DYNAMIC MULTIOBJECTIVE OPTIMIZATION OF WAR RESOURCE
ALLOCATION USING ADAPTIVE GENETIC ALGORITHMS

S. Palaniappan, S. Zein-Sabatto and A. Sekmen

Tennessee State University, Nashville, TN, 37209
E-mail: mzein@tnstate.edu

Abstract

Genetic Algorithms (GA) are often. well suited for
multiobjective optimization problems. The major objective
of this research is, to optimize the war resource allocations
of sorties, for a given war scenario, using Genetic
Algorithms. The war is simulated using THUNDER
software. THUNDER software is a stochastic, two-sided,
analytical simulation of campaign-level military operations.
The simulation is subject to internal unknown noises similar
to real war cases. Due to these noises and discreetness in
the simulation, as well as in real wars, an adaptive GA
approach has been applied to solve this multiobjective
optimization problem. Transforming this multiobjective
optimization problem to a form suitable for direct
implementation of GA was a major accomplishment of this
research. A suitable fitness function was chosen after
careful research and testing on the GA. Furthermore, the
GA parameters were adaptively set to yield smoother and
faster fitness convergence. Two fuzzy logic mechanisms
were used to adapt the GA parameters. In the first
mechanism, the mutation and crossover rates were changed
adaptively. In the second mechanism, the fitness function
coefficients are changed dynamically in each run. Testing
results showed that the adaptive GA outperforms the
conventional GA search in this multiobjective optimization
problem and was effectively able to allocate forces for war
scenarios.

Keywords: Intelligent Systems, Soft Computing,
Genetic Algorithms, and Optimization.

Introduction

Planning for a war is a very challenging task often faced
with difficult choices and critical decision-makings. The
resource allocations for a war scenario, simulated by the
THUNDER Software, are currently made by Expert
Analysts. They use several analyzing techniques. This task
is very time consuming and does not always yield favorable
results. The necessity for systematic optimization procedure
is because, the claim of obtaining “best results” is
subjective, and are based on multiple” figures of merit”.

THUNDER software is a very large campaign simulation
model, which was built based on Monte-Carlo simulation.
This software is a stochastic, two-sided, analytical
simulation of military operations developed by System
Simulation Solutions Inc. (S31) for the Air Force Studies

0-7803-6748-0/01/$10.00 ©2001 IEEE

and Analyses Agency (AFSAA). This simulation was
designed in order to examine issues involving the utility
and effectiveness of air and ground power in a theater-level
joint warfare context. This software automatically plans
military moves and actions in a rule-based manner. The
software is capable of supporting campaign analysis
involving the integration of effects over time and space.

In most real world problems there is often a situation where
multiple objectives need to be simultaneously optimized.
Most of such problems end up in several alternative
solutions in the search space. These solutions are called
pareto-optimal solutions [1]. One of the potential ways to
finding solutions to multiobjective optimization problems is
the use of genetic algorithms. GAs process set of solutions
in parallel exploiting similarities among solutions.

Genetic Algorithms have been the subjects of considerable
interest in the recent years [2-4]. The striking feature of
these algorithms is that they are based on ideas from the
science of biological genetics and the process of natural
selection. In most of the optimization problems, it is
common to have mixed (continuous and discrete) variables
and discontinuities in their search space. If standard non-
linear programming techniques were to be used in such
cases, then they would be computationally very expensive
and inefficient. Genetic algorithms are a suitable solution to
such situations. They were introduced in the United States
in the early 1970’s by Holland [4,5].

Genetic algorithms are search algorithms that come under
the range of techniques, collectively known as
“evolutionary computing “. The major benefits of these
algorithms is that they provide a robust search in complex
spaces and are usually less expensive, as far as computation
is concerned, when compared to most other optimization
solutions. They are also resistant to getting trapped in local
optima. This leads to a wide range of applications in large-
scale optimization problems of various fields.

Some of the characteristics of the Genetic algorithms
compared to normal optimization search procedures are [6]:
1. GAs search from a population of points. Thus, they
are less likely to be trapped in a local optimum
2. GAs use values of the objective function, and not
their derivatives
3. GAs work with coding. Thus applicable for solving
discrete and integer programming problems '

160

4. GAs use randomized parent’s selection and crossover
from the old generation. Thus they explore new
combinations to find a new generation with better
fitness values.

Most of the simple genetic algorithms have three main
operators they are: 1) Selection, 2) Crossover and 3)
Mutation.

Selection is one of the critical genetic operators. Selection
operation may be represented as follows:

pop
Pt (W) = f() Y f(K) (¢))

Where, n is the n” string, pop is the population size and f ()
is the fitness function' This first population must offer a
wide diversity of genetic materials. The gene pool must be
as large as possible so that any solution of the search space
can be engendered. Generally, the initial population is
generated randomly. Some of the most commonly used
selection operators are roulette wheel selection, tournament
selection, Ranking selection etc.

