

Int J Adv Manuf Technol (2000) 16:341–352
 2000 Springer-Verlag London Limited

A Multi-Objective Genetic Algorithm for Solving Assembly Line
Balancing Problem

S. G. Ponnambalam1, P. Aravindan2 and G. Mogileeswar Naidu1

1Department of Mechanical Engineering, PSG College of Technology, Coimbatore 641 004 India; and2Regional Engineering College,
Tiruchirapalli, 620 015 India

In this paper, a multi-objective genetic agorithm to solve
assembly line balancing problems is proposed. The perform-
ance criteria considered are the number of workstations, the
line efficiency, the smoothness index before trade and transfer,
and the smoothness index after trade and transfer. The
developed genetic algorithm is compared with six popular
heuristic algorithms, namely, ranked positional weight, Kil-
bridge and Wester, Moodie and Young, Hoffmann precedence
matrix, immediate update first fit, and rank and assign heuristic
methods. For comparative evaluation, 20 networks are col-
lected from open literature, and are used with five different
cycle times. All the six heuristics and the genetic algorithm
are coded in C++ language. It is found that the proposed
genetic algorithm performs better in all the performance
measures than the heuristics. However, the execution time for
the GA is longer, because the GA searches for global optimal
solutions with more iterations.

Keywords: Assembly line balancing; Heuristic rules; Multi-
objective genetic algorithm

1. Introduction

Assembly line balancing (ALB) relates to a finite set of work
elements or tasks, each having an operation processing time
and a set of precedence relations, which specify the permissible
orderings of the tasks. One of the problems in organising mass
production is how to group work tasks to be performed on
workstations so as to achieve the desired level of performance.
Line balancing is an attempt to allocate equal amounts of work
to the various workstations along the line. The fundamental
line balancing problem is how to assign a set of tasks to an
ordered set of workstations, such that the precedence relations
are satisfied and some measure of performance is optimised [1].

Correspondence and offprint requests to: Dr S. G. Ponnambalam,
Department of Production Engineering, Regional Engineering College,
Tiruchirappalli, 620 015 India. E-mail: ponsKrect.ernet.in

When designing an assembly line, the following restrictions
must be imposed on the grouping of work elements [2].

1. Precedence relationship.
2. The number of work elements cannot be greater than the

number of work stations. The minimum number of work-
stations is one.

3. The cycle time (amount of time available at each station
as well as the time between successive units coming off
the line) is greater than or equal to the maximum of any
station time and of the time of any work elementTi. The
station time should not exceed the cycle time.

1.1 Types of Simple ALB Problems

Simple assembly line balancing problems are classified into
two types, type I and type II [3]. In type I problems, the
required production rate (i.e. cycle time), assembly tasks, tasks
times, and precedence requirements will be given. Our objective
is to minimise the number of workstations. A line with fewer
stations results in lower labour costs and reduced space require-
ments. Type I problems generally occur when designing new
assembly lines. For this purpose, to achieve the forecast
demand the number of workstations should be reduced. For
expansion (when demand is increased) we can also use this
type I problem, to minimumise the number of extra stations
to be installed.

In type II problems, when the number of workstations or
production employees is fixed, the objective is to minimise the
cycle time. This will maximise the production rate. Type II
balancing problems generally occur, when the organisation
wants to produce the optimum number of items by using a
fixed number of workstations without purchasing new machines
or without expansion. Here, we can identify precedence, and
also zoning constraints. While balancing the main line, we
have also to consider subassembly lines.

Type I problems are more common than type II. The exact
algorithms available become intractable when the problem size
increases. While reasonable progress has been made in the
development of exact or optimal approaches, considerable
advances have been reported in the development of heuristic

342 S. G. Ponnambalam et al.

or inexact approaches to solve the single model deterministic
task times problem. The reason is perhaps twofold: the under-
standing that highly efficient optimal approaches do not exist;
and the need to solve large problems. Most of the inexact
approaches use priority ranking or tree search logic. The model
developed in this paper is to solve Type I problems. The word
problem hereafter used in this text refers to Type I problems.

ALB problems fall into the NP- hard class of combinatorial
optimisation problem [4]. Much work has been directed towards
the development of heuristic algorithms (e.g. [3,5–9]). A com-
prehensive review of ABL literatures has been carried out by
many researchers (e.g. [1,10,11]). The primary purpose of this
paper is to propose a multi-objective genetic algorithm, and
evaluate this algorithm by comparing it with available heuristic
algorithms in the literature based on various performance
measures.

2. Multi-Objective Genetic Algorithm

The objective of minimising the number of workstations is
often employed as a criterion for assembly line balancing.
Various heuristic approaches as well as optimisation techniques
(integer [12], dynamic programming [13], branch and bound
techniques [8,14]) have been proposed for minimising the
number of workstations. These studies treated a single objec-
tive, but many real-world problems involve multiple objectives.

Genetic algorithms (GA) have been applied mainly to single
objective optimisation problems. When a single objective GA
is applied to a multi-objective optimisation problem, multiple
objective functions should be combined into scalar fitness
functions. If a constant weight is assigned to each of the
objective functions to combine them, the direction of search
in the GA is constant in the multi-dimensional objective
space [15].

2.1 Terms and Definitions

Some of the important terms used in GA are explained in this
section [16].

Chromosome: This is the complete genetic description of an
individual. It is the collection of primitive features called genes.

Gene: This is a single feature within a chromosome. It may
take on any of several values called alleles.

Allele: This is a particular value that may be taken on by a
gene. Different genes will in general have different alleles. For
example, the gene that determines hair colour may have alleles
of red, black, brown, etc.

Population: Number of chromosomes forming a single
population.

Objective: This is the function that is considered for minimis-
ation or maximisation of a certain criterion.

Fitness: This is a measure of how well a parameter set
performs.

