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Developing genetic programming techniques for the design
of compliant mechanisms

R. Parsons and S.L. Canfield

Abstract Compliant mechanisms achieve desired force
and displacement characteristics through elastic defor-
mation of their structure. Current research in the syn-
thesis of compliant mechanism topology has pursued
multiobjective optimization using gradient-based search
methods. This paper will explore the use of a random-
guided search method for multiobjective optimization
of compliant mechanisms through genetic programming
techniques. The combination of genetic algorithms and
compliant mechanisms is an effective and interesting
combination of two biologically inspired engineering de-
sign areas. This paper will describe and demonstrate the
successful use of genetic programming to create a gen-
eral design tool for topological synthesis of compliant
mechanisms. Features that exploit the implementation
of genetic algorithms to compliant mechanism design,
such as multiple criteria specification, multiple-design
parameter variation, and final selections from a family
of solutions will be presented and discussed. Finally, the
use of this design tool will be demonstrated on several
familiar examples for validation and discussion.
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1
Introduction

Synthesis of compliant mechanisms has received signifi-
cant attention recently due to the interesting and useful
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characteristics of these devices. Unlike traditional rigid-
link mechanisms where elastic deformation is detrimental
to performance, a compliant mechanism is designed to
take advantage of the flexibility of the material con-
tinuum. Compliant mechanisms have many advantageous
features including ease of manufacture and suitability
for small scale applications (Sigmund et al. 1998; Saxena
and Ananthasuresh 2000). Two primary methods have
been developed for the synthesis of compliant mechan-
isms, pseudo-rigid-body methods and continuum-based
methods. A number of researchers have investigated
topology synthesis of distributed-compliance mechan-
isms using continuum-based methods (see, for example
Sigmund and Petersson 1998; Saggere and Kota 1997;
Larsen et al. 1996). A primary issue in the synthesis of
a distributed-compliance mechanism is the efficient trans-
fer of energy from the input to the work-piece, while
providing the desired mechanical traits such as mechan-
ical or geometric advantage. Therefore, the synthesis of
compliant mechanisms requires consideration of multi-
ple objectives. Optimal techniques for this multiobjec-
tive synthesis have been presented by many researchers,
generally through formation of a single, inclusive objec-
tive function. For example, Frecker et al. (1997) present
compliant mechanism development using formulations
for output deformations combined with strain energy.
Saxena and Ananthasuresh (2000) present a formula-
tion based on strain energy and mutual potential energy
to include stiffness, flexibility, and mechanical advan-
tage. Hetrick and Kota (1998) form an objective function
based on mechanical efficiency and a desired mechanical
or geometric advantage specified through equality con-
straints. Larsen et al. (1996) present solutions of compli-
ant mechanisms by combining both geometric advantage
and mechanical advantage with target values for each in
their objective functions for reaching an optimal design
of the structure. Joo et al. (2000) demonstrate the use
of nonlinear synthesis with an objective function formed
from strain energy and geometric advantage and a cor-
responding sensitivity analysis derived. The approaches
all use gradient-based optimization techniques, generally
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sequential linear programming or sequential quadratic
optimization approaches.

In this paper a successful approach is demonstrated
for topological optimization and design of compliant
mechanisms using genetic programming techniques. Gen-
etic algorithms and compliant mechanisms provide a com-
plementary combination of two biologically inspired en-
gineering design areas (Anantahsurech and Kota 1995;
Goldberg 1989). The genetic algorithm is an attempt
to emulate the driving force in evolution while compli-
ant mechanism research has been motivated at times by
nature’s use of structures optimized for both strength
and flexibility. There is much merit for basing a gen-
eral design tool for topological synthesis of compliant
mechanisms on genetic programming techniques, as will
be demonstrated in this paper. Genetic programming
is highly applicable to compliant mechanism design be-
cause of its nongradient, robust searching capabilities.
As a guided random search, genetic algorithms avoid
the need for gradient derivations, allowing much greater
freedom in the selection of objective functions and the
use of linear or nonlinear finite element analysis tools.
In application, the genetic algorithm gives the designer
freedom in selecting the final design by returning re-
sults as a family of solutions, each with slightly different
characteristics, while meeting the design criteria. Ge-
netic algorithms can be readily combined with other
search tools, often providing solutions for final refine-
ment by a specific optimization tool. Finally, genetic
algorithms have the ability to perform multiobjective
optimization as required by a general design tool, here
demonstrated based on similarity template matching
among solutions ranked according to the various design
criteria.