Grossover is the most important genetic operator, and may
be considered as the main engine for exploration in a GA.
This operator is responsible for the shuffling and
recombination of building blocks. The simplest form of
crossover is that, a single point is chosen on two equal
length chromosomes and they are crossed at that particular
point. It is possible to select two or more points for cross
over, to produce more genetic mixing but sometimes while
using multipoint crossover it degrades the performance of
the GA. Crossover can be shown as follows.

Grossover 111 00
0000{11

eration

O
O
[
(=2
D
O -

Crossover operator generally consists of forming a new
solution by taking some parameters from one solution and
exchanging it with another at the very same point. Thus we
get new offspring. Some crossover operators use complex
geometric methods to generate the offsprings of two
parents.

Mutation is another fundamental genetic manipulation
operator. It involves, the random alteration of genes during
the process of copying a chromosome from one generation
to the next. Mutation simply involves the incorrect copying
of some parameters, which make up a solution. It may be
illustrated as follows.

111111 ——p 110111

Mutation is usually used to avoid premature convergence,
which is a common problem in GAs, which use fixed
length, binary codlings. When proportional selection is
used, all the individual chromosomes in the population
become very similar before a nearly optimal solution is

reached, thus preventing any further progress. In such cases
mutation is essential. Mutation acts against this, by
constantly generating new chromosomes, this helps in
preventing the population from getting trapped in a local
maximum in the search space. However, mutation
sometimes also result in loss of good individual, thus the
need to prevent premature convergence has to be balanced
against the loss of efficiency due to the damage of good
genetic material. Thus there is a payoff between
exploitation and exploration.

Problem Formulation

A multi-objective optimization problem with inequality
constraints can be represented as a vector function 7, which
maps a set of m parameters (decision variables) to a set of n
objective [2]. This can be defined as follows

Y= = (/i@ L&), fs(®).........) @

Subjectto x =(x.,x;....... Xm) € X
y=(}’h}’2-------}’n) eY

Where, x is a set of the decision vectors and X is the
parameter space, while y is the objective vector, and Y is the
objective space.

In this research, the underlying problem is that very less
information is known about the THUNDER software and it
is more like a black box optimization problem than just
another conventional optimization problem. The problem
considered here could be addressed as follows,

“ To optimize war resource allocations for a given war
scenario, simulated by the THUNDER software. This multi-
objective optimization problem demands effective
allocation of resources, such that it minimizes the losses of
the friendly side and maximizes the targets killed on the
enemy side.”

This problem involves both maximization and minimization
of nonlinear functions. In this case genetic algorithms may
be the best solution, to determine the force allocations in a
war simulation.

Research approach

" The main purpose of this research is to determine how to

effectively allocate force power for a given war using
genetic algorithms. The reason why genetic algorithms is
used, because they provide robust search procedures for
many types of functions including those exhibiting
discontinuities, multi-modality, high dimensionality, huge
search spaces and noise.

The war allocations are made based on the capabilities of
the threat forces, conditions of the war, and capabilities of
the friendly forces, all simulated by THUNDER software.
The input war allocation file is generally given by the user.

161

Each mission requires an apportionment. In this research,
only four missions were used as inputs and 15 day war
scenario was used. The missions were Offensive Counter
Air (OCA), Strategic Target Interdiction (STI), Long Range
Air Interdiction (INT), and Lethal Direct Air Defense
Suppression (DSEAD). OCA, STI and INT are air-to-
ground missions. OCA is against airbases and INT is
against units moving on the network and in garrison,
logistics facilities, transportation network transshipment
_ points, checkpoints, supply convoys, and air defense
complexes. STI is against strategic targets. DSEAD is a
suppression of enemy air defense missions and it is against
air defense sites. According to these definitions, our
objectives for these scenarios are

1. Minimize the territory that blue side losses

2. Minimize the blue side aircraft lost

3. Maximize the number of red side strategic targets
killed :

4. Maximize the number of red side armor killed

This is a typical multiobjective optimization problem
because it is desired to optimize all the four objectives
simultaneously. A GA based method was used to solve this
problem [7]. There are many possible ways to assign fitness
values based on the scores provided by THUNDER
software. In our case, several methods of determining
fitness values of solutions were analyzed and the best one
was chosen. This method was based on sum squared fitness
assignment. In this method, individual scores are squared
and their summation gives the assigned fitness values. This
function produces a maximum fitness value of 16 and a
minimum value of 4 and can be written as:

F=f2+f+ 7 +f} 3)

Where, f, /5 f; and f; are the individual scores of Blue
Territory lost, Red strategic targets killed, Red armor killed,
and Blue aircraft lost respectively.

