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Abstract: The suitability of genetic algorithms 
(GAs) in Bandwidth Allocation for Virtual Paths 
(GA-BAVP) is investigated. Results for a simple 
network topology are compared with those 
obtained using a classical unconstrained 
optimisation technique. Our preliminary results 
suggest it is worthwhile to obtain further insight 
into the reported strength of GA -BAVP.  


1. Introduction 
BISDN's will support various classes of 
multimedia traffic with different bit rates and 
quality of service requirements, thus traffic 
control and resource management are crucial in 
order to guarantee the desired grade of service. 
Several mechanisms will exist in a BISDN to 
allocate resources and control traffic, such as 
bandwidth allocation, buffer management, call 
admission control, input rate regulation, routing, 
and queue scheduling. It has been suggested that 
these controls will be applied at different levels in 
the network such as cell level, burst level , 
connection (i.e. call) level, Virtual Path (VP) 
level, and the network level. In this paper we will 
focus on the bandwidth allocation problem for 
VPs, aimed at the VP and network levels. 
The suitability of genetic algorithms (GAs) in 
Bandwidth Allocation for Virtual Paths 
(GABAVP) is investigated, and the results for a 
simple network topology are compared with those 
obtained using a classical unconstrained 
optimisation technique in [1]. The motivation 
behind the use of GAs compared to more 
traditional optimization techniques lies in their 
robustness and efficiency which is based on the 
following [2]: (i) GAs work with a coding of the 
parameter set, not the parameters themselves, (ii) 
GAs search from a population of paints, not a 
single paint, (iii) GAs use payoff (objective 
function) information, not derivatives of functions 
or other auxiliary knowledge, and (iv) GAs use 
probabilistic transition rules, not deterministic 
rules. 
In section 2 we present the problem formulation 
and solution approaches, in section 3 we present 
our preliminary results for a simple topology, and 


compare with the solution obtained using a 
classical technique. Finally, in section 4 we offer 
our conclusions. 


2. Problem formulation and 
solution approaches 
 
GA-BAVP aims to supply optimal bandwidth 
(capacity, service-rate) assignment to VPs, taking 
into account global network considerations. It is 
located at the higher levels of the control 
structure; the VP and network levels. It is 
therefore associated with a "slow" time scale in 
terms of minutes or tens of minutes. Gerla et al 
[3] developed a M/M/1 queuing model (assuming 
independence between the queues) for Bandwidth 
Allocation for Virtual Paths (BAVP) aimed at 
minimising total expected delays. Hui et al [4] 
formulate BAVP as a Non-Linear Programming 
model which minimises the total usage cost. 
Herzberg and Pitsillides [5] propose an alternative 
model for BAVP which uses a network carrier 
viewpoint and maximises total network 
throughput (proposed earlier by Herzberg in [6]). 
Note that other criteria of optimisation can be 
incorporated to formulate a multiobjective 
optimisation problem [7], that can also be 
hierarchically organised [8]. Also game theoretic 
concepts may be used to deal with other issues, 
such as conflicting objectives, or introducing 
fairness into the VP allocations.  
Here we firstly present an extension of the 
objective function used in [5] to provide the 
bandwidth allocation problem with fairness 
among the VPs and then propose genetic 
algorithms to solve the multiobjective 
optimisation problem. 


Multiobjective BAVP model 
Consider a (virtual) network consisting of N 
nodes representing ATM switches, and L 
transmission links connecting the nodes. For 
given: network topology; expected OD traffic 
loads; and link capacities, we try to find an 
optimal VP bandwidth assignment which 
maximises the total expected network throughput. 
We seek to provide for "fair" allocations of 







bandwidth among all VPs (note that different VPs 
can have different performance objectives). The 
measure of fairness employed here is based on the 
concept of Pareto optimality from games theory 
[9] (also known as efficient, noninferior and 
nondominated optimality) which applies to 
cooperative game situations (rather than Nash 
optimality which applies to non cooperative). 
We define: 


Ci
link


 - Available bandwidth of link i, i=1,..,L 
for VP assignment. 


