the heat
exchanger core are shown in Figure 2.The method described
here applies to both co- and counter-flow configurations.

The following assumptions are made with regard to the
flow and heat transfer in the micro-channels:

1. For the current study the hydraulic diameter of
micro-channels considered was between

� �
� � � and�,����� � � . The Knudsen Number for all the flows con-
sidered was less than

�H� ��� �
, a necessary condition

for the continuum flow assumption. The conservation
equations based on continuum flow therefore apply.

2. The transport processes are steady.

3. The thermo-physical properties of the fluids are tem-
perature dependent.

4. For overall optimal performance of the micro-
channels the analyses are restricted to laminar
[Tso98] and incompressible flows.

5. Thermal radiation is neglected.

The governing equations that describe flow and heat
transfer in the micro heat exchangers are the Navier-Stokes
and energy equations based on the continuum flow assump-
tions. In tensor notations these equations are:

Continuity: !#"!%$'& !!#( A 2 "*) A 569,+
(4)

Momentum:" !#) A!%$-& "*)/. !#) A!#(/. 9 E !10!#( A & "12 A & !#3 A .!#(/. (5)

where3 A . 95476 !#) A!#(*. & !#)*.!#( A98 &;:�< E>=? 4A@ !#)
�!#( �AB A . (6)

Energy:" !DC!%$ & "*)/. !DC!#( A 9 !10!%$ & ) A !10!#( A &FEG& !!#( A :�H !%I!#( A @ (7)

where E 9 3 A . !#) A!#(/. K (8)

To predict the thermal performance of the micro heat
exchanger, the Navier-Stokes and energy equations were
solved in three dimensions. The above equations were
solved with a commercial CFD software, CFD-ACE+
[CFD02]. A description of the numerical techniques used
in solving the above equations can be found in [CFD02].

In solving the transport equations, the mass flow rate and
inlet temperature of the fluids entering the channels were
specified, while the gradients of the temperature and veloc-
ity components at the exit of the channels were set to zero.
Adiabatic boundary conditions were imposed on the walls
and the continuity of the temperature and heat flux was used
as the conjugate boundary conditions to couple the energy
equations for the solid and fluid phases. Finally, the no-slip
boundary condition was imposed on the velocity compo-
nents at the wall. In cases where geometric symmetry exists
the computational domain is simplified as shown marked in
Figure 2.

The nomenclature and suffix are shown in Table 1.

4 Preparation for Optimisation

4.1 Optimisation Loop with a Commercial Multi-
Physics Solver

In order to evaluate the quality of a � HEX design several as-
pects are taken into account. In the first step a model of the
micro heat exchanger is generated allowing the parameteri-
sation of possible designs. Based on the model and the pa-
rameterisation given in a chromosome, the genotype of the



Table 1: Nomenclature and suffix
Symbol Explanation�

Heat transfer coefficient�
Height of micro-channels�
Thermal conductivity�
Length of channel

�

A
Velocity component

� Width�
Bulk viscosity

�

A
Acceleration due to gravity

� Dynamic viscosity
	 Density�

(suffix) Hot channel

(suffix) Cold channel�
(suffix) Separator

individual can be generated. A multi-physics flow solver
is used for the evaluation of the fitness of the design. In
our case we apply the commercial flow solver CFD-ACE+.
The main problem for interfacing the flow solver is the ex-
tended usage of CFD-ACE+ because CFD-ACE+ can be
controlled only by a graphical user interface (GUI). Some
parts can be also controlled by the programming language
Python [Chu01]. By generating an interface between CFD-
ACE+ and our EAs via Python, we are able to successfully
control CFD-ACE+ from within the EA.

The schematic image of the connection between EC and
CFD-ACE+ is shown in Figure 3.
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Figure 3: Connection with the commercial softwares.

From the experience with combining CFD-ACE+ with
EA, we can say that in order to couple optimisation methods
to a commercial solver, the commercial solver should have
the following basic properties.

