

y ,


Proceedings of
ASME Turbo Expo 2003


June 16–19, 2003, Atlanta, USA


2003-GT-38393


COMBUSTION PROCESS OPTIMIZATION USING EVOLUTIONARY ALGORITHM


Christian Oliver Paschereit¤, Bruno Schuermans, Dirk Büchey
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ABSTRACT
Flame stabilization in a swirl-stabilized combustor oc-


curs in an aerodynamically generated recirculation region
which is a result of vortex breakdown. The characteristics
of the recirculating °ow are dependent on the swirl number
and on axial pressure gradients. Coupling to downstream
pressure pulsations is also possible. Flame stability and
emission formation depend on °ow and mixing properties.


The mixing properties of the investigated burner can be
in°uenced by the position and the amount of fuel injection
into the burner. The fuel injection is controlled by two
di®erent setups using (a) 8 proportional valves to adjust
the mass °ow for each fuel injector individually or using (b)
16 digital valves to include or exclude fuel injectors along
the distribution holes.


The objectives are the minimization of NOx emissions
and the reduction of pressure pulsations of the °ame. These
two objectives are con°icting, a®ecting the environment and
the lifetime of the combustion chamber, respectively. A
multi-objective evolutionary algorithm is applied to opti-
mize the combustion process. Each optimization run results
in an approximation of the Pareto front by a set of solutions
of equal quality, each representing a di®erent compromise
between the con°icting objectives. One compromise solu-
tion is selected with NOx emissions reduced by 30%, while
mainaining the pulsation level of the given standard burner
design.


Chemiluminescence pictures of this solution showed
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that a more uniform distribution of heat release in the re-
circulation zone was achieved. The results were con¯rmed
in high pressure single burner tests. The suggested fuel
injection pattern has been successfully implemented in en-
gines with su±cient stability margins and good operational
°exibility.


This paper shows the careful development process from
lab scale tests to full scale pressurized tests.


1 INTRODUCTION
Modern design of low emission combustors is character-


ized by swirling air in the combustor's dome coupled with
distributed fuel injection to maximize mixing. This design
results in e±cient combustion with extremely low emissions.
The fuel distribution and mixing with the air stream play
a critical role in the combustion process and in the per-
formance of the system. Various °ow dynamics processes
control the mixing between fuel and air in di®usion °ame
con¯gurations and the mixing between the fresh fuel/air
mixture and hot combustion products and fresh air in pre-
mixed combustors. They include large-scale vortices that
evolve in a separating shear layer downstream of a sudden
expansion or blu® body °ame holders, and swirling vortices
that undergo vortex breakdown in swirl-stabilized combus-
tors. Interaction between these vortices which are related
to °ow instabilities, acoustic resonant modes in the com-
bustion chamber and the heat release process was shown to
cause undesired thermoacoustic instabilities in combustors
(Paschereit et. al, 1999).


The ALSTOM EV burner has the unique property of
°ame stabilization in free space near the burner outlet uti-
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lizing the sudden breakdown of a swirling °ow, called vortex
breakdown. The swirler is of exceptionally simple design,
consisting of two halves of a cone, which are shifted to form
two air slots of constant width (Doebbeling et. al. 1999).
Gaseous fuels are injected into the combustion air by means
of fuel distribution tubes comprising two rows of small holes
perpendicular to the inlet ports of the swirler. Complete
mixing of fuel and air is obtained shortly after injection.
During startup the EV burner is piloted by fuel supplied to
a central fuel nozzle in the tip of the cone through a lance
leading to a di®usion type °ame.


The characteristics of combustion stabilization by vor-
tex breakdown are controlled by the °ow dynamics associ-
ated with this particular °ow phenomenon. Vortex break-
down is de¯ned as a °ow instability that is characterized
by the formation of an internal stagnation point on the
vortex axis, followed by reversed °ow (Leibovich, 1978).
Upstream of the vortex breakdown location, the velocity
pro¯le is strongly jet-like with a peak velocity almost three
times greater than the freestream velocity. Very close down-
stream of breakdown the °ow in the core may completely
stagnate and then transition to a wave-like °ow. Down-
stream of breakdown turbulence increases, axial velocities
are substantially lower and reverse °ow is possible (Lei-
bovich, 1978). Furthermore, the location of vortex break-
down is known to °uctuate in the °ow direction (Gursul
and Xie, 1998).