The exact nature of genetic optimisation is still open to
debate. Some practitioners follow binary representation within

a chromosome. In this work, the chromosomes are represented
by decimal numbers.

2.2 Principle Behind GA

A genetic algorithm is a set of procedures which, when re-
peated, enables solutions to be found for the specific problems.
To achieve the desired objectives, GAs generate successive
populations of alternate solutions until a solution is obtained
that yields acceptable results. Within the generation of each
successive population, improvements in the quality of the
individual solutions are achieved. In this manner, a GA can
quickly move to a successful outcome without need to examine
every possible solution to the problem. The procedure used is
based on the fundamental processes that control the evaluation
of biological organisms, namely, natural selection and repro-
duction. These two processes together improve an organism’s
ability to survive within its environment in the following
manner:

1. Natural selection determines which organisms have the
opportunity of reproduction and survival within a population.

2. Reproduction involves genes from two separate individuals
combining to form offspring that inherit the survival charac-
teristics of their parents.

The GA seeks to imitate the way in which beneficial genes
reproduce themselves through successive populations and hence
contribute to the ability of an organism to survive.

2.3 General Scheme of GA

There are many functions for evaluating the objective criterion
to measure an individual’s fitness. Many methods of repro-
duction and mutation exist. Even the basic processes of birth
and death can vary. However, for genetic optimisation the
following steps are generally followed:

Initialisation: Generate the initial population randomly.

Evaluation: Compute fitness value, which is a measure of how
well the individual optimises the function. Test each individual
using the objective function.

Parent selection: Choose pairs of individuals from the popu-
lation in such a way that those with higher fitness will get
more copies.

Reproduction: Generate children from each pair of parents.
Each parent contributes a portion of its genetic make-up to
each child.

Mutation: Randomly changes a tiny amount of genetic infor-
mation in each child.

A complete pass through the above steps is known as one
generation. After each generation is complete, a new one starts
with the evaluation of each of the children.

2.4 Selection Procedure

One of the simplest methods for combining multiple objective
functions into a scalar fitness solution is the following weighted

Solving the Assembly Line Balancing Problem 343

Table 1.List of heuristic rules used while representing genes of chromosomes.

Rule Heuristic rule Basis for determining the task priority Reference
number number

1. Maximum ranked positional weight [5]RPWi = ti + O
jPsi

tj

2. Maximum total number of follower tasks NSi [12]

3. Maximum task time ti [6]

4. Maximum number of immediate follower tasks NISi [17]

5. Maximum backward recursive max (sum of the task times fori and all tasks in paths positional [2]
weight havingi as its root)

6. Minimum total number of predecessor tasks NPSi [2]

7. Minimum reverse positional weight min (sum of the task times fori and all tasks that precede it) [2]

8. Minimum lower bound [12]
LBi = FSti + O

j

pi tjD/CG
9. Minimum upper bound [12]

UBi = N + 1 − FSti + O
jPsi

tjD/CG+

10. Minimum slack UBi − LBi [12]

11. Minimum task number Task number,i [18]

12. Random task assignment Random (uniform) [18]

13. Maximum task time of follower task max {Task time,Si} *

14. Maximum positional weight of follower task max {PW (Si)} *

*newly introduced heuristic rules
C = station cycle time
N = number of tasks to be balanced into stations
NSi (NPi) = total number of tasks which succeed (precede) taski (i.e. the number of elements ofSi(Pi)
NISi(NIPI) = number of tasks which must immediately succeed (precede) taski.
Si(Pi) = set of tasks which must succeed (precede) taski.
ti = assembly time required to complete taski.
[X]+ = smallest integer greater than or equal toX

Fig. 1.Crossover operation explained.

sum approach [15]. If there aren objective functions to be
maximised, the combined fitness functionF(x) is represented
by:

F(x) = w1f1(x) + . . . wifi(x) + . . . + wnfn(x) (1)

where,x is a string (i.e. solution)
F(x) is a combined fitness function

fi (x) is the ith objective function
wi is a constant weight forfi(x)
n is the number of objective functions

If constant weights are used to calculateF(x), the search
direction in the genetic algorithm is also constant. Therefore,
the idea proposed by Murata et al. [15] is extended in this
study for scheduling assembly lines. Thewi terms are randomly
generated using the relation:

wi =
RNi

On
j=1

RNj

(i = 1,2,. . .,n) (2)

where RNi and RNj are non-negative random integers. Then
random real numbers generated for the weightswi are used to
calculate the weighted sumF(x), when each pair of strings is
selected. This procedure is iteratedNselection (number of selec-
tions in each generation) times in each generation for selecting
Nselection pairs of parent strings for a crossover operation. The
weighted sumF(x) is used to determine the selection prob-
ability of each string. Thewi terms are not constant but
variable, the selection probability of each string is also variable
even in a single generation. This results in various search
directions in the multi-objective genetic algorithm [15].

344 S. G. Ponnambalam et al.

The weighting scheme in Eqs (1) and (2) means that different
weights are used for selecting each pair of parent strings. Since
Nselection pairs of parent strings are to be selected in each
generation,Nselection pairs of different weights are specified
using Eq. (2). If the objective functions should be minimised
then use the negative sign.

2.5 Elite Preservation Strategy

In multi-objective optimisation problems, a solution with the
best value of each objective can be regarded as an elite
individual. Therefore, we haven elite individuals for an
n-objective problem. It is natural to think that such solutions are
to be preserved for the next generation in genetic algorithms.

During the execution of our multi-objective genetic algor-
ithm, a tentative set of pareto optimal solutions are stored and
updated at every generation. Here also, a certain number of
individuals randomly selected from the tentative set of pareto
optimal solutions are preserved, in addition to then elite
individuals, with respect ton objectives. That is, multiple
Pareto optimal solutions are used as elite individuals in our
multi-objective genetic algorithm.