1. Transparency : It should be possible to control the
flow solver and any additional functionalities with intuitive
scripts which can easily be interfaced with standard pro-
gramming languages like C/C++. Such scripts and inter-
faces should be well documented. Additionally, their re-
sults should not be capsulated.

2. Parallelisation : EAs can easily and efficiently be par-

allelised. However, current licensing policies generally do
not take this type of single user multi-license usage into ac-
count, some new approaches have to be defined to keep the
costs at a reasonable level.

3. Stability : A solver should be stable through more than
1000 runs. One instability halts a long calculation of opti-
misation.

In the following sections we will describe the model,
defining the genotype-phenotype map and the objective
function in more detail.

4.2 Select Design Parameters

The model of the � HEX was shown already in Figure 2. In
this paper, we assume that the heat transfer is carried out
only through the separator. The target for the optimisation
is the determination of an optimal shape of the separator in
order to maximise heat transfer and to minimise pressure
drop at the same time.

To simplify the problem, the height � and the length�
in Figure 2 are fixed. Additionally, the cross-sectional

area of gas channels, i.e. � ��
 and � ��� , are also fixed by
engineer’s request.

The boundary of the separator is determined by two Non-
Uniform Rational B-splines (NURBS) [Pie97] like shown in
Figure 4. In the optimisation the control points of one of
the splines are adapted and stored in the chromosome of
each individual. The second spline is generated by the given
thickness � in Figure 4.

A Tangent

A Perpendicular
t

Control Polygon
Control Points

Spline (First)
Spline (Second)

Figure 4: NURBS representation of the separator bound-
aries.

4.3 Select Objective Functions

The objectives for the optimisation are to maximise the heat
transfer and to minimise the pressure drop in the hot gas
channel and in the cold gas channel. To use minimisation
strategy, we multiply the heat transfer by

- �
. This objec-

tive function is termed as
� � . In order to use bi-objective

optimisation, we define the second objective function as:



� � 9 ���������	 ��
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Here, �

�����
�
 ��� and �
�������� ����� are the pressure drops in the hot

gas channel and in the cold gas channel, respectively. The
third term and the forth are the penalty terms. In the � HEX,
the pressure drop in both channels has to be less than

�,���
�H� �
Pa. If the pressure drop violates this boundary, the penalty
will be added to the objectives.

The pressure drops, �
�������
 ��� and �

�����
�� ����� , are calculated as
follows:

��������� 9 �������! "
# ��
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%$&� (10)
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A
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Here, �65&7 ��8��9*���;:�� and �=<1> �?��8��9*���;:�� describe the total pressure at
the inlet and at the outlet, respectively. The total pressure is
calculated by the sum of the static pressure and the dynamic
pressure. The dynamic pressure is calculated by the density
of the gas @ and the velocity A in the direction along the
channel.

4.4 Infeasible Models and Solver Errors

Due to the representation of the separator surface by a spline
curve, it is possible to describe physically infeasible struc-
tures, e.g. by having loops in the spline curve. In this case,
the individual is simply removed from the population. Even
if the structure is physically feasible, the flow solver is not
able to evaluate reliable results in some cases. The reasons
for that can be non stationary flow conditions or the un-
favourable computational grids which are the result of the
automatic grid generation. In order to identify this cases,
convergence properties of the flow solver are utilised. If the
convergence rate is below a given threshold, the individual
is also removed from the population.

4.5 Terminal Conditions

The whole optimisation is restricted by a total number of
fitness evaluations of B �;���;:C� � DFEFD��

. This is equiva-
lent to about one week of calculation time on a PC-cluster
(Pentium-III 850 MHz, Dual-CPUs, Memory 1GB) with 16
CPUs.

5 Results

5.1 Pareto Front by DWA

We use the DWA method with a standard evolution strat-
egy [Jin01, Jin01b]. In the standard evolution strategy, the
mutation of the design parameters is carried out by adding
a normally distributed random number with zero mean and
variance G �

( H � �H' G �# 	 ). In evolution strategies the step sizes
G are encoded together with the design parameters in the
chromosome of the individual and they are adapted together
with the design parameters.

