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Abstract: The growing interest in hard multiple objective combinatorial and non-linear
problems resulted in a significant number of heuristic methods aiming at generating sets of
feasible solutions as approximations to the set of non-dominated solutions. The issue of
evaluating these approximations is addressed. Such evaluations are useful when performing
experimental comparisons of different multiple objective heuristic algorithms, when defining
stopping rules of multiple objective heuristic algorithms, and when adjusting parameters of
heuristic algorithms to a given problem. A family of outperformance relations that can be used
to compare approximations under very weak assumptions about a decision-maker’s


preferences is introduced. These outperformance relations define incomplete orders in the set


of all approximations. It is shown that in order to compare approximations, which are


incomparable according to the outperformance relations, much stronger assumptions about the


decision-maker's preferences are necessary. A general framework that can be used to compare


and evaluate approximations under the presence of various types of additional information is


proposed. Some particular comparison and evaluation methods based on this framework are


suggested. The proposed framework is also used to characterize some previously proposed


evaluation methods.


Keywords: Multiple objective optimization; Heuristics; Evaluation


Introduction


Research on multiple objective optimization was traditionally concentrated on linear


programming problems (see e.g. Steuer, 1986 and White, 1990). Efficient solutions of such


problems are in most cases generated by solving some single objective optimization problems,


e.g. by optimizing a scalarizing function on the original set of feasible solutions. As very


effective methods and software for single objective linear optimization exist, most multiple


objective linear programming problems can be effectively solved in this way, except of some


very large scale problems.
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In recent years, however, researchers have become increasingly interested in other classes of
multiple objective problems, for instance multiple objective combinatorial problems (cf. Ulungu
and Teghem, 1994). This interest is raised by practical applications, e.g. in project scheduling
(see e.g. Slowinski, 1989), vehicle routing (see e.g. Assad, 1988) and engineering design
(Dasgupta and Michalewicz 1997). For example, solutions to vehicle routing problems are
usually evaluated by e.g. total cost, distance, travel time and the number of vehicles used. In
practice, it can therefore be difficult to evaluate a solution to such a problem with only a single
objective. The objectives, however, are traditionally used separately or they are combined into
a single objective.


Multiple objective problems are often hard even in the single objective case. For example, most
vehicle routing problems are extensions of travelling salesperson problem (TSP) which is
already NP-hard. It is also worth mentioning that some combinatorial problems, which are easy
in single objective case, turn hard when multiple objectives are considered. For example, the
single objective shortest path problem is one of the simplest combinatorial problems while the
corresponding multiple objective problem is NP-hard (Serafini, 1987).


For hard multiple objective problems it may be necessary to settle for approximations to the
efficient solutions. As single objective metaheuristic procedures, e.g. simulated annealing
(Cerny, 1982, Kirkpatrick et al., 1983 and Laarhoven and Aarts, 1987), tabu search (Glover,
1989) and genetic algorithms (Goldberg, 1988), often are successful in the single objective
optimization problems it seems natural to use them in the case of multiple objective
optimization.


Several authors have proposed multiple objective metaheuristic procedures that aim at the
effective generation of approximations of the non-dominated set. The methods are based on
ideas of genetic algorithms (Schaffer, 1985, Fonseca and Fleming, 1993, Horn, Nafpliotis and
Goldberg, 1994, Srinivas and Deb, 1995; see also Fonseca and Fleming, 1995, for a review),
simulated annealing (Serafini, 1994, Ulungu et al., 1994 and Czyzak and Jaszkiewicz, 1995) or
tabu search (Gandibleux et. al., 1996, and Hansen, 1997).  Authors of such methods usually
state that the methods should generate “good approximations” of the non-dominated set. The


term “good approximation”, however, is often only defined intuitively, as being close to the


real non-dominated set and well-dispersed over this set.


The main purpose of this paper is a more rigid definition of the goal of multiple objective


heuristic algorithms. More precisely, we propose some tools that may be used to evaluate and


compare approximations and define what is understood by “a good approximation” to the set


of non-dominated solutions.


Please note that the issue of measurement is simple if a single objective is considered. In that


case, we evaluate and compare approximate solutions using the obvious quality measure,


which is the value of the objective function. No such natural measure exists in multiple


objective case.


Evaluations of approximation of the non-dominated set may be used to:


•  support experimental evaluation of different multiple objective heuristic algorithms,


•  adjust parameters of metaheuristic algorithms for a given problem and


•  define stopping rules of metaheuristic algorithms.


The possible functions are shortly characterized below.


The number of different multiple objective metaheuristics proposed in recent years is


significantly increasing. It is obvious that they are of different quality, i.e. some of them
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generate better approximations in a shorter time than others. A natural way to evaluate the
methods is to perform comparative experiments. At present, however, different authors use
different approaches to evaluate quality of obtained approximations. This makes it practically
impossible to perform a fair comparison of different multiple objective heuristics.


Both single and multiple objective metaheuristic procedures involve many parameters that have
to be adjusted for a given class of problems. Settings of the parameters may have crucial
influence on the quality of the algorithm applied to a given class of problems. Although some
general guidelines exist, adjustment of the parameters usually requires some experiments with
different settings and evaluations of the results. In the multiple objective case, it requires
evaluating and comparing approximations obtained with different settings of the parameters.


Stopping rules of single objective metaheuristic algorithms are often based on observations of
the objective function value (see e.g. Laarhoven and Aarts, 1987, and Goldberg, 1988). A
procedure may for example be stopped if in a given number of iterations the improvement of
the objective function value is below a given threshold. In the multiple objective case, such
stopping rules require an evaluation of the quality of the current approximation of the
non-dominated set.


We believe also that clear understanding of the goal of multiple objective heuristic algorithms
is a necessary preliminary step towards any kind of theoretical analysis of such algorithms.


The paper is organized in the following way. In the next Section some basic definitions are
given. In the second Section, we introduce outperformance relations for comparing pairs of
approximations under very weak assumptions about the decision-maker’s (DM’s) preferences.


