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ABSTRACT 
The paper presents a new approach to deal with the 
preliminary space mission analysis design of 
particularly complex trajectories focused on 
interplanetary targets. According to an optimisation 
approach, a multi-objective strategy is selected on a 
mixed continuous and discrete state variables domain in 
order to deal with possible multi-gravity assist 
manoeuvres (GAM) as further degrees of freedom of 
the problem, in terms of both number and planets 
sequence selection to minimize both the ∆v expense and 
the time trip time span. A further added value to the 
proposed algorithm stays in that, according to planets 
having an atmosphere, aero-gravity assist manoeuvres 
(AGAM) are considered too within the overall mission 
design optimisation, and the consequent optimal control 
problem related to the aerodynamic angles history, is 
solved. According to the target planet different capture 
strategies are managed by the algorithm, the 
aerocapture manoeuvre too, whenever possible (e.g. 
Venus, Mars target planets). In order not to be trapped 
in local solution the Evolutionary Algorithms (EAs) 
have been selected to solve such a complex problem. 
Simulations and comparison with already designed 
space missions showed the ability of the proposed 
architecture in correctly selecting both the sequences 
and the planets type of either GAMs or AGAMs to 
optimise the selected criteria vector, in a 
multidisciplinary environment, switching on the optimal 
control problem whenever the atmospheric interaction 
is involved in the optimisation by the search process. 
Symbols 
δ =

  
semi-angular deviation for GAM between 
the v∞-, v∞+ in\outcoming vectors [rad] 

φ =
  

Angular deviation for AGAM between the 
v∞-, v∞+ in\outcoming vectors [rad] 

ρ = Atmospheric density [kgm-3] 
γ = Flight path angle [rad] 
µ = Bank angle [rad] 
δ∆ttransf j =

  
j-th heliocentric transfer time variation 
with respect to the linked conics solution 

∆|v∞| =
  

Relative velocity losses because of drag 
[ms-1] 

ωI  = i-th planetary passage orbital plane 
inclination according to the reference [rad] 

A = Surface [m2] 
kplanet = Planetary constant [m3s-2] 

 
N =  No. of flybys apart from the departure and 

target planets 
Q =  Heat load [J/m2] 
r  =

 
Object position vector according to the 
primary attractor 

rinterf = Planetary atmosphere limit [m] 
S = (1xN) Planet sequence vector 
v∞= = Incoming s\c velocity vector relative to the 

planet[ms-1] 
V=  Velocity vector modulus  
vc  =

 
Relative velocity vector on circular orbit at 
|r| equal to the atmospheric path [ms-1] 

X = Distance from the stagnation point [m] 
 
1. INTRODUCTION 
 
The interplanetary mission design is a challenging task 
whenever optimal solutions are asked for in terms of 
fuel mass savings. A well-known strategy involves 
possible planetary flybys to obtain a gravitational help. 
Such a technique has been largely applied starting from 
the Mariner 10 up to the most recent Cassini-Huygens 
and Rosetta missions. Nowadays space missions keep 
being more and more demanding in terms of scientific, 
operative payloads mass requirements: different 
techniques are items of current space research topics, 
such as better performing propulsion units and energy 
conversion. A research branch involves possible 
atmospheric manoeuvres in order to increase the 
momentum exchange at the planetary flybys. The 
aeroassisted manoeuvres (AGAM) have never been 
applied in practice because of technological issues 
related to the high aerodynamics efficiency (up to 10) 
required to be effective, the enormous heat loads 
suffered by the probe during the passage and, last but 
not least, the fine precision the GNC system must 
assure. However the problem has been quite studied: 
starting from the sixties the advantage of AGAM 
whenever large plane changes are asked has been 
highlighted [1]. Thanks to the studies related to the 
definition of very high efficiency shapes in a hypersonic 
environment the AGAM applicability became realer 
[2]. Based on those results, McRonald and Randolph 
proposed an AGAM solution for very demanding 
missions towards the Sun and Pluto, demonstrating that, 
by applying a MarsAGAM , the C3 and the transfer time 
are significantly reduced and the radiation problem 
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related to a Jupiter GAM (representing the default 
strategy) is avoided [3][4]. The authors propose a 
constant height maintenance during the atmospheric 
passage, constraining the planetary trajectory to be 
planar. Lohar & al. by deepening the former studies 
focusing on the heat load evaluation, concluded that 
those manoeuvres keep being unreal because of lack of 
technologies [5].  Bonfiglio & als. highlighted the 
benefits the AGAMs manoeuvres insertion have in 
terms of the launch window set enlargement [6]. 
Johnson, in a recent study, showed that the best fuel 
saving AGAM does not correspond to the constant 
height manoeuvre, but a varying height is preferable to 
reduce the drag losses [7]. The current work, starting 
from that last work, considers the AGAM as a further 
degree of freedom to be inserted in an interplanetary 
trajectory preliminary optimisation scenario. An 
algorithm architecture has been implemented to manage 
the number and sequence of possible AGAM and GAM 
as control variables to minimize both the on-board fuel 
demand and the transfer time. The atmospheric 
manoeuvres are modelled removing the McRonald 
constraint and controlling the s\c in bank angle. The 
paper firstly presents the problem modelling, then the 
multiobjective optimization selected approach and 
finally some of the obtained results. 
 