Genetic algorithms were first introduced by John Hol-
land and his colleagues and students at the University of
Michigan (Goldberg 1989), and have since found appli-
cation in many areas of engineering optimization (see for
example Chapman et al. 1994; Tai et al. 2000). Genetic al-
gorithms are searching techniques based on the natural
forces of evolution, forces that join the processes of nat-
ural selection with random information exchange among
designs and slight perturbations or mutations to the sys-
tem to create a robust and appealing optimization ap-
proach. In genetic programming applications, each design
carries a blueprint of its characteristics, called a chromo-
some, in the form of a string structure. Designs combine
in pairs to create new designs made up of elements of each
of the original designs. Following the evolutionary prece-
dent, only the fittest designs contribute largely to future
generations, while poorly suited designs are removed from
the population. Occasional mutation of individual traits
occurs throughout the process, ensuring diversity in the
gene pool, allowing designs to continue to evolve. The
cycle of breeding, mutation, and attrition continues for
as many generations as specified by the user. In the end,
the engineer is provided a group or family of good so-
lutions rather than a single solution. Genetic algorithms

are robust, computationally simple yet capable in their
searching abilities. They are not generally limited by ex-
istence of derivatives or gradient searching, continuity of
the search space, or the efficiency losses associated with
random search methods. Finally, genetic algorithms dif-
fer from traditional search techniques in that they search
from a population of points over the space rather than
a single point, they use objective function information
rather than gradients for guidance, and they rely on prob-
abilistic rather than deterministic rules in moving toward
an optimum Goldberg (1989).

The remainder of this paper will investigate issues
in the use of genetic programming techniques for topo-
logical optimization of distributed-compliance, compli-
ant mechanisms. Specifically, this paper will describe
and demonstrate the successful use of genetic program-
ming to create a general design tool for topological syn-
thesis of compliant mechanisms. Features that exploit
the implementation of genetic algorithms to compliant
mechanism design, such as multiple criteria specification,
multiple-design parameter variation, and final selections
from a family of solutions will be presented and dis-
cussed. Finally, the use of this design tool will be demon-
strated on several familiar examples for validation and
discussion.

2
Procedure

The procedure for optimal topological synthesis will be
patterned after the genetic algorithm discussed by Gold-
berg (1989). Potential solutions to the problem, which
will be called designs, collectively form a population of
potential solutions. Each design is distinct, and carries
its own unique identifying code, an information structure
that will be called a chromosome. The chromosome is
composed of genes and is represented by an �-bit string
of base j. Each gene may take on some number of values,
called alleles. For each individual gene there are j pos-
sible variations that provide unique definition of that
characteristic. For example, each gene in the chromo-
some string may represent distinct regions of a general
design domain while the value of each gene may define
local mass and structural properties. With this design
representation, the total number of distinct designs, Ptot
equals j�.

For the compliant mechanism topology optimization,
the population represents a planar region of base material
of maximum allowable size for the compliant mechanism.
This region is represented by a network of discrete elem-
ents that collectively form the design domain as shown
in Fig. 1. Each discrete element represents the mass and
stiffness properties of a unique section of the overall mate-
rial and will be modelled here as three-degree-of-freedom
beam elements. Properties associated with each gene are
characteristic of the homogenous material and represent
the degree of structural stiffness and mass at that unique
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Fig. 1 Design domain

location. In order to facilitate the use of similarity tem-
plates, each gene will be represented as a binary number
within the chromosome string. Thus, each gene requires
m bits if 2m allele values for each characteristic are to
be defined. The chromosome of each design uniquely rep-
resents the occurrence and properties of beam elements
over the design domain, and hence uniquely defines a pos-
sible solution for the compliant mechanism.

