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ABSTRACT
This paper studies a parallel version of the Vector Eval-
uated Particle Swarm Optimization (VEPSO) method for
multiobjective problems. Experiments on well known and
widely used test problems are performed, aiming at inves-
tigating both the efficiency of VEPSO as well as the advan-
tages of the parallel implementation. The obtained results
are compared with the corresponding results of the Vector
Evaluated Genetic Algorithm approach, yielding the supe-
riority of VEPSO.
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1 Introduction


Multiobjective optimization (MO) problems consist of sev-
eral objectives that need to be achieved simultaneously.
Such problems arise in many applications, where two or
more, sometimes competing and/or incommensurable ob-
jective functions have to be minimized concurrently. Due
to the multicriteria nature of MO problems, the “optimal-
ity” of a solution has to be redefined, giving rise to the
concept of Pareto optimality. In contrast to the single–
objective optimization case, MO problems are character-
ized by trade–offs and, thus, a multitude of Pareto optimal
solutions.


Traditional gradient–based optimization techniques
can be used to detect Pareto optimal solutions. However,
these techniques suffer from two critical drawbacks; (I) the
objectives have to be aggregated in a single objective func-
tion, and, (II) only one solution can be detected per opti-
mization run. The inherent difficulty to foreknow which
aggregation of the objectives is appropriate in addition to
the heavy computational cost of gradient–based techniques,
necessitates the development of more efficient and rigor-
ous methods. Evolutionary Algorithms (EAs) seem to be
particularly suited to MO problems due to their ability
to synchronously search for multiple Pareto optimal solu-
tions and perform better global exploration of the search
space [1, 2, 3]. Moreover, EAs are easily parallelized, thus,
decreasing the computational load and the required execu-
tion time. The parallel computation of many solutions may


also result in a better representation of the possible out-
comes, enhancing the performance of the EA [4].


Particle Swarm Optimization (PSO) is a swarm in-
telligence method that roughly models the social behavior
of swarms [5]. PSO is characterized by its simplicity and
straightforward applicability, and it has proved to be effi-
cient on a plethora of problems in science and engineer-
ing. Several studies have been recently performed with
PSO on MO problems, and new variants of the method,
which are more suitable for such problems, have been de-
veloped [6, 7, 8, 9].


Vector Evaluated Particle Swarm Optimization
(VEPSO) is a multi–swarm variant of PSO, which is
inspired by the Vector Evaluated Genetic Algorithm
(VEGA) [3, 8]. In VEPSO, each swarm is evaluated using
only one of the objective functions of the problem under
consideration, and the information it possesses for this
objective function is communicated to the other swarms
through the exchange of their best experience.


In this paper, a study of the performance of VEPSO,
using more than two swarms, as well as a parallel imple-
mentation of this approach, is presented. The efficiency of
the algorithm, as well as the advantages of the parallel im-
plementation are investigated and the results are reported
and compared with the corresponding results of the VEGA
approach. The rest of the paper is organized as follows;
in Section 2 the basic MO concepts are described, and, in
Section 3, the PSO and the VEPSO algorithms are briefly
presented and, also, a description of the parallel implemen-
tation is provided. Experimental results are reported in Sec-
tion 4, followed by conclusions in Section 5.


2 Basic Concepts of Multiobjective Opti-
mization


Let � � �
� be an �–dimensional search space and


����� � � � �� � � �� � � � � �� (1)


be � objective functions defined over �. Assuming,


����� � �� 	 � �� � � � �
�


be 
 inequality constraints, the MO problem can be stated
as finding a vector


�� � ����� �
�


�� � � � � �
�


�� � ��







that satisfies the constraints and optimizes (without loss
of generality we consider only the minimization case) the
function


���� � ������� ������ � � � � ������
� � �� � �


� �


The objective functions may be in conflict, thus, in most
cases it is impossible to obtain the global minimum at the
same point for all the objectives. The goal of MO is to pro-
vide a set of Pareto optimal solutions to the aforementioned
problem.