The parameters for the GA were manually and carefully set,
by performing a number of trial runs. This increased the
efficiency and performance of the GA. The parameters best
suited for the GA in our case were, population size N= 100,
crossover rate P, =0.6 and mutation rate P,,=0.02. At this
point, the following fact was established, starting the GA
with a relatively higher value for crossover and lower value
for mutation rate, and then decreasing the value of the
crossover and increasing the mutation rate towards the end
of the run would yield better results. To further more
enhance and automate this approach two fuzzy mechanisms
are used to fine tune the results and improve the
performance of the GA. This is discussed in the next
section.

Evolutionary Fuzzy system

Fuzzy logic techniques are used for optimization problems
[4,7] and are defined as the processes of finding the optimal
location of the hyperspace. This section describes, how an

adaptive genetic algorithm is implemented to solve a
multiobjective problem such as minimizing the territory
loses and maximizing enemy air loses. This is
accomplished by finding the optimum distribution of
aircraft fighting in a war scenario simulated by the
THUNDER software. The entire solution to this problem is
shown in Figure [1]. This is the system layout of the
developed solution. The adaptive genetic algorithm
developed in this research includes two mechanisms. Each
of these mechanisms has been classified as separate sub-
systems as shown in subsystem-2 and subsystem-3.

Adaptive Search with Fixed Fitness Function

This part was dealt with in the subsystem-2 of the entire
system. Two of the three parameters, mutation and
crossover rates, are adjusted as GA runs. Although they are
potentially disruptive, they facilitate an efficient search and
guide the search in new directions. Crossover facilitates
exploration, while mutation facilitates exploitation of the
space. The crossover and mutation rates can be varied
during the run. Often starting out by running the GA with a
relatively higher value for crossover and lower value for
mutation rate. Then tapering off the crossover value and
increasing the mutation rate toward the end of the run. In
order to change these parameter adaptively, a three-inputs
two-outputs fuzzy logic system (FLS) was implemented.
The inputs to the FLS are three distribution properties of the
fitness values namely, the best fitness value, the average
and the variance of the fitness values of the population.
Three ranges (LEFT-small, TR-medium, RIGHT- large)
and triangular membership functions were used to fuzzify
the inputs. A set of rules that describes how to adjust the
mutation and crossover rates was constructed. These rules
were based upon experience and literature review [8].

The fitness value of the conventional GA is represented as

Flithous adop and the fitness value of the adaptive GA is
represented as Fuu,, After 50 generations were evaluated
for each scenario, the best (maximum) fitness function
value is obtained for each case and are listed in Tablel. The
corresponding war allocation values for each of these
fitness values are listed in Table 2. Thunder Software was
run, using these allocations input values, for 15 day’s war
scenario. The war results are included in Table 3. The
variations in the fitness values over 50 generations are
plotted in the Figure 2 for illustration.

The adaptation of the GA parameters allowed to
concurrently evolves non-dominated solutions and guide
the search in several directions on the multi-dimensional
search space. By using automatic settings of these
parameters the search did not trap at a local area especially
during the start up time. The interesting point to note is that,
the adaptation reduced the GA run time. Moreover better
fitness value was obtained in fewer generations. Most of the
runs that were performed with different fuzzy settings for
the adaptive GA settled in about 10-15 generations. In some

162

cases it took even less than 10 generations for the GA to
converge. These changes allow to explore new solution
points and to optimize run time of the GAs. A comparative
plot of the conventional GA and the adaptive GA was
shown in Figure 2.

Adaptive Search with Dynamic Fitness Function

This part of the paper is depicted in Figure 1 as Subsystem-
3. The objectives in combats are functions of time and they
are dependent on defense and offense tactics of the enemy
side. Hence, the dynamic objective function is needed
during optimization process. The adaptive genetic
algorithm with added capability of self-adjustment in the
objective function enables solving dynamic multiobjective
problems. In this subsystem, weights are assigned to the
terms of the fitness function. The fitness function weights
are changed dynamically in each run. The current fitness
values of the objectives are given to the second fuzzy logic
system as input and the weights representing the
effectiveness of each objective are modified for the next
run. It is known that different battlefield tactics ought to be
employed in different war stages. These tactics can only be
described linguistically. Thus, rule based fitness function
was used to calculate the fitness value based on the above
objectives. In this method, individual score of each
objective is squared and weighted. The assigned fitness
value was defined as sum of these terms:

4
F@)=) u@)wf’ @

i=1
where ; and W, are the membership function and weight
characterizing objective f. The adaptive genetic algorithm
with dynamic fitness function can be represented as
Fudap_dymamic_Fir_fn - After 50 generations were evaluated for
each scenario, the best (maximum) fitness function value
obtained was 93.403. The war results simulated by the
THUNDER software for all three algorithms, namely
Conventional GA, Adaptive GA with fixed fitness function,
Adaptive GA with dynamic fitness function are shown in
Table 4.