Quantitative comparison methods using probability distribution of the DM’s possible


preferences are presented in the third Section. In the fourth Section, we characterize types of


additional information that may be necessary in quantitative comparison methods. Practical


guidelines for constructing and computing quantitative measures are presented in the fifth


Section. In the sixth Section we comment on some previously used approaches for evaluation


and comparison of approximations to the non-dominated set. The issue of evaluating


approximations under presence of more precise preference information is discussed in the


seventh Section. In the eighth Section, we outline the possibilities of using the preference


information within multiple objective heuristics. Conclusions and directions for further research


are summarized in the last Section.
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1. Basic definitions


The general multiple objective optimization (MOO) problem is formulated as:
maximize ( ) ( ){ }JJ zfzf == xx  11 ,..., (P1)


s.t. � ∈
�


,


where: solution � = � � �� � � � � �  is a vector of decision variables and D is the set of feasible


solutions. The type of the variables, constraints and objective functions may then describe
different classes of problems. If the decision variables are continues, one may have a
multiobjective linear program (MOLP) or a multiobjective non-linear program (MONLP)
depending on the linearity of the constrains and the objective functions. If the variables are
integers, (P1) turns into a multiobjective integer program (MOIP), which again may be both
linear and non-linear. Multiobjective combinatorial optimization (MOCO) problems can often
be formulated as linear multiobjective integer programs.


The image of a solution x in the objective space is a point [ ]xxxz Jzz ,...,1= , such that x
jz  = fj(x),


j=1,..,J. The image of the set D in the criterion space is a set Z composed of attainable points,
i.e. points being images of feasible solutions.


Problem (P1) can also be formulated more succinctly as:


maximize{ }z (P2)


s.t. z ∈ Z


where z = z zJ1,...,  is a vector of objective functions zj = fj(x), j=1,..,J.


Point z ∈  Z dominates z’ ∈  Z, ’zz � , if z z j z zj j i i≥ ∀ >’ and ’ ,    for at least one i.


Point z’ ∈  Z is non-dominated if there is no z ∈  Z that dominates z’. The set N of all
non-dominated points is called the non-dominated set. A solution x is efficient if its image in
the objective space is non-dominated.


By ND(S), where S is a set of (feasible or infeasible) points in the objective space, we will
denote a set of points non-dominated within the set S.


The point z* composed of the best attainable objective function values is called the ideal point:


{ } .,...,1        |  max j
* JjZzz j =∈= z


The point z** composed of the worst attainable objective function values is called the anti-ideal
point:


{ } .,...,1        |  min j** JjZzz j =∈= z


The point z* composed of the worst objective function values in the non-dominated set is
called the nadir point.


Range equalization factors (Steuer, 1986, sec. 8.4.2) are defined in the following way:
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j
j R


1=π , j=1, …, J (1)


where Rj is the range of objective j in the set N or D. Objective function values multiplied by


range equalization factors are called normalized objective function values.


A utility function u:ℜ J→ℜ , is a model of the DM’s preferences that maps each point in the


objective space into a value of utility. It is assumed that the goal of the DM is to maximize the


utility.


A utility function u is compatible with the dominance relation if and only if


( ) ( )212121, zzzzzz uuJ ≥⇒ℜ∈∀ � . The set of all utility functions that are compatible with


the dominance relation is denoted by Uc.


A utility function U is strictly compatible with the dominance relation if and only if


( ) ( )212121, zzzzzz uuJ >⇒ℜ∈∀ � . The set of all utility functions that are strictly


compatible with the dominance relation is denoted by Usc.


A convenient way to define a set of utility functions is by the use of parametric utility functions


u(z, r), ( ) nD ℜ⊆∈ rr , where r is a vector of parameters and D(r) is domain of the parameter


vector. A parametric set of utility functions is then defined in the following way:


( ) ( ) ( ){ }rrrzr DuU ∈= |, .


Weighted Lp norms are defined as:


( ) { } { }∞+∈







−=Λ ∑


=


,...2,1,,,


/1


21


1


21 pzzL


p
p


jj


J


j
ip λzz ,


where [ ]Jλλ ,...,1=Λ , 0≥jλ , is a weight vector.


A set Up of utility functions based on weighted Lp norms is a parametric set composed of


functions of the following form:


( ) ( ) { } { }∞+∈







−−=Λ ∑


=


,...2,1,,,,


/1


*


1


* pzzpu


p
p


jj


J


j
ip λzz .


For p=∞ one obtains a parametric set U∞ of weighted Tchebycheff utility functions:


( ) ( ){ }jji
j


zzu −−=Λ∞
** max,, λzz . (2)


For p=1 one obtains a parametric set U1 of weighted linear utility functions:


( ) ( ) j


J


j
ij


J


j
ij


J


j
ijj


J


j
ip zzzzzu ∑∑∑∑


====
+=+−=







−−=Λ
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*


1


*


1


* const,, λλλλzz . (3)


A finite set ZA ⊆  is called an approximation of set N if 122121, zzzzzz �� /∧/∈∀ A , i.e. if


it is composed of mutually non-dominated attainable points. The set of all approximations of


the set N is denoted by Ω.


The maximum value reached by utility function u on an approximation A is denoted by


( ) ( ){ }z
z


uAu
A∈


= max* .
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2. Outperformance relations


In the case of a MOO problem, the overall goal of the decision-maker (DM) is to select the
single solution, which is most consistent with his or her preferences, the so-called best
compromise. Generating an approximation to the non-dominated set is only a first phase in
solving the problem. In the second phase, the DM selects the best compromise solution from
the approximation, possibly supported by an interactive procedure. Therefore, the DM may
consider approximation A as being better than approximation B if he or she can find a better
compromise solution in A than in B.


We assume, however, that the DM’s preferences are not known a priori. In fact, the use of


heuristics generation of approximations to the full non-dominated set is justified only in this


case. Nevertheless, one may be able to make some general assumptions about possible DM’s


preferences.


Using assumptions, we can state that an approximation A outperforms (is better than) B if, for


some possible preferences held by the DM, the DM may find a better compromise solution in A
than may be found in B and for other possible preferences, the solution found in A will be not


worse than those found in B. Specifically, we will assume that all possible preferences of the


DM may be modeled by utility functions belonging to a set U.


Let A and B be two approximations. Let ( ) UBAU ⊆>  denote a subset of utility functions for


which approximation A is better that B, i.e. ( )BAU >  = ( ) ( ){ }BuAuUu **| >∈ . Then, the


following relation may be defined.