In each and every generation, seven solutions are selected
as elite individuals for a four-objective assembly line balancing
problem (four elite individuals with respect to four objectives
and three randomly selected individuals from the tentative set
of pareto optimal solutions). These solutions are inherited by
the next generation.

2.6 Multiple Objectives Considered

In this paper, the performance measures considered are, the
number of stations generated, the smoothness index before the
trade and transfer phase, the smoothness index after the trade
and transfer phase, the line efficiency before the trade and
transfer phase and the line efficiency after the trade and
transfer phase.

3. The ALB Heuristic using Multi-objective
GA

The step by step procedure is given below.

1. Read the data (task number, task time, cycle time, pre-
cedence tasks).

2. Compute the weights for each task using 14 heuristic rules
(the heuristic rules considered are given in Table 1).

3. Rank the tasks based on the weights computed in step 2.
Give the same rank for the tasks whose weights are equal.

4. Initialise the population randomly. Each gene in a chromo-
some represents one heuristic rule. Here the chromosome
length is 14.

5. Assign the tasks to workstations using the task ranking
obtained in step 3. If a tie occurs, resolve it using the
heuristic rule number represented by the genes, step by
step. After 14 genes are exhausted, start again from the

first gene. Similarly, assign the tasks to workstations using
the remaining chromosomes.

6. Calculate the values of the objective functions for the
generated strings. Then, calculate the scalar fitness value
F(x) for each chromosome (string) by using the weights
defined in Eqs (1) and (2).

7. Check for the seven best performing chromosomes, called
Pareto optimal solutions, and store these for replacing the
seven worst chromosomes in the next generation (five chro-
mosomes for five optimum objective function values and
two chromosomes for two best scalar fitness function
values). If it is not the first iteration then replace the seven
worst performing chromosomes with the Pareto optimal
chromosomes stored in the previous iteration. The chromo-
somes are arranged in descending order based on scalar
fitness function values and the last seven chromosomes are
considered for replacement.

8. Select a pair of strings from the current population according
to the following selection probability. The selection prob-
ability P(x) of a stringx in a populationC is specified as:

P(x) =
f(x) − fmin(C)

O
xPC

{ f(x) − fmin(C)}

where, fmin(C) = min{ f(x)/x P C}

Once the selection probabilities for the chromosomes are
calculated, the chromosomes are selected for the next gener-
ation using the roulette wheel approach [16].

9. Apply a crossover operation for each selected pair with a
crossover probability, pc. The two-point crossover is
employed in this study [16]. This is explained by the
example in Fig. 1.

10. Apply a mutation operation for each gene in the string
generated by the crossover operation with a mutation
probability, pm. The insertion operator is used in this study
[16]. This is explained by the example in Fig. 2.

11. Remove the seven worst (number of elite individuals con-
sidered in this study for each generation) strings from the
current population and add the same number of strings
from a tentative set of pareto optimal solutions.

12. If the termination condition is satisfied, stop. Otherwise
go to step 5.

Fig. 2.Mutation operation explained.

Solving the Assembly Line Balancing Problem 345

Fig. 3. Precedence diagram of assembly network for illustration.

4. Numerical Illustration

An example problem with 12 tasks and a cycle time of 10
units is considered for illustration. The problem network is
shown in Fig. 2 and the step by step computations is shown
below.

Step 1.Read the data for the problem shown in Fig. 3.

Step 2. Calculation of positional weights of tasks using 14
different heuristic rules, see Table 2. The positional weights
are calculated using the relations in Table 1. For explanation
please refer to Elsayed and Boucher [2].

Step 3.Ranking the tasks based on the positional weights. The
ranking of the tasks based on heuristic rules is given in Table 3.
Each row represents the ranking of 12 tasks, e.g. by using
rule 1 (ranked positional weight) first task= rank 1, second
task= rank 3, and so on.

Step 4. Population initialisation. Randomly generate 20
chromosomes, each having 14 genes. Each number represents
the heuristic rule number. For example, 0= ranked positional

Table 2.Positional weights of tasks for the 14 heuristic rules.

Number Heuristic rule Positional weight of tasks

1 Max positional ranked weight 34 27 24 29 26 20 15 13 8 15 11 7
2 Max total number of follower tasks 11 8 7 8 7 6 2 1 1 2 1 0
3 Max task time 5 3 4 3 6 5 2 6 1 4 4 7
4 Max number of immediate follower tasks 2 1 1 1 1 3 1 1 1 1 1 0
5 Max backward recursive PW 132 60 57 62 59 53 15 13 8 15 11 7
6 Min total number of predecessor tasks 0 1 2 1 2 5 6 7 6 6 7 11
7 Min reverse positional weight 5 8 12 8 14 19 21 27 20 23 27 34
8 Min lower bound 1 1 2 1 2 3 3 4 3 3 4 5
9 Min upper bound 8 9 9 9 9 10 11 11 12 11 11 12

10 Min slack 7 8 7 8 7 7 8 7 9 8 7 7
11 Min task number 1 2 3 4 5 6 7 8 9 10 11 12
12 Random task assignment 43 33 50 91 40 93 30 36 26 55 57 43
13 Max task time of follower task 3 4 5 6 5 4 6 7 7 4 7 0
14 Max PW weight of follower task 29 24 20 26 20 15 13 7 7 11 7 0

Table 3.Ranking of tasks based on positional weights.

1 3 5 2 4 6 7 8 10 7 9 11
1 2 3 2 3 4 5 6 6 5 6 7
3 5 4 5 2 3 6 2 7 4 4 1
2 3 3 3 3 1 3 3 3 3 3 4
1 3 5 2 4 6 7 8 10 7 9 11
1 2 3 2 3 4 5 6 5 5 6 7
1 2 3 2 4 5 7 9 6 8 9 10
1 1 2 1 2 3 3 4 3 3 4 5
1 2 2 2 2 3 4 4 5 4 4 5
1 2 1 2 1 1 2 1 3 2 1 1
1 2 3 4 5 6 7 8 9 10 11 12
6 9 5 2 7 1 10 8 11 4 3 6
5 4 3 2 3 4 2 1 1 4 1 6
1 3 4 2 4 5 6 8 8 7 8 9

weight rule, 1= reverse positional weight rule, and so on. The
initial population is given in Table 4.