Let � � ���� � � � � ���, and � � ���� � � � � ���, be two
vectors. Then, � dominates � if and only if � � � ��� � �
�� � � � � �, and ��  �� for at least one component. This
property is known as Pareto dominance and it is used to
define the Pareto optimal points. Thus, a solution � of the
MO problem is said to be Pareto optimal if and only if there
does not exist another solution �, such that ���� dominates
����. The set of all Pareto optimal solutions of an MO
problem is called Pareto optimal set and it is denoted as
��. The set ��� �


��
������ � � � � �����


�
� � � ��


�
is


called Pareto front. A Pareto front �� � is called convex if
and only if there exists � � �� �, such that


�������	����� � ���� 
 �� � � ���� 
 � � ��� ���


Respectively, it is called concave if and only if there exists
� � ���, such that


�������	����� � ���� 
 �� � � ���� 
 � � ��� ���


A Pareto Front can be convex, concave or partially
convex and/or concave and/or discontinuous. The last three
cases present the greatest difficulty for most MO tech-
niques.


3 Particle Swarm Optimization and Vector
Evaluated Particle Swarm Optimization


Particle Swarm Optimization (PSO) is a swarm intelligence
algorithm, inspired by the social dynamics and emergent
behavior that arises in socially organized colonies [5, 8,
10]. PSO is a population based algorithm, i.e. it exploits
a population of individuals to probe promising regions of
the search space. In this context, the population is called a
swarm and the individuals (i.e. the search points) are called
particles. Each particle moves with an adaptable veloc-
ity within the search space, and retains a memory of the
best position it ever encountered. In the global variant of
PSO, the best position ever attained by all individuals of
the swarm is communicated to all the particles. In the local
variant, each particle is assigned to a topological neighbor-
hood consisting of a prespecified number of particles. In
this case, the best position ever attained by the particles
that comprise the neighborhood is communicated among
them [5]. In this paper only the global variant is consid-
ered.


Assume an �–dimensional search space, � � �� , and
a swarm consisting of� particles. The �–th particle is in ef-
fect an �–dimensional vector �� � ����� ���� � � � � ����


� �
�. The velocity of this particle is also an �–dimensional
vector, �� � ����� ���� � � � � ����


� � �. The best previous
position encountered by the �–th particle is a point in �,
denoted by �� � ����� ���� � � � � ����


� � �. Assume � to
be the index of the particle that attained the best previous
position among all the particles in the swarm (global ver-
sion), and � to be the iteration counter. Then, the swarm is
manipulated by the equations [11, 12]:


����� �� � �
�
������ � �� ��


�
�����	�����


�
�


� �� ��
�
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��
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����� �� � ����� � ����� ��� (3)


where � � �� � � � � � ; �� and �� are two parameters called
the cognitive and the social parameter, respectively, and
they are used to bias the search of a particle toward its best
experience and the best experience of the whole swarm,
respectively; ��, ��, are random numbers uniformly dis-
tributed within ��� ��. The parameters � and � are called
the constriction factor and the inertia weight, respectively,
and they are used alternatively as mechanisms for the con-
trol of the velocity’s magnitude, giving rise to the two dif-
ferent PSO versions. The selection of the aforementioned
parameters has been widely discussed and studied in the
relative literature [11, 13, 14].


The Vector Evaluated Particle Swarm Optimization
(VEPSO) algorithm [8] has been inspired by the concept
of the Vector Evaluated Genetic Algorithm (VEGA) [3].
In VEGA, fractions of the next generation or subpopu-
lations are selected from the previous generation accord-
ing to each of the objectives, separately. After shuffling
all these sub–populations together, crossover and mutation
are applied to generate the new population. These ideas
have been adopted and modified to fit the PSO frame-
work. Specifically, in VEPSO, two or more swarms are
employed to probe the search space and information is ex-
changed among them [8]. Each swarm is exclusively eval-
uated with one of the objective functions, but, information
coming from other swarm(s) is used to influence its motion
in the search space. The best position attained by each par-
ticle (the particle’s memory) separately as well as the best
among these positions are the main guidance mechanisms
of the swarm. Thus, exchanging this information among
swarms can lead to Pareto optimal points.