2.  THE PROBLEM 
 
The work here presented is limited to the impulsive 
manoeuvre class, hence a natural objective function for 
the mission design optimisation stays in the 
minimization of the global |∆v | asked to the propulsion 
module. On the other hands, the transfer time has to be 
limited because of on-board device aging. Therefore, a 
possible vector G of the objective functions is naturally 
defined for an interplanetary chemical-propelled 
trajectory: 
G=[Σi∆vi ∆t]; i=1,…,n; n=no. of propelled manoeuvres 
 
However, it has to be noted that, whenever atmospheric 
manoeuvres are part of the interplanetary trajectory 
either the heat or the heat flux peak on the probe could 
be asked to be optimised, according to a 
multidisciplinary point of view. The heat minimization 
involves, in fact, the structural, the thermal, and the 
attitude control spacecraft design. The Gatm objective 
function vector is then defined as: 

Gatm=[Σi∆vi Q] 
The criteria vectors definition opens the problem of the 
analytical model to be selected to deal with it and, 
consequently, the free variable X and parameter vector 
P definition. In the following paragraph the models here 
adopted are briefly given.  
 
3.  THE PROBLEM MODELIZATION 
 

The orbital mechanics is here modelled according to a 
keplerian approach; hence the spacecraft dynamics 
answers the following vector second-order differential 
equation:  
 

r
r

k
dt

rd bodyprimary
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The object motion is completely known by the six 
keplerian parameters identification, easily done by 
applying the three invariants of the motion, the angular 
momentum h, the eccentricity e, the energy E [8]. 
From the energy equation the absolute value of the 
velocity as a function of the position on the conic can 
be obtained [8]. Hence, the global  |∆v | momentum 
variation given by an impulsive manoeuvre for a 
ballistic transfer between two co-focal non intersecting 
orbits needs knowing the six keplerian parameters 
according to the departure, the target orbits and the 
transfer between the two conics. However, whenever 
the heliocentric transfer occurs between two planets the 
actual   |∆v | to be given by the propulsion module is 
strictly connected to the gravitational planetary field 
escape\capture. In other words to correctly compute the 
energy jump eq.1 must be applied by assuming the 
planet as the main attractor as far as an r∞ position from 
the planet is gained by the s\c; from that position on the 
main attractor is turned on the Sun, giving rise to a 
reference frame change [8][9]. Moreover, by dealing 
with possible GA manoeuvres focused on saving fuel 
mass, such an approach is definitely necessary, as the 
propelled |∆v | is lowered thanks to the planetary flyby 
effects on the value and direction of the incoming and 
outcoming heliocentric s\c velocity vectors. As known, 
such a variation on the heliocentric velocity vector 
depends on the minimum distance from the planetary 
surface rp, the relative s\c incoming velocity vector v∞, 
the hyperbolic orbit plane inclination i, the planetary 
heliocentric velocity vector Vp. In order to enlighten the 
computational effort, a nested architecture has been 
here implemented by considering firstly the 
interplanetary trajectory definition from the sole 
heliocentric point of view, assuming a linked conics 
approach; whenever optimal zones are detected in the 
solution space, a finer search starts taking into account 
the attractor change whenever a planetary sphere of 
influence is entered, according to the patched conics 
approach. The models adopted for the two nested 
modules of the overall architecture are given in the 
followings. 
 