With a means of identifying potential solutions for the
compliant mechanism defined, the process of determin-
ing the best solution or family of solutions proceeds using
three operators, reproduction, crossover, and mutation
(Goldberg 1989). In reproduction, individual strings are
assigned a probability to produce offspring in the next
generation according to their fitness values and are then
copied into a mating pool consistent with this probability.
This gives designs with higher fitness values higher prob-
ability to contribute one or more children to the next gen-
eration. The operation of reproduction is implemented by
first assigning a probability to each member in proportion
to its fitness,

pi =
fi
n∑

i=1

fi

, (1)

where pi is the probability to reproduce and fi is the fit-
ness value of population member i in a population with
n members. The expected number of offspring from each
member is given as,

offspringi = n∗pi . (2)

The number of offspring can be assigned using a prob-
ability-biased roulette wheel or random number genera-
tor with appropriate fitness scaling to regulate the num-
ber of offspring (Goldberg 1989). The resulting copies
are entered into the mating pool to form the new pop-
ulation. Crossover is the process of combining the mem-
bers in the mating pool to produce the new population.
Demonstrated here is a simple crossover that consists of
first a random pairing of designs for mating, followed
by a simple exchange of string values about some ran-
domly chosen integer position k along the string length
�, with each pair of mating designs resulting in a pair of
offspring.

Each successive generation is based on the previous
generation, with genetic information passed on in various
combinations from the original population. Diversity in
the genetics is essential, and is provided through a process
of mutation and recombination (Avers 1974) that occurs
at the breeding process. Mutations will occur on a small
percentage of the genes of the offspring, (1%) with mu-
tation performed on a bit-wise basis, changing the value
of a given gene at a small rate called the probability of
mutation rate.

To begin the optimization, an initial population is
formed of n members or designs chosen through a ran-
dom generation of chromosome strings over the solution
space domain. The fitness of each member, fi is evaluated
based on a defined scalar design criteria. Based on the
fitness evaluation, a new population is formed through
the operations of reproduction, crossover, and mutation.
The process then proceeds repeating the steps of repro-
duction, crossover and mutation, with new generations
acquiring successful traits from the previous. The genetic
algorithm ends when the overall increase in fitness of the
population reaches steady-state values. At that point,
the results are provided in a family of solutions, each
ranked according to its fitness. This family of solutions
provides the designer with several design options, for fur-
ther refinement or selection based on specific problem
needs.

2.1
Discussion of similarity templates

The simple genetic algorithm consists of highly fit chro-
mosomes strings combining to result in improved solu-
tions to the design problem. Goldberg (1989) discusses
the use of a schema as a similarity template describing
a subset of the chromosome strings with similarities at
certain string positions. A schema can be represented as
a string, similar to the original chromosome string with
the additional symbol * added to represent no similarity
in the gene position. Hence, a schema represents positions
along the chromosome string in which similarity between
designs occur. Alternatively, a schema represents some
number of individual designs, all containing certain sim-
ilarities. For example, the schema [1**001] can describe
any of the four members

[100001], [101001], [110001], [111001] .

The value of schemata is that they provide a compact
form for considering defined similarities among chromo-
some strings of a population. Schemata can be used to
define important similarities among designs that have
high fitness values. Thus, schemata with above-average
fitness contribute more to the following generation; those
schemata with the highest fitness levels contribute the
greatest. In this respect, the similarities between two
highly-fit designs are propagated forward to the next gen-
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eration. For example, consider the mating between two
members, [0 1 1 0 0 1 1 0] and [1 1 0 1 0 1 0 1].
The schema representing these two designs is
[* 1 * * 0 1 * *].