Two major factors play a role in the vortex breakdown
phenomenon, the swirl ratio and the presence of an adverse
pressure gradient (Leibovich, 1978; Dixon, 1978; Rusak and
Lamb,1998). The sensitivity of vortex breakdown to pres-
sure gradients can cause coupling between pressure pertur-
bations in the combustion chamber and the heat release
from the °ame which is anchored at the recirculating re-
gion produced by the breakdown, thus forming a feedback
loop that may lead to combustion instability and change in
pollutants formation (Paschereit et al. 1998).


Beside the °ow properties stability of the °ame with
respect to pulsations can be in°uenced by the fuel / air
mixing pro¯le (Paschereit et al. 1999). The optimum mix-
ing is generally determined by the use of CFD and cold
°ow mixing experiments. Uniform mixing leading to low
NOx emissions is then veri¯ed in atmospheric and elevated
combustion tests before prototype testing in the engine.


Automated optimization is an important aspect for re-
ducing the development time. Technical product design op-
timization involves at least two aspects. First, the product
design has to be described by a set of variables and second,
evaluation tools are required for evaluation of the design
properties. Finding a set of design variables, which ful¯ll
various design speci¯cations (objectives) is usually an it-
erative trial-and-error process. This process can either be


performed by human designers or by automated optimiza-
tion. Designers iterate, while trying to exploit their accu-
mulated knowledge of the product in order to reduce the
number of iterations to the maximal extent. In automated
optimization, an optimization algorithm proposes new de-
signs, which are automatically evaluated. Depending on the
resulting objective values, the optimization algorithms pro-
poses new designs until a certain termination criterion is
ful¯lled.


The main advantage of automated optimization is that
the designer is unburden from the trial-and-error process by
use of an optimization algorithm, requiring no human in-
teraction. The designer can focus on the formulation of the
design objectives and the analysis (post-processing) of the
automated optimization result. In addition, automated op-
timization may lead to unexpected designs and thus to new
design philosophies. Furthermore, automated optimization
can be run 24h a day ass well as during weekends.


Applications often entail multiple objectives, which are
con°icting. A solution to such an application is always
a compromise between the di®erent objectives. The set
of best solutions is referred to the Pareto set of solutions
(Pareto 1906). Starting from a Pareto solution, one objec-
tive can only be improved at the expense of at least one
other objective. Traditional methods for handling multi-
ple objectives consider the aggregation of all objectives in a
single ¯gure of merit. This can be performed by a weighted-
sum of the objectives. The result of such an optimization
run is always a single compromise solution and thus several
optimization runs have to be performed, in order to obtain
an approximation of the Pareto front.


Evolutionary or Genetic Algorithms are optimization
algorithms, which apply the principles of evolution found
in nature to the engineering problem of ¯nding an optimal
solution to a technical problem. They operate by evaluat-
ing a set of solutions (population), which is then modi¯ed
by ¯tness based selection, recombination and mutation of
the design variables. Evolutionary algorithms entail a key
advantage in multi-objective optimization. The population-
based search enables them to approximate the Pareto front
in a single optimization run. While optimizing, di®erent so-
lutions in the population converge to di®erent areas of the
Pareto front.


Evolutionary or Genetic Algorithms are robustness to
noise in the experimental setup and are capabable of han-
dling discrete and continuous variables. An additional ad-
vantage is that both single single and multiple objectives
can be optimised for. These algorithms do not require deriv-
ative information and incorporate random processes in the
generation of new solutions. For the proposed mixing op-
timization, the variables are the fuel injection location and
amount controlled by continuous or discrete valves.