Linked conics models 
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The linked conics module assumes, always, the Sun as 
the main attractor. Heliocentric conics arcs connecting 
at least two planetary orbits are computed by solving 
the two-boundary problem of eq.1 with rin(t) and 
rfin(t+∆t) being the solutions of eq.1 according to the 



departure and target planet motion respectively. The 
Lambert’s problem solution has been here applied, in 
order to find the possible conic connecting the two 
given position vectors (starting-final planet positions) 
and the interval of time ∆ttrans to go through such a path. 
By knowing the departure and target planetary orbits 
from ephemeris and the transfer orbit, the  |∆v | needed 
for the interplanetary transfer can be obtained. Hence, 
the optimisation problem here proposed has, at least, the 
following free variables and parameters sets: 
X= [tin ∆ttransf];  
P=[ain, ein, iin, Ωin, ωin; afin, efin, ifin, Ωfin, ωfin] 
in=departure planet; fin=target planet 
Such an approach can be extended to consider the GAM 
as further degrees of freedom to enlarge the search 
space for a better optimum for the G vector. Gravity 
assist manoeuvres, in fact, aim obtaining a s\c 
momentum change with no fuel mass expense, just 
exploiting the planetary mass gravitational effect. 
Sequential Lambert’s problems can be solved by pairs 
of consecutive selected planets to connect different 
conics arcs with a velocity vector discontinuity at the j-
th planet encounter. To this end, how many and which 
planets for possible encounter must be selected in order 
to define the ri(ti) vectors needed as input by each 
Lambert arc. The work here presented assumes those 
quantities as further variables for the optimization 
problem, making the X vector larger: 
X= [N, S, tin, ∆ttransf-1,…, ∆ttransf-n] 
Obviously, the P vector is enlarged too, according to 
the number and type of planets selected by the current 
solution, up to a ((N+2)x6) and ((N+2)x1) dimension 
respectively. The GAMs, the AGAMs and the target 
planet capture are taken into account within the linked 
conics as boundary conditions on the position vector rs\c 
(rs\c(ti)= rplanet(ti)) to solve the N Lambert’s problems; 
the global  heliocentric |∆v |glob is computed as the sum 
of the single  |∆v |i to be supplied at each i-th trajectory 
discontinuity nearby a planetary pass. 
Thanks to the momentum exchange with the planet, 
however, part of each computed  |∆v |i is supplied by 
the planet itself, and it does not enter the computation 
of the propelled  |∆v |fuel-i to be minimized: 
 

|| iplanetiifuel
vvv −−

∆−∆=∆        i=1,…,N+2       (2) 
 
The |∆v|planet-i momentum exchange amount because of 
the flybys and possible atmospheric manoeuvres are 
approximated assuming the maximum incoming 
relative velocity rotation for GAMs, the dynamic 
vertical equilibrium for the AGAMs [3][4][9]. The 
planetary capture is supposed to be completely 
propelled by assuming |∆v|fuel-capture=|v∞,s\c-target|=vhelio-s\c 

at target-vhelio-target|. In particular, the heliocentric |∆v | 
amount because of the gravitational planetary effect is 
computed as: 
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The heliocentric |∆v |AGAM amount because of the aero-
gravity assisted planetary effect assumes, as always 
obtainable, the v∞ vector rotation to gain the 
heliocentric outcoming velocity versor asked by the 
Lambert’s arc computation. According to a constant 
height manoeuvre, the energy loosing because of 
atmospheric drag effects can be modelled as [3][4]: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

∆

∞∞

∞
2

1
v
v

ccv
v c

dl

φ                                   (4a) 

 
The present work removes the constant height 
hypothesis. Comparisons on a |∆v|fuel minimisation 
scenario for the atmospheric manoeuvre by using a 
constant height and a constraint-free 3D motion models 
respectively lead to the definition of a correction factor 
of eq.4a equal to two: 
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Patched conics models  
 