Definition 1. (Outperformance relation subject to a set of utility functions)


Approximation A outperforms B subject to a set U of utility functions, i.e. A O/U B, if


( ) ∅≠> BAU  and ( ) ∅=> ABU , i.e. there exist some utility functions in set U that achieve


better values in A than in B, while the opposite is not true.


Obviously, the weaker the assumptions about DM’s preferences, the more general the


outperformance relation. The weakest, generally accepted assumption about the DM’s


preferences is that his/her utility function is compatible with the dominance relation (Rosenthal,


1985). In other words, the DM never prefers a solution that is dominated. This assumption


means that the DM can limit the search for the best compromise solution to the set of efficient


solutions. So, when two approximations A and B are known and from which the DM must


select a compromise solution, the DM can limit the search for the best compromise to the set


ND(A∪ B), i.e. the set of points (and corresponding solutions) non-dominated within A∪ B.


This allows us to define the following three dominance based outperformance relations.


Definition 2. (Weak outperformance)


Approximation A weakly outperforms B, and we write A OW B, if A  ≠ B and if ND(A∪ B) = A,


i.e. if for each point B∈2z  there exists a point A∈1z  that is equal to or dominates z2
 and at


least one point A∈1z  is not contained in B.


An approximation that weakly outperforms B can be obtained by adding to B a new point that


is non-dominated with respect to all points in B as illustrated in Figure 1
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Figure 1. Example of weak outperformance – A OW B.


Note that Definition 2 is equivalent to outperformance relation subject to the set UC of utility
functions compatible with the dominance relation. It is also equivalent to the outperformance
relation subject to the set U∞ of weighted Tchebycheff utility functions.


Definition 3. (Strong outperformance)


Approximation A strongly outperforms B, and we write A OS B, if
ND(A∪ B) = A and B\ND(A∪ B) ≠ ∅ , i.e. if for each point B∈2z  there exists a point A∈1z
that is equal to or dominates z2 and at least one point B∈2z  is dominated by a point A∈1z .


An approximation that strongly outperforms B can be obtained by adding to B a new point that
dominates at least one point in B as illustrated in Figure 2.
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Figure 2. Example of strong outperformance – A OS B.


Definition 4. (Complete outperformance)


Approximation A completely outperforms B, and we write A OC B, if ND(A∪ B) = A 


and B ∩ ND(A∪ B) = ∅ , i.e. if each point B∈2z  is dominated by a point A∈1z .


An approximation that strongly outperforms B can be obtained by adding to B a new point(s)
that dominate all points in B as illustrated in Figure 3.
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Figure 3. Example of complete outperfomance – A OC B.


Note that WSC OOO ⊂⊂ , i.e. complete outperformance is the strongest and the weak


outperformance is the weakest of the outperformance relations. Each of the relations defines
an incomplete ranking in the set Ω of all approximations.


If no additional assumptions about the DM’s preferences (except of the compatibility with the


dominance relation) are justified we propose to compare two or more approximations using


the above three dominance based outperformance relations. They allow to assess that one


approximation is better than another and also to grade the level of outperformance.
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Figure 4. Approximations incomparable according to the weak outperformance.
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Figure 5. Approximations incomparable according to the weak outperformance but
comparable according to outperformance subject to the set U1 of weighted linear utility


functions - BOA W/  but BOA U1/ .


Obviously, many pairs of approximations will remain incomparable with respect to the weak
outperformance (and so with respect to the stronger relations), i.e. none of the approximations
will weakly outperform the other one, as is the case in Figure 4. In this case, one can introduce
stronger assumptions about the DM’s preferences, e.g. by defining another set U of possible


utility functions, and test if one of the approximations will outperform the other one subject to


this set. For example, the two approximations presented in Figure 5 are incomparable with


respect to the weak outperformance, but approximation A outperforms B subject to the set U1


of weighted linear utility functions.


Furthermore, the outperformance relations allow for qualitative comparison only. In many


cases one will be interested in not only whether an approximation is better than another one


but also how much better it is. For example both approximations B and C presented in figure 6


are completely outperformed by approximation A. Intuitively, however, the difference between


A and B is much smaller than the differences between A and C and between B and C.
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Figure 6. Different levels of differences between approximations.
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3. Quantitative comparison methods


In this Section, we will describe some quantitative comparison methods that can be used to
compare approximations that are incomparable according to the outperformance relations.


Quantitative comparison methods will also be based on some assumptions about the DM’s


preferences. It is natural to demand evaluations obtained by a quantitative comparison method


to be concordant with outperformance relations based on these assumptions or on more


general assumptions about the possible preferences.  This demand is defined formally below.


Definition 5. (Weak compatibility with an outperformance relation)


A comparison method R is weakly compatible with an outperformance relation O, where


O=O/U, OW, OS or OC, if for each pair of approximations A and B, such that A O B, R will


evaluate approximation A as being not worse than B.


Definition 6. (Compatibility with an outperformance relation)


A comparison method R is compatible with an outperformance relation O, where O= O/U, OW,
OS or OC, if for each pair of approximations A and B, such that A O B, R will evaluate


approximation A as being better than B.


3.1 Comparison based on probability


Assume that each of the considered utility functions has a given probability of being the one


held by the DM. When comparing two approximations A and B, it would then make sense to


consider approximation A as being the better one, if there is a high probability for the utility


functions in which approximation A presents a better solution than approximation B.


We express the probabilities of utility functions by an intensity function p(u) and introduce an


outcome function of the comparison between two approximations using a given utility


function:










<
=
>


=
)(*)(*0


)(*)(*½


)(*)(*1


),,(


BuAuif


BuAuif


BuAuif


uBAC


We then build the measure R1 to reflect the probability that approximation A is better than
approximation B by integrating over all utility functions:


∫
∈


=
Uu


duupuBACpUBAR )(),,(),,,(1


According to this measure approximation A is better than B if R2(A,B,U,p) > ½ and A is not


worse than B if R2(A,B,U,p) ≥ ½. We notice, that R1(A,B,U,p) = 1 − R1(B,A,U,p) and is


therefore not possible, that one approximation can be better than another one while the


opposite also is true.