Let the problem at hand consist of � objective func-
tions, �����, � � �� � � � � �, as defined in Eq. (1), and assume
that � swarms, ������ � � � ���, of size � , are employed
to address it. Each swarm is evaluated according to one
of the objective functions. Let also �


���
� � �


���
� , and �


���
� ,


� � �� � � � � � , 	 � �� � � � �� , be the current position, the
velocity and the best previous position of the �–th particle
in the 	–th swarm, respectively, at a given time. Assuming
that ���� denotes the index of the particle that attained the
best previous position in the 	–th swarm, then the VEPSO
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Figure 1. The ring migration scheme.


swarms are, in general, manipulated according to the equa-
tions [8]:
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where � � �� � � � � � ; 	 � �� � � � �� ; �
���
� and �


���
� are


the cognitive and social parameters of the 	–th swarm;
��, ��, are random numbers uniformly distributed within
��� ��; ���� and ���� are the constriction factor and the in-
ertia weight of the 	–th swarm, respectively; and � is an
index taking values in ��� � � � � 	 	 �� 	 � �� � � � ���, i.e.
the velocities of the 	–th swarm are updated using the best
previous position of another (the �–th) swarm. The case
of two swarms with two objective functions has been pre-
sented and investigated in [8]. The procedure of exchang-
ing information among swarms can be clearly viewed as a
migration scheme in the parallel computation framework.
The parameter � can be selected in a number of ways result-
ing in different VEPSO variants. For example, selecting �
according to


� �


�
�� 	
 	 � ��


	 	 �� 	
 	 � �� � � � ���
(6)


corresponds to the “ring” migration topology [15], which
is depicted in Fig 1. An alternative choice is to select �
randomly. Further constraints may also be posed on the
selection of �, e.g. allow the best particle of a swarm to
migrate only to one swarm (this holds for the ring topology
but not for the random selection).


This paper aims at investigating the efficiency of the
VEPSO method as well as possible benefits obtained by its
parallel implementation. Specifically, the main goals are
to investigate VEPSO’s performance using different num-
bers of swarms on a single machine, as well as the time
acceleration obtained if more than one machines are used.


16 CPUs


SERVER


Figure 2. The PVM system used.


Characteristic Description
Number of CPUs 2 to 10
CPU Type Intel Celeron 900-MHz
Memory 256-MB per machine
Operating System Red Hat Linux 8.0
Communication Network Fast Ethernet 100-Mbps
Communication Library PVM


Table 1. The characteristics of the system used for the par-
allel experiments.


The VEPSO approach can be straightforwardly parallelized
by distributing the swarms in many machines and allowing
migration from node to node. For this purpose the Paral-
lel Virtual Machine (PVM) has been used [16]. The key
characteristics of the system used in the parallel implemen-
tation of VEPSO are reported in Table 1 and its topology
is depicted in Fig. 2. In addition to the reported hardware,
a Pentium III machine with ���-MB of memory, running
under Red Hat Linux 8.0, has been used as a server. The
single–machine experiments have also been performed on
one of the aforementioned systems. Regarding VEPSO’s
parallelization parameters, a ring migration topology has
been selected, with migration taking place at each iteration
(synchronized swarms’ move), employing from � up to ��
swarms. For the maintenance of the Pareto optimal set, the
archiving technique described in [17] has been used.