It is observed that the Adaptive GA system with
dynamic fitness function seems to work better on the
maximizing objectives and this really could be helpful if a
particular objective amongst the multiobjectives have to be
emphasized or de-emphasized. It can be concluded that
adaptive GA with fixed fitness function has a better
performance than dynamic fitness function as it is
computationally inexpensive and yields better results if the
overall optimization performance is considered. However in
a set of multiobjectives, if a particular objective needs to be
emphasized or de-emphasized then the adaptive GA with
dynamic fitness function could yield better results.

Emphasizing and de-emphasizing can be implemented by
just changing a few fuzzy settings.

Conclusion

Solutions for war multiobjective optimization problems
were proposed and developed using GA. A search
procedure using the GA was used to provide an optimal or
near optimal solutions for this problem. Several different
methods for fitness evaluation were tested and the best one
was chosen.

To achieve optimum solutions of four war objectives, two
fuzzy logic systems were employed. By judging the overall
fitness of the solutions, the rule based GA produced
superior performance for all of the objectives. This paper
concludes that the adaptive genetic algorithms with fixed
fitness function improves the convergence rates
considerably and maintains smoother convergence to the
best possible solutions than that of the conventional genetic
algorithms and adaptive genetic algorithm with dynamic
fitness function. However in a set of multiobjectives, if a
particular objective needs to be emphasized or de-
emphasized then the adaptive GA with dynamic fitness
function could yield better results.

Acknowledgement

The authors would like to acknowledge the Boeing
Company for their interest and support for this research
effort.

References

[1] Brindle, A,
Optimization,"
Alberta, 1981.

[2] D.E Goldberg., “Genetic Algorithms in search,
optimization, and machine learning,” Addison-Wesley,
1989.

[3] Davis, L,. Handbook of Genetic -Algorithms. Van

Nostrand Reinhold (New York), 1991.

[4] De Jong, K. A., "Analysis of The Behavior of a Class
Of Genetic Adaptive Systems,” Ph.D. Dissertation,
University of Michigan, Ann Arbor, 1975.

[5] JH. Holland, “Genetic Algorithms and Classifier
Systems: Foundations and Future Directions,” Proc.
2" Int. Conf. On Genetic Algorithms, pp. 82-89, 1987.

[6] J1H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press (Ann Arbor),
1975.

[7]1 Yuhui Shi, Russell Eberhart &Yaboin
Chen,”Implementation of Evolutionary Fuzzy Systems”,
IEEE publication, 1999.

[8] Z. Bingul, A.S.Sekmen, S. Palaniappan And S. Sabatto,
An application of multi dimensional optimization
problems using genetic algorithms, IASTED, 1999.

"Genetic Algorithms for Function
Ph.D. Dissertation, University of

163

Fitness Values

116

11.4

1

10.8

10.6

10.4

10.2

A
Allocation Population of Thunder War Scaled War
Input File Allccations Results Results

Sub-System 1

Genetic
Algerithms <

Sub-Svstem 3
| Mutetion Rate l Normalized War || wﬁm.a\
Crossover Rate Results | Objective
3 Sub-System 2 !
l X
Fi X Bestfitess | g Populationof | !
» myh d‘ﬂh‘? Mean Fitness i -
Variance Fuzzy Logic
Moduls -2
3
Fitness values of
G| eschindividal
kel hjective
Figure 1. System Layout of the Proposed Solution
Fitness Value variation over Generations
T v T T T T T T
—— Conventional GA
w— Adaptive GA
5 10 15 20 25 30 35 40 25 50
Generations

Figure 2.Comparison of Fitness Function Values with and without

Adaptation

164

Table 1.
Maximum Fitness Values with and without Adaptation

Fitness Function

Simulation War Results for Conventional GA, Adaptive GA with Fixed and with Dynamic Fitness Function

Best fitness values
Fwithout adap 11.212
F Adap 11.363
Table 2.
Optimum War Allocation Values with and without Adaptation
Method OCA INT DSEAD STI
Fyithout adap 27 33 0 40
Fadap 7 20 40 33
Table 3.
Simulation War results with and without Adaptation
Method Blue Territory | Blue Aircraft Lost Red Armor Red Strategic
Lost Killed Targets Killed
Frithout adap 115 155 1994 552
Ftdap 109 146 2064 483
Table 4

Method

Blue Territory | Blue Aircraft Lost | Red Armor Red Strategic
Lost Killed Targets Killed
Frithout adap 115 155 1994 552
Ftdep 109 146 2064 483
Fadap dynamic_Fit fin 137 168 2201 633

165