R1 is weakly compatible with the outperformance relation for any set of utility functions


U ⊆  Uc.  R1 is compatible with outperformance relation subject to a U set of utility functions if


the same set U is used in R1 and if the probability of selecting a utility function u∈ U(A > B) is







11


always greater than zero whenever U(A > B) ≠ ∅ . The latter condition is, for example, assured
if U is a parametric set and the probability intensity is a continuous and positive function of the
parameter vector.


As an example, Figure 7 shows the u* values of two approximations A={[3,10],[5,7],[9,7]}
and B={[2,9],[5,6],[10,6]} using the Chebycheff utility function with z* = [10,10] and
Λ = [t, 1 – t], t ∈  〈0,1〉:


( ) ( )( ) ( ) ( )( ){ }{ }1,0,101,10max,, 21
* ∈−−−−=Λ= ∞ tztzttutU


j
zz


Only when t > 0.8 will approximation B contain the best alternative. If we presume that the


utility functions are distributed as follows by letting t belong to the continuous uniform


distribution, t ∈  U〈0,1〉, we get R1(A,B) = 0.8.


-3


-2.5


-2


-1.5


-1


-0.5


0


0 0.2 0.4 0.6 0.8 1


parameter t in utility function


u
* Approximation A


Approximation B


Figure 7. u* values of approximations A and B.


When using R1 to rank more than 2 approximations it is possible to obtain cycles where


R1(A,B,U,p) < ½, where R1(B,C,U,p) < ½ and where R1(B,C,U,p) < ½, indicating that B is


better than A, that C is better than B and that A is better than C. Figure 8 outlines such an


example.
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parameter t in utility function


u
*


Approximation A


Approximation B


Approximation C


  Figure 8. Example of cycles in ranking.
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A different approach to ranking a number of approximation is to compare the approximations
individually with a fixed reference set, R:


∫
∈


==
Uu


R duupuRACpURARpUAR )(),,(),,,(1),,(1


This measure induces a complete ordering of approximations and cycles can therefore not
occur. The measure is weakly compatible with the outperformance relation for any set of utility
functions U ⊆  Uc.


However, it is not compatible even with the complete outperformance relation, if e.g. A OC B
but R OC A, then R1R(A,U,p) = R1R(B,U,p) = 0. This also shows that for this measure to be
useful, the reference set R should reflect an attainable quality over the utility functions.


It is also worth mentioning that the resulting ranking of approximations will depend on the
reference set used. With two different reference sets, R and P, we can be in a situation where
R1R(A,U,p) > R1R(B,U,p) and R1P(A,U,p) < R1P(B,U,p), even if R OC P. Still, we consider it
beneficial to use more than one reference set, especially if these are on significantly different
quality levels.


Notice, that the C(A,B,u) function merely performs a ranking of the two approximations to see
which contains the best point with respect to the utility function. This approach can easily be
generalized to encompass more than two approximations, A1, A2, …, AK by considering the


rank of an approximation in u*
(A1), u


*
(A2), …, u*


(AK):


 
1


1)})(*),...,(*),(*{);(*(
),,...,,;( 21


21 −
−


=
K


AuAuAuAurank
uAAAAC Ki


Ki ,


where rank(x; X) is the rank of element x in the set X giving the value 1 is x = min{X} and the


value |K| if x = max{X}. The measure from integrating over all u in U then yields the expected
relative rank of an approximation among the K approximations.


A similar approach is to use a group of reference sets, R1, R2, …, RK and calculate the


expected relative rank of an approximation with respect to this set. These two generalizations


are inspired by work of Fonseca and Fleming (1996).


3.2 Comparison based on expected values


Consider the following two approximations A={[1,10],[10,1.8]} and B={[2.2,10],[7,-1]}.


Values of u* are presented in Figure 9, where u is a Chebycheff utility function (2) defined in


the same way as in Section 3.1. When t < 0.5125, approximation B contains the best


alternative. So, applying measure R1 we obtain R1(B) = 0.5215 > R1(A) = 0.4875. However,


in the region where approximation B gives better utility approximation A gives only slightly


worse results, while in the other region the utility given by approximation A is significantly


better. So, intuitively we might evaluate A better that B.
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Figure 9. u* values of approximations A and B.


We propose to use the following measure that takes into account expected values of the utility:


( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )


( ) ( )( ) ( )∫


∫∫


∈


∈∈


−


=−=−=


Uu


UuUu


duupBuAu


duupBuduupAuBuEAuEpUBAR


**


****,,,2


According to this measure approximation A is better than B if R2(A,B,U,p) > 0 and A is not
worse than B if R2(A,B,U,p) ≥ 0. Obviously, R2(A,B,U,p) = − R2(B,A,U,p).


In the above example we obtain E(u*(A)) = -2.1239, while E(u*(B)) = -2.5924, and therefore
R2(A,B,U,p) = 0.4684 > 0. So, approximation A is evaluated better than B.


R2 is weakly compatible with the outperformance relation for any set of utility functions U ⊆
Uc.  R2 is compatible with outperformance relation subject to a U set of utility functions under
the same conditions as R1.


R2 induces complete ranking in the set of all approximations.


Measure R2 is based on an assumption that we are allowed to add values of different utility
functions. Therefore, it is also dependent on the scaling of the different utility functions.
Assume for example that in the above example each Chebycheff function is multiplied by


( )21 t−  (see Figure 10). In this case we obtain E(u*(A)) = -0.6361, while E(u*(B)) = -0.59996
and then R3(A,B,U,p) = -0.03614 < 0. So, approximation B is evaluated better than A.
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Figure 10. u* values multiplied by ( )21 t−  of approximations A and B.


The same method can be used to construct a quality measure that evaluates a single
approximation A with respect to a fixed reference set R:
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In this case, the lower the value of the measure is, the higher is the evaluation of A.


In some cases, ratios of best utility values may be more meaningful than their differences.
Therefore, we propose also the following ratio measure:
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When a reference set is known we may use the idea of R3 to construct the following measure:
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The idea of R3R follows an approach often used in single objective optimization where
approximate solutions obtained by single objective heuristics are evaluated by the ratio of the
deviation from a fixed bound, for instance the optimal value.