Offspring resulting from a crossover about the fourth
chromosome bit are
[0 1 1 0 0 1 0 1] and [1 1 0 1 0 1 1 0]

which share the same schema as the parent designs.
These highly-fit schema represent features in the

member or design that contribute to meeting the ob-
jectives of the design. This gives a tool for tracking the
progress of the genetic algorithm in the topological opti-
mization approach. It also demonstrates how the results
of genetic algorithms result in a family of solutions for the
designer to choose from. As generations in the GA opti-
mization converge, one or several schemata are produced
which give the optimal results as families of solutions.
Each schema represents a family of solutions of size jd

where j is the number of alleles and d is the number of
* (don’t care) operators in the schema. These variations
in the members of a schema involve changes in value at
the genes with the * operators, and in general give various
solutions with similar effectiveness meeting the design ob-
jectives. Schemata also provide a powerful tool for multi
objective design.

2.2
Multiobjective design

Optimal topological synthesis of compliant mechanisms
based on multiple objectives is a necessary tool for most
design applications. Genetic algorithms and the idea of
schemata provide a significant tool for multiobjective op-
timization and will be demonstrated here. This approach
is based on the notion that fit schemata represent sim-

Fig. 2 Multiobjective optimization scheme

ilarities among population members with above-average
fitness, and combine to propagate these advantageous
features forward to new generations. For the case of mul-
tiobjective optimization, the entire population is evalu-
ated based on its ability to meet multiple objectives, with
a unique fitness value assigned to each member accord-
ing to each design objective. The process of reproduction
now forms copies of the members of the original popu-
lation into several pools, one for each design objective.
The members are copied into each pool according to their
level of fitness in that design objective (level of fitness
gives probability to reproduce). Once the pools are filled
with copies for mating, the pools are recombined to allow
crossover between all member copies. Crossover followed
by mutation produces a new population, and the process
of multifitness evaluation for reproduction begins again.
This process is shown schematically in Fig. 2. Note that
the number of members in the original population and
the sum of the members of mating copies in the pools
must remain the same to maintain the size of the new
generation.

3
Fitness function definition

The fitness or objective function is defined based on
the goals of the problem. In the design of compliant
mechanisms, both the desired motion requirements and
the structural requirements must be met simultaneously
(Frecker et al. 1997), to avoid situations in which the
device is too flexible to meet the required task force ob-
jectives, or is too stiff requiring too much input force
for a specific task. These issues have been dealt with ex-
tensively (for example, Frecker et al. 1997; Saxena and



82

Ananthasuresh 2000; Salamon and Midha 1998; Hetrick
and Kota 1998) resulting in several scalar parameters or
objectives that can be combined to overcome these dif-
ficulties. Some examples of these objectives include mu-
tual potential energy for flexibility requirements, strain
energy for stiffness requirements, mechanical and geomet-
ric advantage to provide ratios of input to output force
or motion, and mechanical efficiency to maximize work
out per given work in. All compliant mechanism tech-
niques require the addition of a force or spring to the
finite element model to represent the level of work ex-
pected at the output of the device. It should be noted
that most formulations include strain energy or me-
chanical efficiency with an additional task-specified re-
quirement to ensure successful practical mechanisms. For
demonstration of the implementation of genetic algo-
rithms to optimization of compliant mechanisms, several
objectives will be defined; maximizing mechanical effi-
ciency, meeting a desired geometric advantage or mechan-
ical advantage, and minimizing maximum compressive
loads in the design. Mechanical efficiency, the ratio of
work out to work in will be defined as

f1 = ηefficiency =
Wo

Wi
, (3)

whereWo is the work out,

Wo = sign(uo)∗
1

2
∗ks ∗ (uo)

2 , (4)

andWi is the work into the system,

Wi = δS+Wo . (5)

In these equations, uo is the scalar output displacement
in the direction of the spring, ks is the stiffness of the ex-
ternal spring, and δS is the strain energy stored in the
mechanism. If the external spring or springs representing
the work piece is included in the mechanism stiffness ma-
trix, thenWi becomes