2 Copyright c° 2003 by ASME







2 EXPERIMENTAL SETUP
2.1 Atmospheric Combustion Facility
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Figure 1. Schematic of the atmospheric test facility


The atmospheric combustion facility is shown in Fig. 1.
The test rig consists of a plenum chamber upstream of
a swirl-inducing burner and a combustion chamber down-
stream of the burner. The plenum chamber contains per-
forated plates to reduce the turbulence level of the °ow.
The circular combustion chamber consists of an air cooled
double wall quartz glass to provide full visual access to
the °ame. The exhaust system is an air-cooled tube with
the same cross-section as the combustion chamber to avoid
acoustic re°ections at area discontinuities. The acoustic
boundary conditions of the exhaust system can be adjusted
from almost anechoic (re°ection coe±cient jrj < 0:15) to
open end re°ection.


Pressure °uctuations were measured using BrÄuel &
Kj½r water-cooled microphones. The wall-mounted water-
cooled 1/4" condenser microphones were placed at an axial
distance of x=D = 0:69. The holders consisted of a small
ori¯ce (d = 0:5 mm) open to the combustion chamber. The
microphone diaphragm was placed in a small cavity and
was heat radiation protected. The resonance frequency of
the holder was larger than fres > 20 kHz. Using condenser
microphones rather than piezoelectric pressure probes gave
the advantage of highly accurate phase and amplitude data
which is necessary for acoustic measurements. The fre-
quency response of the microphones in probe holders were
compared against standard B&K microphones and showed
good agreement. To compare pressure pulsations in the
di®erent test con¯gurations only one microphone was used
placed at x=D = 2:5.


The operating conditions of the burner have been main-
tained by analyzing the exhaust gas composition using a
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Figure 2. Sketch of the optimization process.


physical gas analysis system. CO and CO2 have been an-
alyzed by using nondispersive infrared spectroscopy. The
nitric oxides NO and NO2, combined in NOx have been de-
tected with a chemiluminescence analyzer. The detection of
the remaining O2 in the exhaust gas was made utilizing the
paramagnetic properties of oxygen in the analyzing device.
Carbon and oxygen balances were continuously computed
and agreement within 0.2% was assured.


Gaseous fuels in the ALSTOM EV burner are injected
into the combustion air by means of fuel distribution tubes
comprising two rows of small holes perpendicular to the in-
let ports of the swirler (Fig. 3). The fuel / air mixing
pro¯le at the °ame location has an in°uence on the com-
bustion propertie like emission generation and pulsations.
The suggested design tool sugested here takes advantage of
this behavior by actively optimizing the mixing pro¯le to
control pulsation and emission generation (Fig. 2). The
adjustment of the fuel / air mixing pro¯le in the burner
was realized by controling the fuel °ow through the injec-
tion holes along the distribution tubes as design variables of
the setup. Instead of using the distribution tubes seperate
supply tubes were added to the burner to deliver fuel to the
individual injectors (Fig. 3). The fuel °ow could be con-
trolled by two di®erent setups: (a) using proportional valves
to adjust the mass °ow for each fuel injector individually.
(b) using digital valves to include or exclude fuel injectors
along the distribution holes. The operating conditions were
maintained by keeping the total fuel mass °ow constant.


2.2 Elevated pressure combustion facility
The process of ALSTOM burner development and im-


provement includes combustion tests under elevated pres-
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Figure 3. Sketch of the atmospheric combustion test-rig with a low-
emission swirl stabilized burner. The fuel flow through the injection holes
are the design variables of the setup. The NOx emissions and the pul-
sation of the burner are the objectives to be minimized.


sure. The facility is shown in Fig. 4. It allows quick, cost
e®ective and therefore extensive testing of single ALSTOM
machine burners. The test rig consists of a plenum cham-
ber upstream of the burner, two water cooled tubular pres-
sure vessels and the rectangular chamber liner. The hot
exhaust gases are quenched before the pressure reduction
throttle and then discharged to the chimney. The operat-
ing conditions of the burner have been maintained as in the
atmospheric test rig by analyzing the exhaust gas composi-
tion.


The combustor liner is convectively cooled to prevent
contamination of actual burner emissions by introducing ad-
ditional ¯lm cooling air into the combustor and to avoid in-
troduction of unrelated acoustic damping e®ects. Direct op-
tical observation of the °ame is provided by a video system
mounted downstream of the burner. In addition, optical
observation of the mixing zone through the burner slots is
possible by a video system mounted upstream of the burner
in the plenum.