The standard evolution strategy can be described as fol-
lows:

IJ ���
	 � IJ ��� - � 	 � IK ���
	 (12)

G # ���
	 � G # ��� - � 	ML�NPO �RQ � K 	ML�NPO �;Q K # 	/S
% ����' �*�)�*' B ' (13)

where
IJ ���
	 is an B -dimensional parameter vector,

IK is an
B -dimensional random vector with

IKUT H � I�H' IG ���
	 � 	 , K andK # are H � �H' � 	 distributed random values. The parameters,Q and Q � , are set to standard values of

Q � �
V D B

' Q � � �
W D V B (14)

Here, B is the number of design parameters. The other
parameters in DWA are shown in Table 2. The history of the
weights in DWA is described in Figure 5.

Table 2: Parameters in DWA.
Number of parents 2

Number of offsprings 14
Strategy Without elitist
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Figure 5: History of the weights in DWA.

The result is shown in Figure 6. We show all evaluated
candidates in order to see the explored fitness region. All
solutions are shown by black points. The circle means the
original design.

In Figure 6, some designs have lower pressure drop than
the original design. A closer look reveals that most of these
solutions are based on the same shape like Figure 7, denote
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Figure 6: Final result by DWA (after 2520 evaluations).

as sine curve. If all individuals in the population are occu-
pied by this design, diversity will be lost. In particular, for
small population size, this can occur, however increasing
the size in our experiments is not possible due to the high
computational cost.

Design

Basis

Figure 7: Schematic explanation of the designs based on the
same shape.

5.2 Pareto Front by NSGA-II

We use NSGA-II with string alleles [Deb00, Deb02]. The
parameters in NSGA-II are shown in Table 3.

Table 3: Parameters in NSGA-II.
Number of individuals 100

Number of bits per one floating value 20
Crossover One Point Crossover

Crossover Rate 0.9
Mutation Bit flip

Mutation Rate 0.05

The result is shown in Figure 8. We also show all evalu-
ated solutions. The tendency of solutions is very similar to
the result of DWA. Although NSGA-II uses 100 individu-
als, most of solutions in NSGA-II are also based on the sine
curve like DWA. We will discuss this problem later.

5.3 Comparison of Results

Generally, several runs are necessary to compare MOO
methods due to the influence of random variables [Oka03].
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Figure 8: Final result by NSGA-II (after 2520 evaluations).

Since the computational costs of optimisations including
CFD simulations are very expensive, it was not possible to
execute several runs. Therefore, all results presented here
are the results from one single optimisation run. In the fol-
lowing, the histories of the PIs of DWA and NSGA-II are
given. All PIs are calculated for the non-dominated solu-
tion set found.

The absolute values of the two axes (Figure 6, 8) are dif-
ferent. The range of

� � is about
� -��H� �H' - E:� ���

but one of
� �

is about
� D��
�H' ���
�
���

. In order to avoid the influence caused
by the big difference of the absolute values, we normalise
both objective functions.

The result of � index [Zit98] is shown in Figure 9 as a
function of the number of evaluations. As the origin �3� in
Figure 1, we use � - EH� � '(��� ��� 	 . In the early stage of the opti-
misation NSGA-II shows a faster convergence to the Pareto
front. However, at the end of the optimisation, both results
become very similar.
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Figure 9: The history of � index. The solid line is the result
of DWA and the dotted line is one of NSGA-II.

The result of �!� index [Deb00] is shown in Figure 10. In
the early stage, the ��� index of NSGA-II shows high values.
This indicates that solutions are not uniformly distributed
along the Pareto front. But DWA shows well-distributed
solution set.
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Figure 10: The history of ��� index. The solid line is the
result of DWA and the dotted line is one of NSGA-II.

The result of � �� index [Zit00] is shown in Figure 11.
During the whole optimisation, NSGA-II shows higher val-
ues than the DWA method. It indicates that the part of the
Pareto front which is identified from the DWA method is
limited compared to the NSGA-II method.