Step 5. Assign the tasks to workstations. If a tie occurs, resolve
it using the heuristic rule number represented by the genes
step by step. After 14 genes are exhausted, start again from
the first gene. Similarly, assign the tasks to workstations using
the remaining 19 chromosomes.

Step 6. Calculation of objective function values and scalar
fitness function values for each chromosome. Obtain these
values (solutions) by allocating tasks to the workstations using
each chromosome. Twenty chromosomes give 20 solutions.
Then compute the scalar fitness function value of each solution
by combining the objective function values. The objective
function values and scalar fitness function values are given
Table 5.

Step 7. Check for seven pareto optimal chromosomes in the
population, based on the optimum objective function values
and scalar fitness function values. In the subsequent generation
replace the seven worst performing chromosomes with pareto
optimal solutions. The pareto optimal solutions in the present
generation are given below. The pareto optimal solutions are
given in Table 6. The tie in selecting a chromosome is
resolved arbitrarily.

346 S. G. Ponnambalam et al.

Table 4. Initial population generated randomly.

Initial population of 20 chromosomes

1 13 2 8 4 10 10 4 4 13 7 8 3 6 1
2 12 1 10 2 10 11 6 9 4 13 1 8 12 12
3 4 13 7 12 3 13 1 9 10 4 12 6 7 6
4 9 0 13 6 4 3 6 4 9 12 13 0 8 7
5 1 8 3 9 9 9 8 0 12 12 10 0 7 11
6 3 2 6 10 12 9 6 9 1 13 11 1 5 3
7 10 7 8 2 3 5 3 3 11 1 12 11 11 5
8 9 2 12 8 5 8 6 11 9 1 10 0 11 4
9 13 5 1 9 6 12 0 11 12 1 10 12 11 0

10 1 8 3 11 2 9 2 8 10 2 6 11 5 10
11 6 13 6 8 2 1 3 5 6 1 1 2 8 13
12 8 6 8 10 8 7 10 4 7 10 9 13 5 3
13 9 12 7 13 12 5 7 2 1 8 0 7 11 8
14 9 6 3 1 12 8 13 12 1 2 13 3 1 2
15 6 4 10 7 7 1 7 9 1 11 1 8 10 7
16 10 10 7 2 0 11 11 5 7 6 4 7 12 2
17 1 8 2 7 4 10 0 12 11 3 11 3 0 12
18 9 9 3 5 12 4 4 1 13 9 11 10 6 13
19 0 2 12 4 5 4 3 113 12 8 11 3 7 4
20 13 0 4 11 7 2 7 10 4 8 13 12 8

Table 5.The objective function and scalar fitness functin values.

C.No. NOS LEBT SIBT LEAT SIAT SFFVALUE

1 6 83.33 5.47 92.59 2 −1.43
2 7 71.42 8.36 79.36 5.57 −2.85
3 7 71.42 8.83 89.28 2.82 −2.08
4 6 83.33 5.47 92.59 2 −1.43
5 7 71.42 8.83 89.28 2.82 −2.08
6 6 83.33 4.69 92.59 2 −1.34
7 7 71.42 8.36 79.36 5.56 −2.84
8 7 71.42 8.83 89.28 2.82 −2.08
9 6 83.33 5.47 92.59 2 −1.43

10 7 71.42 8.83 89.28 2.82 −2.08
11 6 83.33 5.47 92.59 2 −1.43
12 7 71.42 8.83 89.28 2.82 −2.08
13 7 71.42 8.36 79.36 5.56 −2.84
14 7 71.42 8.83 89.28 2.82 −2.08
15 6 83.33 4.69 92.59 2 −1.34
16 7 71.42 8.83 89.28 2.82 −2.08
17 6 83.33 5.47 92.59 2 −1.43
18 6 83.33 5.47 92.59 2 −1.43
19 6 83.33 5.47 92.59 2 −1.43
20 7 71.42 8.83 89.28 2.82 −2.08

C.No., chromosome number; NOS, number of stations created; LEBT,
line efficiency before trade and transfer phase; LEAT, line efficiency after
trade and transfer phase; SIBT, smoothness index before trade and transfer
phase; SIAT, smoothness index after trade and transfer phase;
SFF VALUE, scalar fitness function value.

Step 8. The construction of the roulette wheel and the selection
of chromosomes for intermediate population is explained in
Tables 7 and 8.
Steps 9 and 10. Perform crossover and mutation. The new
population after performing crossover and mutation is given in
Table 9.
Step 11. Remove the worst seven strings (based on scalar
fitness function values) from the current population and add
the pareto optimal solutions to the current population.

Step 12. Check for termination condition. The number of
generations considered is 30. The solution obtained after 30
generations is given below.

Solution before applying trade and transfer phase

The solution obtained before applying trade and transfer
phase is given in Table 10.

Line efficiency (LE)= 83.33%

Smoothness index (SI)=
√(22 + 12 + 02 + 22 + s2 + 32) = 4.69

Trade and transfer phase details

The transfer phase details [7] are:

GOAL = 1.5 LTS= 3 STS= 6 TASK = 9

where

GOAL
=

STmax − STmin

2

STmax = maximum station time

STmin = minimum station time

LTS = largest time station

STS = smallest time station

TASK = task in the LTS with least task time

This means we are transferring task 9, from station 3 to station
6. There are no other possibilities for transfer.

The trade phase details are:

GOAL = 0.5 LTS= 2 STS= 1 LST = 2 SST= 4

where,

LST = largest time station task with minimum task time
SST = smallest time station task with minimum task time

This means we are interchanging task 2 (from largest time
station 2) with task 4 in the smallest station time station 1.
Here, we are not violating the precedence restrictions. No other
possibilities exist for trading.