3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
3.1 Evolutionary Algorithms


Evolutionary Algorithms imitate the principles of nat-
ural evolution to ¯nd an optimal solution to a problem.
Natural evolution is mainly driven by ¯tness-based selec-
tion and recombination/mutation of genetic information.
In nature, individuals, which are well adapted to their en-
vironment (i. e., which are of high ¯tness), are more likely
to survive the natural selection process by, e. g., pedators


Pulsation probe


Pulsation probe


P 6


P 5


Pulsation probe


Pulsation probe


Hot air supply


exhaust


fuel
supply


Figure 4. Schematic of the elevated pressure test facility


or limited food. They are likely to become parents and gen-
erate o®spring by mating. The genetic information of the
o®spring is generated by sequences of the parents' genes
and, in addition, include minor modi¯cations due to repro-
duction error and some random mutation.


In an engineering environment, the genetic information
are the design variables, which specify design properties.
Evolutionary algorithms start by evaluating a set of solu-
tions (population) with randomly chosen variable values.
Then, the ¯tness of the solutions is computed as a func-
tion of the objectives of the design process. In average the
solutions with the best ¯tness are choosen (¯tness-based se-
lection) as the parent population. A population of new so-
lutions is created by combining and mutating the variables
of the parent population. The ¯tness of the new solutions
is evaluated and the previous steps are repeated until a ter-
mination criterion is reached.


Evolutionary algorithms continuously obtain an im-
provement of the objective function by exploiting progres-
sively acquired information. These information can be used
to accelerate the convergence e. g. by incorporating cor-
relation information (Hansen and Ostermeier 2001) or by
training self-organizing networks (BÄuche et al. 2002).


3.2 Multi-Objective Optimization Problem
Simultanous optimization of a set of con°icting objec-


tive functions is considered. Without loss of generality, we
restrict to the minimization of 2 objectives, as it will occur
in the combustion optimization. For con°icting objectives,
there exists no best solution, but a set of best solutions, each
representing the best compromises between the objectives.


The principle of dominance allows partial ordering of
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Figure 5. Illustration of the dominance principle a two-objective mini-
mization problem. The solution a is dominating b, since a is superior in
both objective values. a is indifferent to c, since each solution is supe-
rior in one objective. From the set of all feasible solutions O the set of
Pareto solutions is marked by a bold line.


solutions as illustrated in Figure 5. A solution a is de¯ned
to dominate a solution b, if a is superior or equal in both ob-
jectives and at least superior in one objective. Two solutions
a and c are indi®erent, if neither solution is dominating the
other one. In other words, in the mutual comparison a and
c are each superior in one objective, while worse in the other
objective. Without any weighing on the objectives, there is
no preference between indi®erent solutions. Among the set
of all feasible solutions O, the complete set of nondominated
solutions is referred to the Pareto set of solutions, after the
work of the engineer and economist Vilfredo Pareto (Pareto
1906). This set represents the best solutions to a problem.
In other words, starting from a Pareto solution, one objec-
tive can only be improved at the expense of at least one
other objective.


Evolutionary algorithms are well suited candidates for
multi-objective optimization, because of the ability to ¯nd
an approximation of the whole Pareto front in a single op-
timization run. This is not possible with gradient-based
optimization algorithms, which always converge toward a
single point on the Pareto front. Various evolutionary al-
gorithms for multi-objective optimization have been pro-
posed and compared in literature (Zitzler and Thiele 1999)
(Van Veldhuizen and Lamont 2000) (Coello Coello 1999).


3.3 Noise-tolerant Strength Pareto Evolutionary Al-
gorithm


One of the most prominent multi-objective evolution-
ary algorithm is the the Strength Pareto Evolutionary Algo-
rithm (SPEA) of (Zitzler and Thiele 1999). The algorithm


consists of a ¯tness-based selection operator for multiple
objectives and is described in the following. A key compo-
nent of the algorithm is elitism, a technique of preserving
always the best solutions obtained so far. Elitism ensures
that the highest ¯tness in the population never decreases
from one generation to the next and improves the conver-
gence speed of the optimization algorithm (Laumanns et al.
2001). In multi-objective optimization, the ¯ttest solutions
are the nondominated solutions in the population. These
solutions are always copied to the parent population of the
next generation.