In general, also the values of the ratio measures are dependent on the scaling of the objective
functions.
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4. Reference information


The dominance-based outperformance relations introduced in Section 2 do not require
information except the points of the two approximations being compared. However, in the case
of outperformance relation subject to a set of utility functions and the quantitative comparison
methods proposed in Section 3 there is a need for further information. In this Section, we
characterize some sources of additional information about a given MOO problem (beyond
those characterizing DM’s preferences) that could be useful while comparing approximations


of the non-dominated set.


4.1 Reference levels


In Section 3, we have used a reference set, R, with respect to which we can compare an


approximation. Here we will discuss some of the requirements we have to such a set. First


please notice, that we only use the reference set in order to obtain values of u*
(R) for each


given utility function. We may extend this by describing a reference level to each utility


function. This is a generalization, since there might not exist a realization of a reference set, R,


which can give the same values of u*
(R) for each of the utility functions.


The reference level may then be described by, for instance, a relaxed correspondent to the


original problem, relaxing the integer/binary constraints on decision variables or relaxing other


constraints. This may result in upper bounds with known maximal (or consistent) deviation


from optimum, insuring some degree of homogeneous quality over the non-dominated frontier.


Lower bounds for the exact reference levels can be found from e.g. approximation algorithms


such as heuristics. Using these, one may be in a situation where an approximation performs


better than the reference level for some utility functions. However, this is no different from the


single-objective case. Again, the most important issue is to insure a homogeneous quality level


over the non-dominated frontier.


Publication of such reference levels can be given as the relaxed model used, the approximation


algorithm used, etc., but it can be useful for other researcher if also some of the actual utility


function values are available. For measure R2R one can publish the integral value (perhaps with


different numerical integration procedures and different sampling intervals) of


∫
∈ Uu


duupRu )()(* .


It will often be useful to provide more than one reference level for a problem instance. As


stated in Silver et. al. (1980), the purpose of heuristic methods is not only to be close to the


optimal solution, but also to be far away from poor solutions. Reference levels describing poor


solutions should therefore also be provided, for instance as generated by random solutions. In


between, one may provide mediocre reference levels such as those obtained by generating local


optima from e.g. simple steepest ascent heuristics.
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4.2 Reference sets


Nevertheless, it can be more convenient to use an actual set of points, a reference set, to
describe the reference levels since it may allow for easy interchange among researchers. Also,
using an actual reference set may allow for fast calculation of some of the measures using
efficient data-structures, such as quad-trees (see Habenicht, 1982, and Sun and Steuer, 1996).


The reference set should ideally be the full (optimal) non-dominated set but for computational
reasons, one may have to settle for or a subset of this, for instance a well dispersed subset, all
or some of the supported non-dominated points, or the like.


Still some problems may be so difficult to solve, that one cannot expect to find any
(guaranteed) non-dominated points at all, to use in the reference set. A second approach is
then to use a set of potentially non-dominated points as generated by approximation
algorithms.


If the reference set does not solely consist of non-dominated points, one must pay special
attention to insure a homogeneous quality of the potentially non-dominated points all-over the
frontier. This must be argued for by the constructor of the reference set. Two main arguments
will here be the deviation from optimality/non-dominance (which again can be measured in
different ways) and the computational/algorithmic effort that has been used to obtain the
points.


When the reference set contains non-dominated points, but only a subset of these, it will also
be necessary to argue for homogeneous quality over the non-dominated frontier; here in terms
of how well dispersed the subset is. The issue of well dispersed-ness is often relevant, since
non-dominated sets can be very large indeed. Filtering techniques may here be useful (Steuer,
1986).


4.3 The ideal point


In the utility functions themselves, we will also often use additional information. Consider for
example the utility functions within Up. These use a weight vector and the ideal point, z*, as an
anchoring point. We will first discuss the ideal point and then the weight vector.


The most used anchoring points are the ideal point and the nadir point. When we prefer using
the ideal point, it is due to the fact, that the nadir point is notoriously difficult to determine for
problems with more than two objectives. One risk to estimate the nadir point terribly wrong
even for otherwise simple problems (Weistroffer, 1985). Even in the relatively simple case of
multiple objective linear programming, the estimation is difficult, especially as the problems
grow in size (Korhonen et. al., 1997).


Hence, we prefer to use the ideal point in the scalarizing functions defining the utility functions.
However, determining the exact ideal point may also cause difficulties, since this imply solving
each of the single objective programs to optimality. This may be possible in some cases
whereas for others one has to estimate the ideal point. In the latter case it is important not to
underestimate the ideal point since this implies that approximation points non-dominated with
respect to the estimated ideal point normally will not contribute fully to the measure, and in
some cases, will not contribute at all.







17


If one has to estimate the Ideal point, or some of its components, it is therefore important that
the estimate is an overestimation. This may be found as upper bounds to the problem, perhaps
from a relaxation. If some of the components of the Ideal point could be the optimal values,
one should in order for the measures to function properly for points attaining the optimal level
on one or more objectives add an ε-value to each component of the Ideal point (Steuer, 1986,
Section 14.1). The ε-value can be set as a very small positive constant multiplied with the
range equalization factors.


The utility function values will obviously depend on the coordinates of the ideal point and so
will the measures. One must therefore always accompany the measuring results with the
coordinates of the used ideal point including the ε-values. For the utility functions of family U1


however, the utility function values only differ by a constant.


4.4 Range scaling


The purpose of the weight vector Λ is in fact twofold. One is to prescribe the importance of
each objective, the higher the weight, the higher the importance of that objective. The second
is to scale the ranges of the objectives, so those objectives with large ranges do not dominate
the objectives with smaller ranges. These two are normally separated into two multiplicative
factors, the importance weight and a range equalization factor. In Section 5 we suggest ways
of using different importance weights in the measures and will for now only consider the range
scaling in terms of the range equalization factors, as defined in formula (1).


The range equalization vector holds as the j’th element 1 divided by the range on objective j.
Most naturally would be to use the ideal and nadir point for calculating the ranges, and this we


suggest to do for bi-objective problems. With more than two objectives, the nadir point is as


mentioned previously often so difficult to find, that alternative approaches can be desirable.


Some possibilities will be discussed in the remainder of this Section.