Trade and transfer between ranked stations
In this case, this possibility is not present. In the above
assignment the maximum station time is 9.0, So, set the cycle
time to 9.0, without violating any constraints. The solution
after applying the trade and transfer phase is given in Table 11.
The line efficiency and smoothness index are given below.

Line efficiency= 92.59%
Smoothness index= √(12 + 02 + 02 + 12 + 12 + 12) = 2.00

5. Comparison of the algorithms

In order to generalise the results, both problems taken from
open literature and randomly generated problems are solved.
Six popular heuristic algorithms and the genetic algorithm are
tested for 100 problems (20 networks and each solved for 5
different cycle times). The number of tasks varies from 7 to
50. Details of this data set are shown in Table 12.

Solving the Assembly Line Balancing Problem 347

Table 6.Pareto optimal solutions.

Chromosome selected Objective function

13 2 8 4 10 10 4 4 13 7 8 3 6 1 NOS
13 2 8 4 10 10 4 4 13 7 8 3 6 1 LEBT
3 2 6 10 12 9 6 9 1 13 11 10 5 3 SIBT

13 2 8 4 10 10 4 4 13 7 8 3 6 1 LEAT
13 2 8 4 10 10 4 4 13 7 8 3 6 1 SIAT
8 6 8 10 8 7 10 4 7 10 9 13 5 3 Random

13 0 4 11 7 2 1 7 10 4 8 13 12 8 Random

Table 7.Roulette wheel construction and chromosomes selected.

C.No. P(x) CP(x) R.No. Ch. Sel.

1 0.08 0.08 0.95 19
2 0 0.08 0.8 17
3 0.04 0.12 0.59 14
4 0.08 0.19 0.34 8
5 0.04 0.23 0.73 16
6 0.08 0.31 0.89 19
7 0 0.31 0.06 1
8 0.04 0.35 0.93 19
9 0.08 0.42 0.44 10

10 0.04 0.46 0.25 6
11 0.08 0.54 0.14 4
12 0.04 0.58 0.1 3
13 0 0.58 0.77 17
14 0.04 0.62 0.73 16
15 0.08 0.7 0.08 3
16 0.04 0.74 0.07 1
17 0.08 0.81 0.63 15
18 0.08 0.89 0.43 10
19 0.08 0.96 0.59 14
20 0.04 1 0.72 16

C.no., chromosome number;P(x), probability of selection; CP(x), Cumulat-
ive probability; R.no., random number, Ch. Sel. chromosome selected.

Table 8.The intermediate population.

Intermediate population of 20 chromosomes

1 0 2 12 4 5 4 3 13 12 8 11 3 7 4
2 1 8 2 7 4 10 0 12 11 3 11 3 0 12
3 9 6 3 1 12 8 13 12 1 2 13 3 1 2
4 9 2 12 8 5 8 6 11 9 1 10 0 11 4
5 10 10 7 2 0 11 11 5 7 6 4 7 12 2
6 0 2 12 4 5 4 3 13 12 8 11 3 7 4
7 13 2 8 4 10 10 4 4 13 7 8 3 6 1
8 0 2 12 4 5 4 3 13 12 8 11 3 7 4
9 1 8 3 11 2 9 2 8 10 2 6 11 5 10

10 3 2 6 10 12 9 6 9 1 13 11 10 5 3
11 9 0 13 6 4 3 6 4 9 12 13 0 8 7
12 4 13 7 12 3 13 1 9 10 4 12 6 7 6
13 1 8 2 7 4 10 0 12 11 3 11 3 0 12
14 10 10 7 2 0 11 11 5 7 6 4 7 12 2
15 4 13 7 12 3 13 1 9 10 4 12 6 7 6
16 13 2 8 4 10 10 4 4 13 7 8 3 6 1
17 6 4 10 7 7 1 7 9 1 11 1 8 10 7
18 1 8 3 11 2 9 2 8 10 2 6 11 5 10
19 9 6 3 1 12 8 13 12 1 2 13 3 1 2
20 10 10 7 2 0 11 11 5 7 6 4 7 12 2

Table 9.Population after crossover and mutation.

1 3 2 3 8 11 5 10 12 13 1 3 4 0 6
2 5 9 2 4 4 2 12 1 13 8 6 10 13 3
3 12 6 5 6 8 1 6 9 4 13 5 12 7 8
4 8 9 0 11 9 6 12 1 12 1 13 11 12 2
5 7 12 11 2 4 8 13 3 3 1 12 6 0 9
6 12 11 3 2 9 4 4 12 4 3 6 8 10 13
7 7 8 0 6 13 10 3 11 11 2 0 5 5 3
8 3 2 6 10 10 12 12 8 9 13 6 1 10 5
9 7 6 3 4 1 13 12 4 10 7 11 8 5 1

10 3 0 4 1 13 3 11 12 7 13 6 8 11 10
11 3 6 7 2 9 5 11 1 8 11 10 12 2 13
12 2 6 12 6 10 12 9 6 13 9 11 10 5 13
13 9 5 12 4 4 8 10 10 6 13 11 2 7 1
14 4 5 12 3 1 7 13 9 11 1 4 9 10 11
15 12 5 6 0 13 3 7 9 13 8 11 4 8 10
16 2 4 11 10 6 8 4 12 13 3 2 9 11 13
17 0 4 7 8 12 0 13 11 7 6 11 7 1 2
18 11 6 2 0 1 12 12 13 9 11 8 1 12 4
19 2 13 12 3 11 9 5 8 10 9 2 13 11 5
20 8 0 3 8 4 7 4 13 9 10 12 1 11 11

Table 10.Initial assignment of tasks before trade and transfer phase.