Differently from the linked conics, the patched conics 
approach enters the planetary passage\capture details 
both in terms of  |∆v|planet-i and  ∆ti computation. This 
more complicated approach is necessary in order to 
correctly describe the aero-assisted manoeuvre in terms 
of heat load and guidance law associated, while it 
would not be necessary for ballistic manoeuvres.  
For the simple gravitational mechanics, as already 
pointed out, six quantities have to be defined according 
to the two-bodies model to have the relative s\c motion 
around the planet completely defined. A GAM is fully 
described introducing the following X vector  
XGAM= [δ∆ttransf-1,…, δ∆ttransf-n, rp1, …, rpn, ω1, …,ωn];  
 
 Moreover, the possibility to insert a further degree of 
freedom in terms of aerocapture manoeuvre at the target 
planet, asks for dedicated problem formalization. 
To this end the X vector is changed as follows: 
XGAM= [δ∆ttransf-1,…, δ∆ttransf-n, rp1, …, rpn, ω1, …,ωn] 
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an AGAM asks for a different set of dynamics 
equations because of the aerodynamics loads. Within 
the present work the fixed height approach is overcome 
and the whole set of equation governing the motion of 
the centre of mass is applied with no constraints but 
rs\c>Rplanet-i. The differential system governing the 
atmospheric motion is characterised by two free 
dynamics: the bank angle (µ) and the angle of attack. 
The former angles are here treated as a parameter and as 
a variable vector respectively. Hence, a trimmed flight 
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history is imposed, while an optimal lateral control law 
is looked for. Moreover, some configuration quantities 
are assumed as parameters leaving as a free variable the 
reference surface for the aerodynamics effects. The 
boundaries on A are defined according to the admissible 
range for the ballistic coefficient of the waveriders 
found in literature. 
The X and P vectors are changed as follows: 
XAGAM= [XGAM, µ1,…, µw, A] 
PAGAM=[cl,E, m, N,S] 
The |∆v |planet-i is now computed according to trajectory 
obtained from the current X free variable vector. It has 
to be noted that N and S disappeared from the variable 
vectors as they are assumed as parameters within the 
patched conics optimisation module defined by the 
former linked conics optimisation module. The capture 
manoeuvre dynamics is ruled either by eq.1 or 
atmospheric motion equations depending on the 
pericentre altitude. The  |∆v |fuel, target capture computation 
asks for the inbound hyperbolic path and the desired 
final planetary orbit complete knowledge. The heat 
computation is here obtained by considering the 
stagnation point load. A further development would 
invoke a CFD module to a finer multidisciplinary 
analysis. The heat flux at the stagnation point is 
obtained thanks to the Reynolds analogy between 
viscous stress and heat flux [13]. Its integration in time 
and area gives the atmospheric passage heat load Q. 
 
4. THE OPTIMIZATION TECHNIQUE 
 
The optimization problem here analysed highlights 
different items to deal with: costs are no more scalar but 
vectors; free variable domains are both discrete and 
continuous; cost functions to be optimized are 
multimodal. Hence, a global multiobjective 
optimisation tool that does not ask for gradient and 
Hessian computation is aimed. Moreover, according to 
the application, it could be definitely useful to acquire a 
set of possible optimal solution among which to select 
depending on the space system design demand: as the 
trajectory and the system design are highly 
interdependent the possibility to change the flight path 
to answer a particular engineering constraint just 
picking up a different optimal solution would save a 
time and possibly optimize the space system design too. 
That is why a genetic algorithm technique has been here 
selected: different solutions can be analyzed and kept 
alive simultaneously; to be trapped in a local minimum 
is then avoided and a global optimum can be easier 
captured. No Cj membership is asked to the G elements 
as neither gradient or Hessian is computed; any kind of 
variable domain can be managed.  On the other end, 
some items must be solved in dealing with the GAs: 
problem coding and operator selection, convergence 
criterion definition, constraint management, and the 
genetic drift. Within the current work a real coding has 
been applied to speed up the convergence, while a 

specific convergence criterion has been implemented. 
Constraints have been simply treated by applying 
penalties [12]; for the genetic drift management a 
hybrid elitism together with the interference severity 
techniques turned out to be the best choice to maintain 
sparsity and completeness in the final solution set. The 
elitism speeds up the process as the active population 
dimension is contained, while preserving the best 
solutions in the elite. The interference severity prevents 
from niches, maintains the search in the solution space 
well spread [13]. A non-dominance criterion according 
to Pareto has been applied to turn the G vector to a 
single element dimension and for the fitness 
computation [14]. In particular, specifically for the 
linked conics module, the ranking is based on the 
following fitness: 
 