The obtained results are evaluated using two estab-
lished measures, the � metric [18, 19], and the � mea-
sure [18, 20]. The metric ������ measures the fraction
of members of the Pareto front � that are dominated by
members of the Pareto front �, while ������ is the frac-
tion of the volume of the minimal hypercube containing
both fronts, that is strictly dominated by members of � but
is not dominated by members of � [18].
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Figure 3. Results for the Test Problem �.
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Figure 4. Results for the Test Problem �.


4 Experimental Results


The following well–known benchmark problems have been
used to illustrate the performance of VEPSO:


TEST PROBLEM 1. [19] This problem has a convex Pareto
front:


������ � ��� (7)
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with � � �� and �� � ��� ��.


TEST PROBLEM 2. [19] This is the nonconvex counterpart
to the Test Problem �:
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with � � �� and �� � ��� ��.


TEST PROBLEM 3. [19] This Pareto front consists of sev-
eral convex parts:
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with � � �� and �� � ��� ��.


TEST PROBLEM 4. [19] This test problem has ��� local
Pareto fronts:
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with � � ��, �� � ��� ��, and ��� � � � � �� � �	�� ��.
In all experiments, the global variant of the con-


striction factor PSO has been used. The PSO parame-
ters have been the same for each swarm and for all prob-
lems, equal to: � � ����, �� � �� � ���� [11].
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Figure 5. Results for the Test Problem �.
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Figure 6. Results for the Test Problem �.


The results obtained through VEPSO, using �, �, �, �,
and �� swarms, have been compared with the results ob-
tained through VEGA that are freely available at the web
page http://www.tik.ee.ethz.ch/zitzler/testdata.html. For
this purpose, ��� particles have been used, in total, for each
experiment, divided in � up to �� sub–swarms. For each
case, �� independent experiments have been performed.
The maximum number of iterations of the VEPSO algo-
rithm for each experiment has been set equal to ���. All
results are statistically displayed with boxplots in Figs. 3–
6. The boxplots are based on the two metrics, � and � ,
with respect to the number of swarms that have been used.
Each boxplot represents the distribution of the � or � val-
ues for the ordered pair (VEPSO,VEGA) and vice versa
(notice that both the � and the � metric are neither sym-
metrical in their arguments nor satisfy the triangle inequal-
ity, thus, in general, ������ �� ������). Each box of the
boxplot has lines at the lower quartile, median, and upper
quartile values. The lines that extend from each end of the
box are the whiskers, and they show the extent of the rest of
the data. The outliers lie beyond the ends of the whiskers
and they are denoted with crosses. The notches represent
a robust estimate of the uncertainty about the medians for
box to box comparison.


The obtained results support the claim that the
VEPSO algorithm outperforms the VEGA algo-
rithm in all cases. The ������������� and the
������������� assume relatively high values


in all test problems while ������������� and
������������� are in almost all cases equal to zero.
Moreover, it seems that using more than � swarms in some
cases improves the performance of VEPSO. However,
too many swarms do not offer significant performance
advantages. Perhaps this happens due to the small size of
each swarm, which, for the case of �� swarms, is equal
to �� particles per swarm. Increasing the swarm size may
further enhance the algorithm’s performance.


The aforementioned experiments were performed
both serially and in parallel. The parallel implementation
resulted in an improvement of the performance in terms of
the required execution time, which is depicted in Fig. 7. As
can be seen, increasing the number of swarms from � up
to � swarms, there is a significant gain in time. However,
using more than � swarms results in increased time due to
the heavy network overhead.


5 Conclusions


The VEPSO approach, which is based on the PSO method,
for MO problems has been applied on four well known test
problems. Both single–node and parallel implementations
of the algorithm have been developed and applied with very
promising results. Two widely used metrics have been used
for the evaluation of the results and for comparisons with
the corresponding results of the VEGA approach. VEPSO
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Figure 7. Time for the parallel implementation.


outperformed the VEGA approach in all cases. Future re-
search will include a thorough investigation of the devel-
oped approaches as well as a comparison with other paral-
lel EAs for MO problems.
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