Station Task number Task time Station timeCT–STi

(Te) (STi)

1 1 5 8 2
4 3

2 2 3 9 1
5 6

3
3 4 10 0
6 5
9 1

4 7 2 8 2
8 6

5 10 4 8 2
11 4

6 12 7 7 3

348 S. G. Ponnambalam et al.

5.1 Algorithms Compared

The six popular heuristic algorithms considered for compari-
son are:

Ranked positional weight heuristic [5]
Moodie and Young two phase method [7]
Kilbridge and Wester heuristic [6]
Hoffmann precedence matrix procedure [9]
Immediate update first fit(IUFF) heuristic [3]
Rank and assign (RA) heuristic [3]

Table 11.Revised assignment of tasks after trade and transfer phase.

Station Task number Task time Station timeCT–STi

(Te) (STi)

1 1 5 8 1
2 3

9 0
2 4 3

5 6 0
9

3 3 4
6 5

4 7 2 8 1
8 6

5 10 4 8 1
11 4

6 9 1 8 1
12 7

Table 12.Dataset used for comparisons.

Problem source Number Cycle times Optimal number of stations for each cycle time
of
Tasks

Elsayed and Boucher [2] (p. 354) 12 8 10 13 17 25 7 5 4 3 2
Hoffmann [9] 9 7 8 9 10 13 6 5 5 4 3
Hoffmann [9] 19 8 10 12 15 19 10 8 7 6 4
Elsayed and Boucher [2] (p. 348) 9 10 12 13 16 24 5 4 4 3 2
Groover [19] (p. 147) 12 0.8 0.9 1.0 1.1 1.4 5 5 4 4 3
Groover [19] (p. 169) 24 2.0 2.5 3.0 4.0 6.0 5 4 3 3 2
Groover [19] (p. 168) 14 0.65 0.8 1.0 1.1 1.3 6 5 4 4 3
Groover [19] (p. 168) 10 1.1 1.2 1.4 1.5 2.0 6 5 5 4 3
Groover [19] (p. 166) 10 0.9 1.0 1.1 1.3 1.4 5 5 4 4 3
Groover [19] (p. 167) 8 1.6 1.8 2.0 2.5 3.0 4 4 3 3 2
Askin and Standridge [20] (p. 63) 11 31 40 50 75 80 5 4 3 3 2
Gutjahr and Nemhauser [4] 9 7 8 10 12 14 6 5 4 4 3
Hoffmann [9] 7 10 11 12 14 21 5 4 4 3 2
Askin and Standridge [20] (p. 64) 9 36 40 50 75 80 5 4 3 2 2
Wee and Magazine [8] 11 0.35 0.4 0.5 0.7 1.0 6 5 4 3 2
Askin and Standridge [20] (p. 40) 12 51 60 70 80 105 4 4 3 3 2
Groover [19] 11 48 52 62 64 97 4 4 3 3 2
Brian and Patterson [12] 9 19 25 30 38 40 4 3 3 2 2
Kilbridge and Wester [6] 45 69 92 138 184 276 8 6 4 3 2
Generated problem 50 100 150 200 250 300 24 16 12 10 8

In the case of IUFF and RA algorithms, the numerical score
functions considered are given in Table 13.

5.2 Performance Measures

Perfect balance of the line means the combination of the
elements of the work to be done in such a manner that at
each station the sum of the elemental times just equals the
cycle time. When a perfect balance cannot be achieved, we
measure the effectiveness of the balance by the following.

Number of Excess Stations:The number of excess stations is
the measure considered by many researchers. A line with fewer
workstations translates into lower labour costs and reduces the
space requirements, so it will be a more cost effective plan.

Table 13.Numerical score functions considered in IUFF and RA
heuristic methods.

n Name Description

1 Reverse positional weight Sum of the task times forx and all
tasks that precede it

2 Number of followers Number of tasks that follow taskx

3 Number of immediate Number of tasks that immediately
followers follow taxk x

4 Number of predecessors Number of tasks that precede taskx

5 Work element time Task time ofx

6 Backward recursive Sum of the task times forx and all
positional weight tasks in paths havingx as its root

Solving the Assembly Line Balancing Problem 349

Further, if the number of stations is reduced, then capacity
utilisation is generally increased.

Line Efficiency (LE): The line efficiency is the ratio between
total station time to the product of cycle time and the number
of workstations, represented as a percentage. It shows the
percentage use of the line and is expressed as:

LE =
OK
i=1

STi

K × CT
× 100

where,

K = total number of workstations
CT = cycle time

Smoothness Index (SI):The smoothness index is an index for
the relative smoothness of a given assembly line. A smoothness
index of 0 indicates a perfect balance. A smaller SI results in
a smoother line, thereby reducing the in-process inventory.

SI = !SOK
i=1

(STmax − STiD
Where,

STmax = maximum station time
STi = station time of station i.

Execution (CPU) Time: Execution time is also considered by
many researchers since it is directly tied to the efficiency of
the algorithm selected.

5.3 Experimental Conditions and Implementation

The programs are coded in the C++ language. The computer
system used is an HCL-HP Pentium with 32 MB RAM, 2 GB
HDD, 133 MHz speed. All the methods are programmed to
read from the same data set in an identical manner. Various
object oriented programming (OOP) concepts, constructors, call
by reference, pointers, dynamic memory allocation (new and
delete) functions have been used in order to increase the speed
of execution of the programs, and effective use of the memory.
The main advantage of using class is that various information
and associated functions about an entity (task or station) can
stored under a name which makes addressing easy. Classes
make use of memory in a dynamic fashion and can free the
memory allocated during the execution of the program, making
it possible for some entity to share the memory space. In all
the methods we used, two classes namely “task” and “station”
are used. The task class can hold all the details relating to the
tasks (e.g. task numbers, task times, precedence tasks, available
tasks for the assignment, and ranking of the tasks based on
weights) and the associated functions. Similarly, “class station”
holds details such as station number, station time, station tasks
and the functions relating to assignment of the task.