The anti-ideal point (or an approximation for this) can be used in replacement for the nadir


point. This makes most sense if the objectives are not correlated and if it is likely that the nadir


point is placed close to a line between the ideal point and the anti-ideal point.


A probabilistic approach can be used if the objectives are independent and thereby not


correlated. In this case, the levels on each objective will be independent of the level on other


objectives and a fixed (low) percentile on each objective from e.g. a sample of random


solutions can be used to estimate the levels of the nadir point. One must be careful when using


this approach on problems where the objectives only are non-correlated but not independent.


One can omit range scaling in cases where it can be assumed, that the ranges are more or less


equal. This may e.g. be the case for problems where all objective functions are of the same type


and the parameters defining the corresponding single objective instances are generated


independently and “in the same way”.


The pay-off table, i.e. the matrix formed by the points which define the ideal point, can be used


to obtain a setting for the nadir point as the lowest observed level on each objective. In cases


of multiple optima for the single-objective problem, effort can be put into locating all optima.


This approach may be best for problems with strongly correlated objectives and is often seen


used in practice.


An empirical approach is to build an over-all best approximation from all approximations


obtained in the experiments on the problem instance. From this set, an empirical nadir point
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can be found and used for the final calculations of measures. This may be the best option in
cases with strong non-linearity in objectives, when the solution space is restricted in special
ways or when there is some correlation among objectives.


A common-sense addition to the other approaches can be desirable. For instance, an objective
may obtain extremely poor values, as can be the case in e.g. bi-criteria project scheduling with
minimization of costs and project completion time. Here, the schedules of low cost may be so
lengthy, that they are without practical interest. A lowest-value-of-interest on some objectives
may therefore be relevant in calculating the range equalization factors. This is obviously also
necessary if the problem has unbounded objectives as can be the case in multiobjective
programs other than MOCO problems.


Again, the range equalization factors should always be given with the measuring results. This
allows other researchers to calculate directly comparable measures (using measures R2 and R3)
for their approximations.


Also, if the nadir point is estimated through feasible solutions (as is the case with the pay-off
table and the empirical approach) the points defining the nadir point should be reported so as
to possibly improve the estimation of the nadir point for other researchers.
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5. Guidelines for constructing measures


The quality measures proposed in Section 3 include parameters which may have crucial
influence on the results of the evaluation. If the measures are used in experiments which results
are published, the authors should precisely specify what was the setting of the parameters,
namely:


•  what set of utility functions was used,
•  what was the probability distribution of the utility functions and
•  how the objective functions were scaled (in the case of measures R2 and R3).


In this Section we give some general guidelines for setting these parameters and suggest “best


practice” for a number of cases.


5.1 The choice of the set of utility function


If no additional information about the possible preferences of the DM is available, one should


choose a set of utility functions that does not disregard any non-dominated points. Obviously,


this is assured by the set Uc of utility functions compatible with the dominance relation but this


set cannot be used in practice. We propose to use the set U∞ of weighted Tchebycheff utility


functions in this case.


In other cases, additional assumptions about the DM’s preferences may be justified. For


example, one may know that the DM’s preferences can be expressed by a weighted sum of


objectives, but where the weights are otherwise unknown. In this case, the set U1 of weighted


linear utility functions should be used.


5.2 The choice of probability distribution of the utility functions


Assume that two approximation A, B are incomparable according to outperformance relation


subject to the selected set of utility functions U. It is then always possible to choose a


probability distribution such that one of the approximations will be evaluated higher than the


other one by the quality measures. This can be done by defining intensity function p(u) that


take on high values in regions of set U where one approximation gives higher utility and low


values in the other regions. Of course, some of the distributions will be more “artificial” that


the others.


An obvious requirement is that the intensity function p(u) should be greater than 0 for all u∈ U.


Otherwise, functions with intensity function value equal to zero can be excluded from U. The


probability distributions also should not “favor” any subregion of U.


In the case of weighted Tchebycheff or weighted linear utility functions, the utility functions


are defined by the selected weight vector Λ (see formulas (2) and (3)). Therefore, the


distribution of the utility functions can be defined via the distribution of weights. For practical


reasons, we propose to use normalized weight vectors, i.e. vectors belonging to the following


set:
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We then propose to use a uniform distribution of weights, i.e. a distribution for which:
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where V(Ψ) and V(Ψ’) are Euclidean hyper-volumes of Ψ and Ψ’, respectively. In other


words, the probability of a weight vector belonging to Ψ’ should be proportional to the


hyper-volume of Ψ’. The normalized weight vectors should be applied to normalized objective


values, i.e. original objective values multiplied by range equalization factors (1).


Of course, if there are reasons to assume that some utility functions are more probable, one can


modify the probability distribution to reflect this knowledge, as we will discuss in Section 7.


5.3 Utility functions’ scaling


Utility functions’ scaling is crucial for measures R2 and R3 based on expected values. The


measures require that similar changes of the best values of different utility functions reflect


similar changes of the quality of the best solutions, i.e. the utility functions should be linear


with respect to the intuitive interpretation of the quality of solutions.


Having a set U of utility functions, we propose to scale them to the range 0-1, where 0 is the


worst and 1 is the best value. The extreme values should be achieved by points of some


intuitively understood quality, e.g. the quality of a reference set.


If a good reference set R is known, the utility functions should be scaled such that their


maximum in this set is equal to 1. Otherwise, one can use points obtained by solving a relaxed


correspondent to the original problem, if a tight relaxation can be found (cf. Section 4.1). If no


such information is known, we propose to use ideal point or its approximation to scale the


utility functions, so that they achieve the value 1 in the (approximation of) ideal point.


The value of 0 should be associated with some “poor” points, preferably worse than all the


approximations evaluated. One can for instance use (the approximations of) the anti-ideal or


the nadir point. If no approximation of the nadir point is known but range equalization factors


πj are defined through other methods, one can associate value of 0 with the following point:


[ ] Jjzzzz
j


jjJ ,...,1,1,,..., *
1 =−== −−−−


πβz ,


where β >0 and large enough for z−
 to be dominated by all the points in evaluated


approximations.