Wi =
1

2
∗uT ∗Ktot ∗u , (6)

with u the vector of nodal displacements and theKtot the
stiffness matrix representing both the mechanism and the
external springs. Therefore, the mechanical efficiency is
given as,

f1 =
sign(uo)∗

1
2 ∗ks ∗ (uo)

2

1
2 ∗u

T ∗Ktot ∗u
. (7)

The fitness functions evaluating the geometric advantage
and mechanical advantage are given as

f2 =
uo

ui
=GA , (8)

f3 =
Fo

Fi
=MA, (9)

where uo and ui are the input and output node displace-
ments in the desired directions. In the geometric or me-
chanical advantage fitness, designs are given increasing
probability for reproduction as they approach the desired
level, while no additional probability is given to designs
that exceed the desired level of mechanical or geometric
advantage.

A third objective, to minimize the maximum compres-
sive load is defined as

f4 =
1

max(|σcomp|)
, (10)

where σcomp is negative when the member is under com-
pressive load.

Evaluation of these fitness functions is implemented
using a linear finite element analysis paired with the spe-
cific objective function formulations. Once implemented
in the genetic algorithm, the probability to reproduce for
each fitness function is determined independently for each
fitness function, creating multiple pools for mating

pki =
fki
n∑

i=1

fki

. (11)

In cases where some fitness values are negative, the en-
tire fitness vector for that specific objective is scaled such
that the smallest value is zero. Then, probabilities to re-
produce are assigned and the fitness values are returned
to their original state.

4
Examples

4.1
Example 1: force inverter

The genetic programming approach is first demonstrated
on the force inverter problem to create a compliant de-
vice that produces an output displacement and force in
a direction opposite that of the input force (Saxena and
Ananthasuresh 2000). The problem begins with a square
design domain with pin supports at each corner and in-
put and output loads as shown in Fig. 3 and Table 1
with an external spring added to represent the expected
task. This domain is discretized into 20, three degree-of-

Table 1 Design parameters for example 1

ks = 10 N/cm (output spring stiffness)
E = 2×109MPa (nylon 6/6)
rectangular cross-section
thickness = 0.1 cm
width = 0.10 cm
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Fig. 3 Design domain of Example 1
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Fig. 4 Fitness values ME = 0.3939 and MA = 0.4013 for
Example 1
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Fig. 5 Fitness values ME = 0.3676 and MA = 0.3747 for
Example 1

freedom beam elements with area and modulus properties
defined. The problem is then solved based on the multiple
criteria of maximizing mechanical efficiency, maximizing
geometric advantage, and minimizing the maximum com-
pressive loads. The final results are delivered as a family
of solutions, shown in Figs. 4 and 5 and represent mem-

bers selected from the final generation of the genetic algo-
rithm. In each, the solid line represents the truss topology
while the dashed line gives the deformed position of the
truss.

4.2
Compliant mechanism optimization using multibit
alleles and diploids

The first example established the abilities of the ge-
netic algorithm optimization tool to produce a family
of suited solutions to a given problem, with the result-
ing solutions corresponding favorably to other published
work. This first genetic algorithm demonstrated simple
implementation using single chromosome strings with
single-bit alleles to represent members of the population.
A new algorithm is now presented that will demonstrate
the use of multibit alleles, and the use of diploids, or
double-string chromosomes. Multibit alleles allow the
values designated to each gene to vary over a range with
resolution:

resolution =
range

2q

where q is the number of bits representing each allele.
The use of multistring chromosomes allow multiple design
characteristics to be accompany each design, with each
characteristic sharing the same processes of reproduction,
crossover and mutation. These two additions are applied
to the compliant mechanism design tool as follows. First,
variation of the dimensional properties of each element
is permitted through the use of a multibit allele in the
first string of the design chromosome. Next, node wan-
dering is implemented as suggested and demonstrated
by Hetrick and Kota (1998). Node wandering allows the
nodes forming the elements in the discretized workspace
to move location in order to allow a much greater range of
possible designs considered during the optimization pro-
cess. The node positions are therefore part of the design’s
characteristics and are carried in a second string in the
chromosome. With these two strings, the design’s rep-
resent diploid or double-string chromosome organisms.
With the combination of node wandering and element
property variation, there is much greater potential for
a truly optimized design to result from the initial uniform
discretized workspace.