Whereas NSGA-II searches a large region from the be-
ginning, DWA seems to focus on some parts. This con-
sideration corresponds to Figure 9 and 10 because if DWA
concentrates on some parts, new solutions tend to cover a
similar area that is dominated by old solutions. This means
that the change of � index becomes smaller. Since most
of solutions locate in a small region, the deviation of the
distance to the neighbours ( ��� ) becomes small.
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Figure 11: The history of � �� index. The solid line is the
result of DWA and the dotted line is one of NSGA-II.

NSGA-II seems to focus on the whole Pareto front from
the beginning in opposite to DWA which may search locally
in the beginning. However, the most interesting thing is that
the final results are very similar.

In the first half of the evaluations the improvement by
NSGA-II is fast, but in the last half it becomes slower. On
the other hand, DWA can find out new solutions continu-
ously.

From these results, we may conclude the following:

1. NSGA-II based on GA searches a wider region from

the beginning.

2. DWA based on ES searches a smaller region in the
beginning.

3. NSGA-II finds most solutions in the first half of the
optimisation run; the improvement in the second half
is slower.

4. DWA can find out new solutions continuously.

6 Discussions

In this paper, we used 10 control points to express the shape
of the boundary with NURBS [Pie97]. Although there
are some differences, most of solutions on Pareto front are
based on the same half of a sine curve. This means that it
is very difficult to change the frequency by control points.
Generally, the 10 control points should be nearly able to rep-
resent a sine curve with period 5. However, this is not seen
during the optimisation. The reasons may be the difficulty
of changing the frequency by the control points. Let’s think
about two sets of control points that represent half of the
sine curve and a full sine curve. We can easily understand
that there is big difference among them because the shape
is completely different. Thus, in order to change the shape
from half to a full sine curve, most of the control points
should change considerably and adjust correctly. However,
this task is very difficult and may be impossible for the opti-
miser. Thus, if the population achieves the same sine curve,
most of them will keep the same sine curves. To overcome
this difficulty, the easiest solution is to represent the fre-
quency into alleles directly.

We also try to optimise the model whose boundaries can
be expressed as:

� ���������
	 6 �� � K
�
8 �

(15)

Here, � , � and K are described in Figure 2. The variables
�

and
�

are the design parameters.
The result of NSGA-II [Deb00, Deb02] is shown in Fig-

ure 12. The result of DWA [Jin01, Jin01b] is not shown
because the tendency is very similar with the one of NSGA-
II.

By comparison of Figure 12 and 8, we can easily under-
stand that this solution set can dominate some of solutions
in Figure 8. This means that some of the obtained solution
set by NURBS are local optimal. Thus, DWA and NSGA-II
also are trapped by some local optimal solutions. This trial
indicates again that the representation strongly influences
the solution set. By several trial-and-error, we should select
the most important design parameters carefully. This should
be done in the near future.
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Figure 12: Result by NSGA-II.

7 Conclusion

Comparative studies of DWA (Dynamically Weighted Ag-
gregation) and NSGA-II (Non-dominated Sorting Genetic
Algorithm) on the micro heat exchanger optimisation were
carried out. At the beginning DWA searches more locally,
whereas NSGA-II explores a wider region right from the
start. In the end both algorithms perform very similarly both
with respect to visual inspection of the Pareto surfaces as
well as to the different performance indices we used. Be-
sides the comparison, we have seen that the choice of the
representation might actually be more important than the
choice of the optimisation algorithm. Although the initial
NURBS representation can in principle describe sine curves
with higher frequency, these are difficult to identify for the
algorithm. A representation directly based on the mathe-
matical description of sine curves showed partially better
results, however, at the expense that only sine curves can be
represented. This indicates that a trial-and-error approach
might have to be realized to find the best representation
which of course is not very desirable. Additionally, in this
paper, we also built up the optimisation flow with the com-
mercial multi-physics solver and pointed out the necessary
functionalities of the commercial solver to be used in the
field of EC.
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