5.4 Computational issues


Measures defined in Section 3 are generally difficult to calculate analytically since they require


integration of non-smooth functions. Daniels (1992) proposed a method that can be used to


calculate R3 in the case of linear utility functions.
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Of course, the values of all the measures can be found by numerical integration. This requires
sampling the set U of utility functions according to its distribution. In the case of weighted
Tchebycheff or weighted linear utility functions this turns into sampling weight vectors Λ. In
Section 5.2 we proposed to use set Ψ of normalized weight vectors. We propose to sample
this set by generating all weight vectors in which each individual weight takes on one of the


following values: { }klk
l ,...,0, = , where k is a sampling parameter defining the number of


weight levels. With a combinatorial argument, we notice that this produces 







−


−+
1


1


J


Jk
weight


vectors.


For example, for k=3 and J=3, we obtain the following set of 10 vectors: {[0,0,1], [0,1/3,2/3],
[0,2/3,1/3], [0,1,0], [1/3,0,2/3], [1/3,1/3,1/3], [1/3,2/3,0], [2/3,0,1/3], [2/3,1/3,0], [1,0,0]}.
Again, the weight vectors should be applied to normalized objective values.


If the results of numerical integration are reported in the description of an experiment the
authors should precise all the necessary details of the algorithm.
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6. Comments on other approaches


In this Section we comment on some quality measures used in published experiments with
multiple objective heuristics. We characterize the quality measures using our framework, i.e.
we take into account compatibility with the outperformance relations and (implicit)
assumptions about the DM’s preferences.


6.1 Cardinal measures


If a reference set composed of all the efficient solutions is known, it may seem that the most


natural quality measure is the ratio of the reference points found. The measure may be defined


in the following way:


R


RA
AC R


∩
=)(1 .


This measure was used by e.g. Ulungu (1993) and by Morita and Katoh (to appear).


If the reference set does not contain all non-dominated points then the points from A, which


are non-dominated by points contained in R, may actually belong to the non-dominated set. In


this case, it may be more reasonable to use the following measure, which is defined as the ratio


of approximation points non-dominated by R:
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This measure was used by Tuyttens et al. (to appear).


The cardinal measures have, however, some significant disadvantages. They are very


insensitive to the improvements of the approximation. Consider for example the two


approximations of a reference set presented in Figure 11 obtained for a bi-objective knapsack


problem. Clearly, approximation 1 is much better than approximation 2. All points in


approximation 1 are very close to the reference set and they cover most regions of the


reference set. Both approximations will have, however, the same worst values of the measures


C1 and C2. In fact, C1 is only weakly compatible with relations OC, OS and OW. Measure C2 is


weakly compatible with OC relation only.


The use of cardinal measures seems to be reasonable only if there is a high probability that a


method is able to find a significant percentage of non-dominated solutions. In the case of larger


problems, finding non-dominated points may be very difficult (compare results of experiment


described in Czyzak and Jaszkiewicz, 1998). Please note, that single objective heuristic


normally not are treated as global optimization tools. They should rather generate, in relatively


short time, solutions close to the optimal one. Analogously, multiple objective metaheuristic


should, within a realistic computational time, give a good approximation to the whole


non-dominated set.
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Figure 11. Reference set composed of all supported solutions and two approximations
obtained for a two objective knapsack problem (100 elements).


Another drawback of the cardinal measures is illustrated by the example presented in figure 12.
The two approximations are composed of 5 non-dominated points, so, their cardinal measures
are equally good. All points composing approximation 3 are, however, very close in the
objective space, i.e. they represent the same region of the non-dominated frontier. The points
of approximation 4, on the other hand, are dispersed over whole reference set. They carry
much richer information, e.g. about the possible ranges of objectives. This example shows that
for the cardinal measures, each point in the approximation has the same weight regardless of
their proximity and information concerning the shape of the non-dominated set.
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Figure 12. Reference set composed of all supported solutions and two other
approximations obtained for a two objective knapsack problem (100 elements).


6.2 Distance measure


Czyzak and Jaszkiewicz (1998) proposed the following distance measure based on a reference
set R:
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range of objective j in set R.


The measure was also used by Tuyttens et al. (to appear) and by Viana (1997).


Obviously, D1 is weakly compatible with the OC, OS and OW outperformance relations. It is not
compatible, however, even with the strongest complete-outperformance relation OC. Consider
for example the bi-objective problem with the following reference set:


R = {r1 = [9, 4], r2 = [4, 9]},


and the following two approximations


A = {u1 = [8, 2], u2 = [2, 8]},


B = {u3 = [8.5, 2], u4 = [2, 8.5]}.


Obviously, 2413 and uuuu �� , so, B OC A, however, D1R(A) = D1R(B) = 0.2. This happened
because points u1 and u2 are weakly non-dominated with respect to the points u3 and u4. In
practice, however, it is rather unlikely that all points in an approximation, that is completely
outperformed, are only weakly dominated by the points of the other approximation.


Consider now compatibility of the measure D1 with the strong outperformance relation.
Assume that the reference set and the weighting vector are the same as used in previous
example and the following two approximations are evaluated:


A = {u1 = [8, 2], u2 = [2, 8] , u3 = [4, 4]},


B = {u4 = [8.5, 2], u5 = [2, 8.5] , u6 = [4.5, 4.5]}.


Clearly, B strongly outperforms A, however, D1R(A) = D1R(B) = 0.2.


The value of D1 may be interpreted as the average of maximum losses on all objectives when
the approximation A is available in place of reference set R, where the losses on objectives are
expressed as percentages of the (approximated) ranges of particular objectives in the
non-dominated set.


One should be aware however, that this is in fact a weighted average, where the reference
points have equal weight. In some cases, it may therefore give results against intuition.
Consider for example the same bi-objective problem with the following reference set:


R = {r1 = [9, 4], r2 = [4, 9], r3 = [6, 6]},


and the following two approximations


A = {u1 = [8, 2], u2 = [3, 8] , u3 = [4, 4]},


B = {u4 = [8.5, 3], u5 = [2, 7] , u6 = [5, 5]}.