SPEA uses these nondominated solutions for the ¯tness
assignment. First, the ¯tness of each nondominated solu-
tion is computed as the fraction of the population, which
it dominates. Then, the ¯tness of the dominated solutions
is computed as 1 plus the sum of the ¯tness of all non-
dominated solutions, by which it is dominated. This ¯tness
assignment guarantees that the ¯tness of nondominated so-
lutions is always lower than the ¯tness of the dominated
solutions.


The ¯tness-based selection is a binary tournament. Al-
ways two solutions are taken from the population and then
the solution with the lower ¯tness is selected as a parent of
the next generation.


Noise is present in almost any application, especially if
experiments are considered. In general we distinguish two
types of noise. The ¯rst type is referred to as experimental
noise and is a result of limited precision of the experimen-
tal setting and changing environmental conditions over the
execution time period. This noise is present in every mea-
surement. The second type addresses outliers and describes
the rarely occurrence of some nonphysical results, due to,
e. g., measurement failure.
Evolutionary algorithms are considered robust to noise.
Empirical studies of BÄuche et al. (2002) demonstrate, how-
ever, that the robustness is limited, especially for multi-
objective algorithms, which incorporate elitism. Elitism
preserves the best solutions found so far in the optimiza-
tion. This is especially critical if outliers occur. Then, the
optimization process is in danger of getting misled by the
outlier solutions.
Modi¯cations for SPEA were proposed in BÄuche et al.
(2002). These modi¯cations show a negligible disadvan-
tage for noise-free problems, but increase the performance
in the presence of experimental noise and outliers. The re-
sulting algorithm was de¯ned as the Noise-tolerant Strength
Pareto Evolutionary Algorithm (NT-SPEA). Three modi¯-
cations were suggested for a noise-tolerant multi-objective
algorithm:


1. Domination dependent lifetime: In contrast to elitism,
which may preserve elite (nondominated) solutions for
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an in¯nite time, a limited lifetime is assigned to each
solution. Thus, a nondominated solution is just copied
a limited number of times from one generation to the
next. The lifetime of an solution is set to 4 generations,
but is reduced, if a solution dominates a major part of
the current set of nondominated solutions. This limits
the impact of a solution and safeguards against outliers.


2. Re-evaluation of solutions: It is common to delete solu-
tions with expired lifetime. In their work the nondom-
inated solutions with expired lifetime are re-evaluated
and added to the population. This enables good so-
lutions to stay in the evolutionary process, but their
objective values will change due to noise in the re-
evaluation.


3. Extended update of the archive: The SPEA algorithm
selects the nondominated solution always from the cur-
rent population and the parent population. The update
was extended to all solutions with non-expired lifetime.
This hinders loss of information.


With these features NT-SPEA uses the advantage of elitism
by preserving nondominated solutions, but it reduces the
risk induced by outliers. For the combustion optimization
the implementation of NT-SPEA algorithm of BÄuche et al.
(2002) is chosen. The implementation includes also the re-
combination and mutation operator, which are based on
BÄack and Schwefel (1993). However, the population size
and number of parents is set to 15.


3.4 Encoding of the valves
The combustion process in the atmospheric test rig is


controled by either a set of continuous or discrete valves,
which detrmine the spatial distribution of the fuel in the
burner. In the ¯rst case eight proportional valves were used
to control the fuel mass °ow to the di®erent fuel injectors.
Because the total mass °ow is set constant, the 8 valves can
be encoded by 7 real-valued variables as described by 2001
().


In thethe second case, digital valves are used which rep-
resent binary switches, allowing the two states closed and
open. As an operating constraint, at most 3 of the 16 valves
are allowed to be closed. Thus, we use 3 discrete variables
with integer values between 1 and 16 to describe the posi-
tion of the closed valves. This allows to encode all solutions,
which ful¯ll the constraint. All settings with 1, 2 or 3 closed
valves can be obtained if 3, 2 or non of the variables are of
equal, respectively. The setting with all valves open is the
standard machine design, which was evaluated for reference.