N p  - Number of network unidirectional OD 


pairs, indexed j N N Np= ≤ −1 1, ..., ( ) . 


Pj - Number of predetermined possible paths 


connecting OD pair j (allows for multiple 
VPs between an OD pair). 


U j p,  - Bandwidth assigned to OD pair j through 


path p, j N p= 1,..., ,  p Pj= 1,..., . 


U j - Bandwidth assigned to OD pair j. Clearly 
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U *- Pareto optimal solution, 
U U U jp


* [ ,..., ]* *= 1 .  


D Uj j( )  - Expected throughput of OD pair j 


when it utilises bandwidth assignment of 
size U j  (typically a concave non-decreasing 


function). 
T Tj j


min max( )  - Minimal (maximal) bandwidth 


assigned by the user to OD pair j (e.g. Tj
min  


can be set to meet minimum performance 
objectives and Tj


max  for fairness). 


δ j p
i
,  - a (0,1) indicator variable which takes the 


value of 1 if path p of OD pair j uses link i. 
F Uj j( )  ( f uj ( ) ) -  probability (density) 


function for bandwidth demand. 


Observe that the Uj,p are the references to be 
provided to the lower levels. 


The mathematical formulation for such a model 
is: 
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Note that U * ∈U  the set of all Pareto optimal 
solutions if and only if D U D Uj j j j( ) ( )*≤ , 


j=1,...,Np, with strict inequality for at least one j. 


To solve the above model, statistical 
characteristics of the functions D Uj j( ) , 


j N p= 1,.. ,  should be known. We assume that 


each function D Uj j( )  is derived from an 


appropriate probability function F Uj j( )  for 


bandwidth demand and a corresponding 
probability density function f uj ( ) . By 


considering the throughput as  a "fluid flow", the 
function D Uj j( )  can be obtained [5]: 
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The first term in equation (2) is the expected 
throughput for bandwidth demand below the 
assigned bandwidth of Uj, and the second term is 
for demand above the assigned bandwidth of Uj. 
In [5], we show that the expected throughput 
decreases, as variance of bandwidth demand 
(derived from normal probability) increases. 
Figure 1 presents a family of D Uj j( )  functions 


derived from Normal Probability Functions 
having an average bandwidth demand of 150 
Mbit/s and different variance values σ. For 
illustrative purposes an assigned value of 
U j = 200  Mbit/sec is shown by the dotted 


vertical line.  
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Figure 1. Typical throughput functions D Uj j( ) . 


The above problem belongs to the general class of 
multiobjective non-linear constrained 
optimisation problems. We want to find the set of 
the Pareto optimal solutions, and from this set 
select the optimum (or preferred) solution; 
defined as any preferred Pareto optimal solution 
that belongs to the indifference band (a subset of 
the Pareto optimal set where the improvement of 
one objective function is equivalent−in the mind 
of the decision maker−to the degradation of 
another [10]). 
 
solution approaches 







Among the many methods that generate the set of 
feasible solutions [10], [11] are: i) The weighted 
sum of the objective functions [7] (weighting 
method, parametric method). For example, 
Herzberg et al [6] converts the multiobjective non 
linear problem to a single objective LP problem 
(hence only generates one solution among the 
infinitely many). ii) The ε-constrained method 
[10] which can produce the set of noninferior 
solutions and (in conjunction with the Surrogate 
Worth Tradeoff (SWT) [10] method) generate the 
relative tradeoffs between the objective functions. 
Hence it allows a quantitative comparison of the 
objective (even noncommensurate) functions (e.g. 
[1]). iii) Hierarchical multiobjective analysis that 
exploits the general concept of decomposition-
coordination; it provides computational 
tractability, and possibly decentralisation of 
computations [10]. and iv) Optimisation based on 
GAs [2] (we explore here for the single objective 
case). 


Genetic algorithms 
….. 