According to measure D1, approximation B is better than A. Assume now that the reference
set is “improved” by adding two new points:


R’ = {r1
 = [9, 4], r2


 = [4, 9], r3
 = [6, 6], r4


 = [3.99, 9.01], r5
 = [4.01, 8.99]},


Approximation A is now evaluated better than B, because points r4
 and r5


, although very close


to r2
 have the same importance.
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According to our framework, functions d(r, z) may be interpreted as different utility functions
and the value of D1 as the expected value ever these functions. Distribution of the functions
depends on the distribution of points in the reference set that may be distributed very unevenly.
Please notice that this very well may be the case even if the reference set is composed of all the
non-dominated points.


There is no reason to assume that the regions of the non-dominated set with high density of
points are more important for the DM. For example, the fact that in a bi-objective project
scheduling problem most efficient schedules have long completion time does not mean that
they are more important. Before using this measure one should therefore assure uniform
distribution of points in the reference set or, alternatively, weight the points so as to give low
importance (e.g. low weight) to points which are located close to other points in the objective
space.
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7. Evaluating an approximation under preference information


In practical applications, one may not seek an approximation to the entire non-dominated set,
but only to parts hereof. This can be the case if the output of the heuristic is used in an
interactive MCDM system where preference information is elicited and fed back to the
heuristic. Indeed, an important reason for our choice of using probability of utility functions is
that it in a practical and elegant way facilitates incorporation of certain types of elicited
preference information into the measures.


The nature of preference information can be manifold, and the easiest to handle in our
framework is an expression with respect to weights. One simply shapes the probabilities for the
utility functions so as to reflect the preference information. Say for example that the DM has
come to the realization that the preferred solution will have a weight (in the used scalarizing
function) in the interval of 〈0.4, 0.6〉. Alternatively, that the weight is around 0.5 with a given
certainty.


These types of preference information can be included in the measurement of an approximation
by using probabilities for utility functions as illustrated in Figure 13. In the first case, we have
limited the set U to contain weights in the interval of interest and here consider a constant
probability function. In the second case, the set U is the entire set, but the probability function
is changed to reflect the preference information.


Logically one should use probabilities, which integrate to one. This could also be omitted,
however, since it only serves to scale the measure.
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Figure 13. Weights with preference information


Another type of preference information is expressed by aspiration levels, which, for some or all
objectives define a level of achievement on which the DM is satisfied. (The precise
interpretation of such levels varies among interactive procedure.) This aspiration point (in
which some levels may be aspiration levels and other may be ideal/optimal levels) gives the
possibility of using a displaced ideal point instead of the Ideal point as the anchoring point in
the utility functions of family u∞. In this way, we do not measure improvements in the
approximation beyond the aspiration levels.
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8. The use of measures in multiobjective heuristics


In the beginning of this paper we stated, that the measures are useful information during
execution of a heuristic procedure, namely as stopping rules and as a global objective function.
However, we cannot expect to have reference information such as a reference set or the Ideal
point available during the execution of a heuristic. This information is obviously part of the
solution, which is sought and knowing it in advance would correspond to, in the case of single
objective optimization, if we knew the optimal solution (or a good bound for it) before the
heuristic procedure begins. Still, the heuristic may contain components aiming at acquiring
such information. For example, the knowledge of the ranges of the objectives is often essential
to a multi-objective heuristic aiming at generating an approximation which is equally good all
over the non-dominated frontier. If reference information is used in heuristics for benchmark
experiments, this must be explicitly stated along with the publicized results.


So, while a priori known reference information in general should not be used in the heuristic, it
may to some extent be necessary if preference information is to be included. For instance, it
does not make sense to define preference weights (such as a sub-space of the weight-space) for
the Tchebycheff based utility function without prescribing an anchoring point. However, the
anchoring point may be some point located arbitrarily far away from the ideal point on the
diagonal of the contours defined by the scalarizing function used and going through the ideal
point. In this way, the heuristic can not use the anchoring point for reference information.


Finally, the formula (but without a priori calculated parameters) by which the output of the
heuristic is to be measured can be used in the heuristic to guide the search. The heuristic may
then use the measuring formula with reference information as obtained during the calculation,
to guide the search, for stopping criteria, etc. The computational effort of calculating the
measure should always be included in the evaluation of the heuristic.
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9. Conclusions and directions for further research


In this paper, we have introduced dominance-based outperformance relations between
approximations that form a basis for other methods evaluation and comparison methods. The
dominance-based outperformance relations are based on very weak and generally accepted
assumptions about the DM’s preferences and they do not require any additional information


about the MOO problem.


The outperformance relations leave, however, many pairs of approximations incomparable and


do not deliver quantitative information. Quantitative comparison of approximations requires


stronger assumptions about the DM’ preferences. It seems impossible however to propose


general assumptions that could be accepted in all situations. This is not surprising, as different


decision-makers (whose preferences are compatible with the dominance relation) among


approximations, which are incomparable according to the outperformance relations, indeed


may prefer different approximations.


We have therefore proposed a framework for quantitative measures of approximations.


Specifically, three generic families of measures have been presented. These measures are


simple in their conceptual basis, yet flexible enough for various types of needs. They are based


on common-sense assumptions and are characterized by their concordance with the


dominance-based outperformance relations. They form guidelines for construction of


quantitative measures under different practical circumstances. However, other types of


measures can also be developed, based on the presented framework.


We have also used our framework to characterize properties of some previously used quality


measures. We have shown that these in some cases can be discordant with intuition and with


the introduced dominance-based outperformance relations.


An important issue not fully discussed in this paper is the measurement of uniformness of the


quality of an approximation. In general, we want the approximation to be equally good all over


the non-dominated frontier. Expressed within the framework of the presented measuring


approach, this refers to the approximation being equality good considering all utility functions.


The consistency of quality of the approximation may be analyzed statistically and many types


and sources for variation can occur. The most useful types of analysis is probably to investigate


the quality at extreme utility functions (e.g. those generated with extreme weights) and in


larger clusters of the generating weight space. This may give insightful information on the


performance of the heuristics in terms of identifying its strengths and weaknesses.


We believe that the framework and the quality measures proposed in this paper are useful for


experimental evaluations of multiple objective heuristic procedures and may contribute to


further improvements of such procedures. We were of the opinion that the literature was in


need for good and consistent quality measures within the field of heuristic multiobjective


optimization and hope that the presented work is a step towards filling this gap.
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