Since permutating the variables does not lead to di®er-
ent solutions (e. g. setting the variables to [1; 4; 7] is equiva-
lent to [7; 4; 1]), the variables are always sorted in ascending
order. Detecting permutations is important, since di®erent


permutations of the same solution should be deleted from
the population as well as recombining di®ernt permutations
should be avoided. The recombination and mutation opera-
tors of the proportional valves are chosen, except that here
the obtained variable values have to be rounded.


4 BURNER OPTIMIZATION AT ATMOSPHERIC CON-
DITIONS
The extended Strength Pareto Evolutionary Algorithm


was applied to a full size gas turbine burner at atmospheric
conditions. The fuel distribution was either controlled by
means of proportional valves or by digital valves (on/o®-
type). After convergence of the algorithm a Pareto front
was obtained. Two extreme points on the Pareto front
have been chosen for °ame visualization by means of phase-
locked chemiluminescence pictures.


4.1 Control by proportional valves
An optimization run is performed using NT-SPEA eval-


uating a total of 326 di®erent burner settings within one
working-day. All solutions are plotted in Fig. 6 in order to
show the possible decrease in NOx emissions and pulsations
by the optimization compared to the given standard burner
con¯guration and between the best and worst designs.
The given standard burner con¯guration is marked in the
¯gure and represents a setting with equal mass °ow through
all valves. Some solutions found by the optimization process
dominate the standard con¯guration, i.e. are superior in
both objectives. Thus the optimization run is successful,
delivering improved solutions for both objectives. The oc-
currence of a wide nondominated front underlines the con-
°ict in minimizing both objectives and just (Pareto) com-
promise solutions can be found.


In the ¯gure, the objectives are noisy. Thus, drawing
just the nondominated front and picking one solution from
the front is risky from the point of view, that an inferior
solution is picked, which is nondominated due to the noise
in its objective values. Picking an area close to the nondom-
inated front increases the con¯dence in the front, especially
if the valve settings are quite similar for the solutions in the
area. A second reason for not drawing just the nondomi-
nated front is the possible shift of the front towards smaller
objective values. The objectives contain noise and the se-
lected nondominated solutions may \improve" due to noise,
although there is not a physical, repeatable, solution.


In addition we are more interested in the valve settings
than in the exact objective values, since the valve settings
indicate the included physics.
Five areas along the nondominated front are picked and
marked by boxes. For the solutions within the boxes, the
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valve settings are displayed in Fig. 7. For better illustra-
tion, the settings are connected with a line and the dash-
dotted line shows the standard burner con¯guration with
equal mass °ow through all valves. Within each box, the
settings of the di®erent solutions are in deed quite similar.
Box 1 and 5 are at the extreme ends of the Pareto front.
Box 1 represents Pareto solutions with high NOx emissions,
but low pulsation. The corresponding valve settings show
an increased fuel mass °ow at valves 1, 2 and 4, while the
°ow at valves 5 and 6 is reduced. The fundamental mech-
anism corresponding to these settings is the fact that the
increased mass °ow through valves 1 and 2 leads to richer
combustion in the center of the burner. The fuel-rich com-
bustion zone stabilizes the combustion like a pilot °ame,
but increases the NOx emissions. The lean zones are close
to the middle of the burner at valves 5 and 6.
Box 5 indicates solutions with minimal NOx emissions, but
high pulsation. The mass °ow through each valve is about
equal, generating no rich combustion zones. Compared to
the standard burner con¯guration, the small mass °ow in-
crease at valves 5 and 8 and decrease at 3 and 4 leads to
lower NOx emissions, while the pulsation is unchanged.
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Figure 6. All measured solutions of the burner optimization run [plus
symbol] and given standard burner configuration [circular symbol]. The
5 boxes mark the different areas along the nondominated front.


4.1.1 Statistical analysis One of the interesting
features of the resulting nondominated front is the almost
linear change in valve settings along the front. At Box 1,
¯ve valves have either strongly increased or decreased mass


1 2 3 4 5 6 7 8
0


0.5
1


m


1 2 3 4 5 6 7 8
0


0.5
1


m


1 2 3 4 5 6 7 8
0


0.5
1


m


1 2 3 4 5 6 7 8
0


0.5
1


m


1 2 3 4 5 6 7 8
0


0.5
1


m


valve no.
Figure 7. Mass flow _m through the valves Vi;i=1;:::;8 for solutions
along the nondominated front, marked by 5 boxes of Fig. 6.