Fitness(i)=[ΣjTij, NDi]                (5) 
 
Tij= counter for the i-th chromosome invasion of the 

interference zone of the j-th chromosome: 
xi ∈τj  Tij=1; xi ∉τj  Tij=0 

NDi=no. of chromosomes that dominate the i-th  
individuals, according to the G vector 

 
5.  VALIDATION & RESULTS 
 
Several validation sessions have been run in order to 
check for the convergence and sparsity properties of the 
implemented GA tool on a multiobjective optimization 
environment. Results, here omitted for lack of space, 
highlighted the ability of the algorithm in catching 
several complex Pareto fronts discontinuous, concave 
and convex with a good distribution on the front. Tests 
functions came from literature and the comparison with 
different proposed methods showed that the proposed 
GA performances are definitely comparable with the 
most performing approaches [15]. 
Results from the linked-patched conics modules are 
given for a possible mission to Titan in order to 
highlight the algorithm performance in dealing with a 
mixed discrete-continuous domain and forecasting good 
niches of S, for the patched conics analysis.   A possible 
AGAM is then discussed in detail. The linked module 
analyses the interplanetary transfer to Saturn; at first 
trajectories with GAMs only are presented (fig.1), then 
this constraint is removed (fig.2). The bounds of N can 
be settled by the user, with a default range of [1 4] for 
GAMs only trajectories and [1 2] for GAM+AGAM 
paths. Thanks to the interference severity technique, 
sparsity is maintained in terms of number of flybys and 
S sequence vectors. For all the paretian solutions, the 
algorithm has lead to trajectories for which the 
intermediate propelled ∆v is virtually zero, i.e. ∆v 
required is provided by the planetary flyby. For GAM 
only trajectories, the best solution in terms of ∆v is 
given by a [Ma J] sequence, path which is also present 
in the knee region of the front. 



 
Fig.1: E S GAM only trajectories: linked conics 
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Very good compromise solutions can be obtained by 
following the [V Ma V E] and [V E] trajectories. In 
order to give evidence of the effectiveness of the 
algorithm, it is important to notice that cost functions 
associated with the Cassini mission, studied by NASA, 
lie in the detected  front ; the actual mission sequence 
[V V E J] has not been found, probably due to a 
different launch window because of a Cassini deep 
space manoeuvre (not taken into account here) after the 
first venusian flyby. A single martian flyby gives the 
best solutions in terms of ∆t, not equally effective from 
an energetic point of view.  
 

  
Fig.2: E S GAM+AGAM trajectories: linked conics 

 
Fig.2 reports the results for GAM+AGAM trajectories, 
according to eq.4b for the energy variation computation 
in atmospheric manoeuvres; eq.4a utilisation leads to 
very similar results in terms of overall shapes of the 
Pareto fronts, paretian S and |∆v|fuel. Hence the analyses 
here given having applied eq.4b are definitely valid 
whenever eq.4a is used. The best ∆v solution is 
obtained with a [Ma J] sequence too: the AGAM 
instead of a GAM on Mars allows a ∼2.5kms-1 saving; a 
∼6.5kms-1 is gained according to a direct transfer to the 
planet (∼13.9kms-1). A solution comparison according 
to the same energy demand, shows a transfer time 
reduction gain: according to the minimum |∆v|fuel-GAM 
(∼9.8kms-1) the transfer duration is more than halved. A 
Mars and Earth AGAM coupling turns out to be a good 
sequence too, according to ∆vfuel . The best compromise 
solutions are anyway obtained with a single AGAM on 
Mars: these trajectories give strong improvements in the 
knee region of the Pareto front, compared with GAM 
only trajectories, as table 1 shows.  Fig. 4 shows the 
Pareto front according to the GAGAM cost vector: the 
knee solution ([E Ma S], ∆v=19.21km/s, ∆t=1099days), 

sketched in fig.3, has been selected as interplanetary 
transfer to input in the PAGAM within the study of the 
complete mission to Titan. The ∆vfuel is here computed 
from LEO orbit (h=300km) to a parking orbit around 
Titan.  
 