4.3
Example 2: force inverter with node wandering

Application of this modified approach is demonstrated
in the following example. This example considers again
the force inverting mechanism of Example 1. Now, the
multibit allele, double-string chromosome genetic algo-
rithm searches the original workspace shown in Fig. 3 for
optimal solutions. Note that the number of possible de-
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Fig. 6 Fitness values ME = 0.9730 and MA = 1.685 for Ex-
ample 2

signs is significantly greater, this time 252. Solutions to
this problem are again returned as a family of solutions,
shown in Figs. 6 and 7. These solutions show significant
improvements to those presented in Example 1, but con-
tain many similarities in topology.

The convergence history of the fitness functions in
evolving populations is shown in Fig. 8 which demon-
strates both the “fittest” individual in each population
as well as the average. The resulting topologies are
both diverse and agree well with results from similar
approaches.
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Fig. 8 Convergence history of Example 1
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Fig. 7 Fitness values ME = 0.945 and MA = 3.92 for Ex-
ample 2

4.4
Example 3: compliant gripper

In the last example, the familiar compliant gripper prob-
lem is considered. The problem begins with an initial
design domain consisting of 56 elements and boundary
conditions located along the symmetrical midline (Fig. 9)
and design parameters as shown in Table 2. The input is
specified at the gripper handles as a given displacement
while the output is measured at the gripper jaws. A spring
is also placed at the gripper jaws represented an expected
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Fig. 9 Design domain of Example 3

Table 2 Design parameters for Example 3

ks = 10 N/cm (output spring stiffness)
E = 2×109MPa (nylon 6/6)
rectangular cross-section
thickness = 0.1 cm
maximum width = 0.15 cm
node wander range = 1.0 cm

Fig. 10 Gripper with fitness values ME = 0.89 and MA =
3.03

output load. The genetic algorithm performs the optimal
synthesis allowing node wandering and cross-sectional
area variation as in Example 2 with one candidate so-
lution shown in Fig. 10. Again this result is comparable
with topologies of other published examples (for example
Hetrick and Kota 1998), sharing common features such
as stiffening around the gripper jaw, lengthening of the
handle, and a crossed-link formation between the jaw and
handle.

5
Results and conclusions

This paper has demonstrated the application of spe-
cific genetic algorithms to synthesize families of compli-
ant mechanism topologies. The examples established sev-
eral of the features of genetic algorithms including ro-
bust, nongradient-based searching capabilities, results re-

turned as families of solutions and successful implementa-
tion of multicriteria optimization. Through the multicri-
teria formulation, many additional factors in the design
of compliant mechanism could be considered such as me-
chanical impedance, damping and resonance. The family
of results may also benefit the designer when considering
desirable properties for a specific application and when
using the results of the genetic algorithm as a starting
point for a gradient based optimization routine. Once the
basic application of the genetic algorithm was outlined,
the use of multibit alleles and double-string chromosomes
were demonstrated, allowing node wandering and elem-
ent property variation in the synthesis of compliant mech-
anisms. The addition of these capabilities are significant
in that a much greater domain of potential solutions may
be searched while keeping the number of elements at
a practical size. An added characteristic of this algorithm
is the ability to eliminate unnecessary elements and thus
remove unconnected nodes. This may result in topologies
that more accurately represent a physical structure. In
summary, the application of genetic algorithms to topo-
logical synthesis of compliant mechanism provides an-
other significant and effective design tool that may be
exploited in developing these devices.
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