°ow and their amplitude is constantly decreasing from Box
1 to 5 until it reaches an almost equal mass °ow for all
valves in Box 5. This indicates simple dependencies of the
valves with the objective functions.


The correlation coe±cients rVi; NOx
and rVi; pulsation


for the design variables and objectives are given in Fig. 8.
Strong correlation can be observed between valves 1, 2, 5,
6 and the two-objective functions.


For all valves, the correlation coe±cients have opposite
signs for the two objectives. Therefore, changing the fuel
injection in any of the valves improves always one objective
while the other is worsened. Large coe±cients indicate a
strong correlation and occur between valves 1, 2, 5, 6 and
the two objective functions. For increasing the mass °ow
through valve 1 and 2, the emissions increase while the pul-
sation decreases. For valves 5 and 6, this is vice versa.
It has to be considered that these observations hold for the
solutions obtained through an optimization process.


4.1.2 Convergence towards optimal designs
The convergence towards the optimal design is shown
in Fig. 9. About 90 optimization loops per hour were
possible limited only by the response time of the emission
measurement and the pulsation averaging. The comparison
between the optimised soultions and the initial solution
(resulting from the careful development process including
CFD, °ow tests and combustion tests) indicates a possible
30% improvement in NOx emisssions and a possible 20%
pulsation reduction. Note that for the initial design, the
valve sttings are not the uniform fuel distribution like in
box 5 (Fig.7), but more similar to box 3.
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Figure 8. Correlation coefficient r between the mass flow through the
valves Vi;i=1;:::;8 and the objectives NOx and pulsation.
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Figure 9. Convergence towards optimal design. Shown are the Pareto-
optimal designs after 80, 160, 240 and 326 optimization loops. Conver-
gence is not yet complete.


4.2 Control by digital valves
The tests using proportional valves gave valuable input


for optimal fuel injector size and distribution. This infor-
mation is used in the design of new burners. The simplicity
of using one burner family in more than one gas turbine
type and operating with di®erent gas qualities may lead to
the necessity to tune the burner for the di®erent boundary
conditions encountered. This can be done by di®erent hole
patterns or | more simple | by just closing injection holes
out of the row of injectors along the distribution channel.


Figure 10. Schematic of the test rig using digital valves.


To assess the performance of the suggested control the fol-
lowing test was performed: instead of using proportional
valves the test-rig was equipped with digital valves (Fig.
10). The results of the optimization run are displayed in
Fig. 11 and show the possible decrease in NOx emissions
and pulsations when compared to the given standard burner
con¯guration. The given standard burner con¯guration is
marked in the ¯gure and represents a setting with equal
mass °ow through all valves. Some solutions found by the
optimization process dominate the standard con¯guration,
i.e. are superior in both objectives. Thus the optimization
run is successful, delivering improved solutions for both ob-
jectives.


The valve settings corresponding to the di®erent objec-
tives along the Pareto front are displayed in Fig. 12. Like
in the tests using the proportional valves the results indi-
cate that for low NOx behavior the center has to be leaner
(valves 1 and 2 at the tip of the closed). For low pulsations
the center appears to be enriched (more valves are closed
towards the exit of the cone).


The convergence towards the optimal design is shown
in Fig. 13. About 60 optimization loops per hour were pos-
sible. The comparison against the initial solution result-
ing from the careful development process including CFD,
°ow tests and combustion tests indicates a possible 20%
improvement in NOx emisssions and a possible 30% pulsa-
tion reduction for the same burner.