3 Preliminary results 
 
In [1], using a 3-node network we compare the 
optimal bandwidth solution, for two single 
objective formulations (sum and product of 
individual objective functions) and the Pareto 
optimum set. It is shown that there are 
pronounced differences in the optimum 
bandwidth allocations of the two schemes, and 
that the single objective formulations are 
particular solutions of the Pareto optimum set. 
Therefore the choice of the optimum solution 
based on either of the two single optimisation 
objectives, is not clear cut. However equipped 
with the Pareto optimum set one can select the 
"best" compromise solution, in the eyes of the 
decision maker (e.g. using the SWT method).  
In this study, as discussed earlier, we want to 
exploit the reported strength of genetic algorithms 
to gain further insight into the problem of 
multiobjective BAVP, initially starting with 
single objective optimisation. 
 
A few words about the 
method/coding/etc… 
 


Results 
We consider a 3-node network (N=3) with 2 OD 


pairs, both destined for node 3. Two VPs are 


established for each OD pair (Np=4, Pj=2, j=1,2). 


The link capacities are set equal to 100 Mbit/sec 


( Ci
link = 100 , i=1,2,3). 


The network topology is shown in figure 2, and 


the traffic characteristics (assuming a normally 


distributed probability function for bandwidth 


demand) are tabulated below. 


C1=100
C3=100


C2=100


1


2


3VP
1,1


VP
1,2


VP2,1VP2,2


 


Figure 2. Three node network topology used for 
example 1. 


 


  case i) case ii) 
OD pair VP µ σ σ 


1-3 VP1,1 link 1,3 
VP1,2 link 1,2,3 


110 55  55 


2-3  VP2,1 link 2,3 
VP2,2 link 2,1,3 


50 25 100 


Table 1. Traffic characteristics for example 1.  


For each of the two optimisation techniques 
considered here (classical constrained 
optimisation#1 and genetic# 2 based optimisation), 
two cases are considered (see Table 1). The first 
depicts traffic with low variance for both OD 
pairs ("smooth" traffic). In the second case OD 
pair 2-3 has a high variance  to depict "bursty" 
traffic. For ease of comparison the results are 
tabulated below. Table 2 considers the sum of the 
objective functions and Table 3 the product of the 
objective function  


                                                 
#1 Using MATLAB function constr.m for constrained non linear 
optimisation; uses a Sequential Quadratic Programming method. 
#2 Using custom written C code and the program supplied by 
…. 







 sum of the objective functions, { }Max D U D U1 1 2 2( ) ( )+  


                     classical                                      genetic 
 bandwidth 


allocations  
objective 
function  


bandwidth 
allocations 


objective 
function 


case i U1=133 
U2=67 


D1(U1) = 99 
D2(U2) =50 


U1= 
U2= 


D1(U1) =  
D2(U2) = 


case ii U1=121 
U2=79 


D1(U1)  =95 
D2(U2) =44 


U1= 
U2= 


D1(U1)  = 
D2(U2)  


Table 2. Bandwidth allocations for example 1 for the sum of the objective function using.classical 
optimisatron techniques in comparison to genetic based optimisation techniques. 


 
 product of the objective functions { }Max D U D U1 1 2 2( ) ( )×  


                    classical                                       genetic 
 bandwidth 


allocations  
objective function bandwidth 


allocations 
objective 
function 


case i U1=125 
U2=75 


D1(U1) = 96 
D2(U2) =52 


U1= 
U2= 


D1(U1) =  
D2(U2) = 


case ii U1=102 
U2=98 


D1(U1)  =86 
D2(U2) =51 


U1= 
U2= 


D1(U1)  = 
D2(U2) = 


Table 3. Bandwidth allocations for example 1 for the product forms of the objective function 
using.classical optimisation techniques in comparison to genetic based optimisation techniques.  


 
 


Conclusions 
In the problem investigated, preliminary findings 
suggest that using genetic algorithms a 
satisfactory solution to the allocation of 
bandwidth for Virtual Paths can be obtained.  
However, further work is currently in progress to 
explore completely the capacity of GAs., not 
only for single objective optimisation, but also 
for the multiobjective case. 
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