Pointers have been used extensively in the program, so
transfer of data between functions has been reduced to a
minimum, and hence duplicate copies of the same value are

avoided as far as possible. The use of pointers also increases
the computational efficiency, as the data is accessed directly
and not through an intermediate step.

6. Comparative Results

To evaluate the performance of the proposed multi-objective
genetic algorithm compared to that of the six heuristic pro-
cedures, 20 assembly networks are each solved for five different
cycle times. For the problems considered in this study, please
refer to Table 12. A summary of the results is given in Table 14
and the discussions are given in the following sections.

6.1 Comparison for Various Performance Measures

Number of excess stations

Among the six heuristic algorithms, the precedence matrix
procedure of Hoffmann performs best. Among the six heuristic
rules considered, in the case of IUFF, the maximum task time,
and the maximum recursive positional weight rules perform
reasonably well. The RA method gives very poor results
compared to the others. GA often gives good results when
there are generations. When there are 10 generations, the
results are very close to those of the Hoffmann precedence
matrix procedure. Please see Fig. 4 and Table 14.

Average Line Efficiency (LE): Before Trade and
Transfer Phase

In this case also, GA gives the best results. The average line
efficiency obtained by GA before trade and transfer is 85.01%.
Next to GA, the Hoffmann precedence matrix procedure gives
good results. In case of IUFF, the maximum task time rule
gives good results, which are very close to those of the ranked
positional weight method. The RA heuristic performs poorly.
Among the RA heuristic rules, the minimum reverse positional
weight rule performs best. Please refer to Fig. 5 and Table 14.

Average Smoothness Index (SI): Before Trade and
Transfer Phase

For the problems tested, GA gives a smaller smoothness index,
10.36 (this results in smoother lines, thereby reducing the in-
process inventory). Next to this, the Hoffmann precedence
matrix procedure gives good results with an average smooth-
ness index of 11.54. In the case of IUFF, the maximum task
time rule performs better. RA performs poorly. When the
number of iterations in the GA reduces to five, the average SI
is nearly the same as for the precedence matrix method. Please
refer to Fig. 6 and Table 7.

Average Line Efficiency (LE): After Trade and Transfer
Phase

The average line efficiency of GA, after the trade and transfer
phase is 91.884%. Next to the GA, the line efficiency of the
Hoffmann enumeration procedure is 90.92%. In IUFF, the
maximum backward recursive positional weight performs best

350 S. G. Ponnambalam et al.

Table 14.Comparative results of various heuristic algorithms.

Method Number of Average Average Average Average Total
excess stations LEBT SIBT LEAT SIAT execution

time (s)

Ranked positional weight method 59 82.66 18.84 90.36 8.22 2.25

Kilbridge and Wester heuristic 64 82.18 15.84 89.89 9.21 1.54

Moodie and Young method 68 81.29 21.93 89.59 9.37 1.54

Hoffmann precedence matrix 51 84.39 11.54 90.92 6.58 18.35

IUFF Heuristic
1. Minimum reverse positional weight 69 81.27 19.96 89.553 9.884 1.593
2. Maximum number of follower tasks 78 79.57 23.16 88.81 10.12 1.703
3. Maximum number of immediate follower tasks 72 80.80 19.25 88.954 9.69 1.978
4. Minimum number of predecessor tasks 87 78.34 21.32 88.35 10.11 1.484
5. Maximum task time 64 82.18 15.83 89.89 9.21 1.429
6. Maximum backward recursive PW 69 81.44 22.29 89.98 9.77 1.758

R and A Heuristic
1. Minimum reverse positional weight 101 76.93 22.11 87.87 10.61 1.590
2. Maximum number of follower tasks 106 76.36 23.63 86.92 11.76 1.39
3. Maximum number of immediate follower tasks 115 75.06 25.10 86.76 12.03 1.429
4. Minimum number of predecessor tasks 107 76.07 24.12 88.04 10.84 1.494
5. Maximum task time 106 76.25 22.50 87.04 11.73 1.246
6. Maximum backward recursive PW 105 76.68 21.91 86.64 11.47 1.538

Multi-objective genetic algorithm (GA) 50 85.01 10.36 91.88 6.21 750

Fig. 4. Heuristic rule vs number of excess stations. RPW, Ranked
positional weight method; K&W, Kilbridge – Webster method; M&
Y, Moodie & Young method; PMX, Hoffmann’s precedence matrix
method; IUFF, Immediate update first fit method: 1= minimum reverse
positional weight rule, 2= maximum number of follower tasks rule,
3 = maximum number of immediate follower tasks rule, 4= minimum
total number of predecessor tasks rule, 5= maximum task time rule,
6 = maximum backward recursive positional weight rule; R&A,
Rank & assign method: 1= minimum reverse positional weight rule;
2 = maximum number of follower tasks rule; 3= maximum number of
immediate follower tasks rule; 4= minimum total number of prede-
cessor tasks rule; 5= maximum task time rule; 6= maximum backward
recursive positional weight rule; GA, Genetic algorithm.

with an efficiency of 89.982%. Efficiencies of RA rules are
also comparable with the other methods. Among the RA rules,
the maximum number of predecessor tasks rule performs best
with an average efficiency of 88.04%. Please refer to Fig. 7
and Table 14.

Fig. 5.Line efficiency before trade & transfer (LEBT) vs. heuristic
rule (see Fig. 4 for key).

Fig. 6.Smoothness index before trade 7 transfer (SIBT) vs. heuristic
rule (see Fig. 4 for key).

Average Smoothness Index (SI): After Trade and
Transfer Phase

The average SI given by GA is 6.212 . Next to GA, the
Hoffmann enumeration procedure stood second with an average

Solving the Assembly Line Balancing Problem 351

Fig. 7. Line efficiency after trade & transfer (LEAT) vs. heuristic rule
(see Fig. 4 for key).