Table 1: GAM-AGAM comparison 
Solution GAM only GAM+AGAM
min dv ∆v=9.77 km/s ∆v=7.25 km/s  
∆v=15km/s ∆t=5.15 years ∆t=3.91 years 
∆t=5 years ∆v=15.23 km/s ∆v=12.55 km/s

  

 
Fig.3: knee trajectory 

 
Fig.4: ∆v-Q Pareto front: patched conics 

 
The heat loads are definitely high (O (102MJm-2)) 
asking for devoted high-performing radiative 
protections. Fig.5 highlights detailed results of the 
AGAM on Mars. In particular, the tool, trying to 
maximise the  |∆v|planet-AGAM to answer the GAGAM 
minimisation, turns out the height profile reported in 
fig.5b: the lower the height the higher the lift, hence the 
vehicle manoeuvrability. A 40Km minimum height 
(acceptable for Mars topography) is required. On the 
other hand, the heat load and the drag effects increase 
rapidly, that is why the atmospheric permanence is 
definitely low: 80s instead of 480s proposed by results 
for a constant height atmospheric manoeuvre [3][4]. 
Results showed the proposed atmospheric manoeuvre 
gain a 90% of the |∆v|AGAM attainable with the 
McRonald technique because of a doubled energy 
losses. However, an out-of hyperbolic passage plane 
component can be produced in the ∆vAGAM by applying 
the proposed manoeuvre, definitely useful from the 
overall heliocentric point of view; a 0.79|v|∞ normal 
component for the energy variation vector is attainable.  
On the contrary, the McRonald’s is a planar trajectory 
as, to completely counterbalance the centrifugal effects 
the whole possible lift load is exploited. The optimum 
bank history is given in fig.5a: the bank angle stays 
within –90° and 90° most of time, assuring a positive 



lift vector. Because of a simple linear interpolation, 
discontinuities are present in the graph. The flight path 
angle has a critical trend: a is asked at the 
lowest height. From a multidisciplinary point of view, 
such a pull up manoeuvre is highly demanding in terms 
of inertial loads on the structure: by constraining the 
flight path angle derivative the inertial loads decrease, 
while increasing the |∆v

12 −°= sγ&

|fluel-glob. 
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Fig.5a-b: Mars AGAM-details  

 
A good compromise is offered by the solution, 
as given in table 3: the price to be paid is in terms of Q 
loads, increased by the 15%.  

11 −°= sγ&

 
Table3: inertial loads vs. flight path angle derivative 

maxγ& [°s-1] Accmax[ms-2]  ∆v min [Km/s]  Qmax[MJm-2]  

1 261 8.02 894 
 
The ballistic coefficient (βl=m/A*Cl) bounds are fixed 
according to previous studies on the waveriders ([30-
50]): Tab. 4 gives the adopted mass and aerodynamics 
parameter values. 
 

Table4: Configuration parameters 
Aerodynamic efficiency 10  
CL 0.1  
mass 1000Kg  

 
6. CONCLUSIONS 
 
An algorithm architecture is here proposed to deal with 
the interplanetary mission preliminary design 
optimisation with possible atmospheric\gravitational 
manoeuvres to reduce the on-board fuel demand and the 
transfer time. An atmospheric dynamics less 
constrained than the Mc Ronald studies, has been 
implemented.  Such an approach showed the advantage 
of obtaining a non-planar planetary trajectory, at the 
flyby, enhancing the energetic help attainable by the 
encountered planet. A two-level architecture is 
proposed to maintain the number and sequence of 
encountered planets as a further degree of freedom for 
the optimal solution detection: thanks to the particular 
genetic algorithm a well spread Pareto front is detected 
and a set of solutions well distributed in the search 
space are given to the system designer.   The 
multiobjective approach balances the final solution set 
according to multidisciplinary aspects to be further 
developed by adding more detailed modules. Solutions 
showed that the insertion of mixed GAM-AGAM 
sequences could definitely lower the on board fuel mass 

while reducing the transfer times. As a drawback a quite 
demanding manoeuvre is identified for the atmospheric 
passage, particularly focusing on the inertial and heat 
loads.  
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