The dependence of the Pareto front on °ame tempera-
ture is shown in Fig. 14.
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Figure 11. Optimization using digital valves. The numbered boxes cor-
respond to the valve settings of figure 12.
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4.3 Visualization of the combustion process
The combustion process was visualized by taking phase


locked images of the °ame using an ampli¯ed (micro chan-
nel plate) CCD camera with an exposure time of 20¹s. The
camera was triggered by either the pressure or OH signals
which were band-pass ¯ltered at the instability frequency
and phase shifted. The images were ¯ltered using a band-
pass ¯ltered with a low and high cuto® wavelength of 290
nm and 390 nm, respectively. The phase locked exposures
were then averaged over 64 events. Two extreme cases, one
with low NOx emissions but with strong pulsation behav-
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Figure 13. Convergence towards optimal design. Shown are the
Pareto-optimal designs after 80, 160, 240 and 326 optimization loops.
Convergence is not yet complete.
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Figure 14. Pareto-optimal solutions (designs) dependent on flame tem-
perature.


ior, the other with low pulsations but high NOx levels are
displayed in Fig. 15.


5 PRESSURIZED COMBUSTION TESTS
The optimization was applied to an engine burner. The


objective was to reduce emissions while keeping the pulsa-
tion level constant. Atmospheric tests of the optimized fuel
injection showed reduction in NOx (Fig. 16). The improve-
ment was veri¯ed in pressurized combustion tests at engine
conditions (Fig. 17).
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Figure 15. Flame visualization using OH chemiluminescence. Only the
upper half of the symmetric flame is displayed. (a) flame shape for a
low pulsation but higher NOx design. (b) flame shape for low NOx but
higher pulsations.
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Figure 16. Combustion test at atmospheric conditions comparing the
optimized burner against the baseline.


6 CONCLUSIONS
This paper describes an evolutionary algorithm applied


to design optimization of premixed burners by changing the
fuel to air mixing pro¯le. The method was demonstrated
in an atmospheric combustor and was veri¯ed in elevated
pressure combustion tests. The objectives of design im-
provement were further reduction of pulsations and NOx


emissions. Other objectives like, e. g., lean extinction ex-
tension, can be introduced as well but were not part of the
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Figure 17. Combustion test at pressurized conditions comparing the
optimized burner against the baseline.


tests presented here.


The method works as follows: a gas turbine burner
is operated under steady state conditions. NOx emissions
and pulsations are continuously monitored. A special evo-
lutionary algorithm suggests a new fuel / air distribution
in the burner by controling the fuel °ow to the injection
holes within the burner. Control of fuel mass °ow is accom-
plished by using either proportional valves or digital valves.
The total fuel mass °ow is kept constant. NOx emissions
and pulsations are measured and evaluated by the optimiza-
tion software. New valve settings are again suggested by the
software.


The evolutionary algorithm delivers in an automated
fashion an approximation of the Pareto front for minimizing
pulsations and emissions of an industrial burner in a single
optimization run. This is a key advantage when compared
to traditional point-to-point search methods and human de-
signers, which would operate by searching one compromise
solution at a time to build up the Pareto front.


For this purpose a novel noise-tolerant multi-objective
evolutionary algorithm (NT-SPEA: Noise-Tolerant
Strength Pareto Evolutionary Algorithm) is introduced
with increased robustness for applications prone to noise
and outliers. The algorithm takes advantage of the concepts
of domination-dependent lifetime, the re-evaluation of non-
dominated solutions and an extended update mechanism
for the archive. The noise tolerant feature is important as
the experimental data especially at short averaging times
might exhibit scatter.


The optimization shows that ¼ 20 ¡ 30% reduction in
pulsations and ¼ 20 ¡ 30% NOx reduction is possible by
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maintaining emssions or pulsations respectively. The im-
provement is obtained by only fuel redistribution and with-
out any changes of the burner °ow¯eld. This allows for
burner tuning for di®erent operating conditions like, e. g.,
di®erent gas quality.


Visualization of the °ame shape was performed at the
two extremes of the Pareto front | low NOx and high pul-
sations and high NOx and low pulsations. Not surprisingly,
the low NOx °ame was leaner in the center and had max-
imum heat release at larger radial and axial location than
the high NOx °ame. The more relevant cases, showing im-
provement in two objetives are settled in between these two
extremes. For these cases, the advantages of the automated
optimization become apparent, because the improvements
are caused by subtle adjustments of the fuel distribution.


A burner optimized at atmospheric conditions by us-
ing the evolutionary process showed also under pressurized
conditions the same improvement.
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