SI of 6.582. The ranked positional weight, Moodie and Young
method, and Kilbridge and Wester heuristic also performs
better. Please refer to Fig. 8 and Table 14.

Total Execution Time (in s)

All the RA rules are executed using minimum CPU time. Each
rule takes approximately 1.50 s. For the RA with the maximum
task time rule the CPU time is 1.246 s. Except for the
Hoffmann precedence matrix procedure and GA, for all other
rules the CPU time is less than 2 s. GA takes more time
because of the increased number of generations. The execution
time depends on the number of generations and the popu-
lation size.

6.2 Summary

Except for the execution time criterion the proposed GA gives
better results than the other heuristics considered. Among the
six heuristics considered, the Hoffmann enumeration procedure
gives the best results. If time taken is not important, then GA
definitely gives good results.

7. Conclusions

A multi-objective genetic algorithm is proposed for solving
ALB problems using genetic algorithms (GA). Fourteen heuris-
tic decision rules are used for representing the genes of chromo-
somes. In this paper, two new heuristic rules are proposed. To
compare the performance of GA with heuristics, the six popular
heuristics available in the literature are considered. The multi-

Fig. 8. Smoothness Index after trade & transfer (SIAT) vs. heuristic
rule (see Fig. 4 for key).

objective GA and the six heuristics are tested on 100 problems.
In order to increase the line efficiency and smoothness of the
line, the trade and transfer phase of the Moodie and Young
method is applied to all the six heuristics and also to the
proposed genetic algorithm. It is observed that the smoothness
of the line depends upon the heuristic method used.

All the methods are compared for performance measures,
the number of excess workstations, the line efficiency, the
smoothness index before and after the trade and transfer phase,
and the CPU time. Comparative results are presented in the
form of tables and charts. The proposed multi-objective genetic
algorithm performs better than the other methods. Among the
six considered heuristics, the Hoffmann enumeration procedure
performs best. The execution time for GA is much greater,
because GA searches for global optimal solutions using more
iterations. Further, with GA, we can obtain multiple solutions
for different objective criteria so that the user can select one
best solutions from among the optimal solutions.

Acknowledgement

This work was partially supported by a research grant from
the University Grants Commision, New Delhi, India, no. F.14–
34/96 (SR-I), dated 5 April 1996.

References

1. Soumen Ghosh and Roger J. Gagnom, “A comprehensive literature
review and analysis of the design, balancing and scheduling of
assembly lines”, International Journal of Production Research,
27(4), pp. 637–670, 1989.

2. E. A. Elsayed, and T. O. Boucher, “Analasis and control of
production systems”, Prentice Hall International Series in Industrial
and Systems Engineering, New Jersey, 1994.

3. S. T. Hackman, M. J. Magazine, and T. S. Wee, “Fast, effective
algorithms for simple assembly line balancing problems”, Journal
of Operational Research, 37(6), pp. 916–924, 1989.

4. A. L. Gutjahr and G. L. Nemhauser, “An algorithm for the
line balancing problem”, Management Science, 11(2), pp. 308–
315, 1964.

5. W. P. Helgeson and D. P. Birnie, “Assembly line balancing using
the ranked positional weight technique”, Journal fo Industrial
Engineering, 12(6), pp. 394–398, 1961.

6. M. D. Kilbridge and L. Wester, “A heuristic method of assembly
line balancing”, Journal of Industrial Engineering, 12(4), pp. 292–
298, 1961.

7. C. L. Moodie and H. H. Young, “A heuristic method of assembly
line balancing for assumptions of constant or variable work
element times”, Journal of Industrial Engineering, 16(1), pp. 23–
29, 1965.

8. T. S. Wee and M. J. Magazine, “An efficient Branch and Bound
algorithm for an assembly line balancing problem. Part 1. Mini-
mise the number of workstations”, Working Paper 150, University
of Waterloo, Ontario, Canada, 1981.

9. T. R. Hoffmann, “Assembly line balancing with a precedence
matrix”, Management Science, 9(4), pp. 551–562, 1963.

10. I. Baybars, “A survey of exact algorithms for the simple assembly
line balancing problem”, Management Science, 32(8), pp. 909–
932, 1986.

11. T. F. Brian, J. H. Patterson and W. V. Gehrlein, “A comparative
evaluation of heuristic line balancing techniques”, Management
Science, 32(4), pp. 430–454, 1986.

12. T. F. Brian and J. H. Patterson, “An integer programming
algorithm with network cuts for solving the assembly line balanc-
ing problem”, Management Science, 30(1), pp. 85–99, 1984.

352 S. G. Ponnambalam et al.

13. L. Scharge and K. R. Baker, “Dynamic programming solution of
sequencing problems with precedence constraints”, Operational
Research, 26, pp. 444–449, May–June 1978.

14. R. V. Johnson, “A branch and bound algorithm for assembly line
balancing problems with formulation irregularities”, Management
Science, 29(11), pp. 1309–1324, 1983.

15. T. Murata, H. Ishibuchi and H. Tanaka, “Multi-objective genetic
algorithm and its application to flowshop scheduling”, Computers
and Industrial Engineering, 30(4), pp. 957–968, 1996.

16. Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution

Programs, Springer-Verlag, Berlin, 1992.
17. F. M. Tonge, “Summary of a heuristic line balancing procedure”,

Management Science, 7(1), pp. 21–42, 1969.
18. A. L. Arcus, “An analysis of a computer method of sequencing

assembly line operations”, PhD dissertation, University of
California, Berkley, 1963.

19. M. P. Groover, Automation, Production Systems, and Computer
Integrated Manufacturing, Printed-Hall of India, New Delhi, 1996.

20. R. G. Askin and C. R. Standridge, Modelling and Analysis of
Manufacturing Systems, John Wiley, 1993.

