
Conflict, Harmony, and Independence: Relationships in
Evolutionary Multi-Criterion Optimisation

Robin C. Purshouse and Peter J. Fleming

Department of Automatic Control and Systems Engineering
University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
{r.purshouse, p.fleming}@sheffield.ac.uk

Abstract. This paper contributes a platform for the treatment of large numbers
of criteria in evolutionary multi-criterion optimisation theory through considera-
tion of the relationships between pairs of criteria. In a conflicting relationship,
as performance in one criterion is improved, performance in the other is seen to
deteriorate. If the relationship is harmonious, improvement in one criterion is
rewarded with simultaneous improvement in the other. The criteria may be in-
dependent of each other, where adjustment to one never affects adjustment to
the other. Increasing numbers of conflicting criteria pose a great challenge to
obtaining a good representation of the global trade-off hypersurface, which can
be countered using decision-maker preferences. Increasing numbers of harmo-
nious criteria have no effect on convergence to the surface but difficulties may
arise in achieving a good distribution. The identification of independence pre-
sents the opportunity for a divide-and-conquer strategy that can improve the
quality of trade-off surface representations.

1 Introduction

Theoretical evolutionary multi-criterion optimisation (EMO) studies generally con-
sider a small number of objectives or criteria. The bi-criterion case is by far the most
heavily studied. EMO applications, by contrast, are frequently more ambitious, with
the number of treated criteria reaching double figures in some cases [1, pp207-290].
Hence, there is a very clear need to develop an understanding of the effects of increas-
ing numbers of criteria on EMO. The recently proposed set of benchmark problems,
which are scalable to any number of conflicting criteria, represent an important early
step towards this aim [2].

This paper establishes a complementary platform for research into increasing num-
bers of criteria via consideration of the different types of pair-wise relationships be-
tween the criteria. A classification of possible relationships is offered in Sect. 2, and
the notation used in the paper is introduced. Conflict between criteria is discussed in
Sect. 3, whilst Sect. 4 considers harmonious objectives. The aim of a multi-objective
evolutionary algorithm (MOEA) is generally regarded as to generate a sample-based
representation of the Pareto optimal front, where the samples lie close to the true front
and are well distributed across the front. The effects of increasing numbers of each
type of criteria on both aspects of the quality of the trade-off surfaces produced are
described, together with a review of methods for dealing with the difficulties that



arise. The case where criteria can be optimised independently of each other is intro-
duced in Sect. 5. Qualitative studies of pair-wise relationships between criteria are not
uncommon in the EMO community, especially in the case of real-world applications.
These are discussed in Sect. 6, alongside similar quantitative methodologies from the
multi-criterion decision-making (MCDM) discipline. Conclusions are drawn in
Sect. 7.

Some of the concepts described in this paper are illustrated using an example result
from a recently proposed multi-objective genetic algorithm (MOGA) [3] solving the
3-criterion DTLZ2 benchmark problem [2]. The equations for this test function are
provided in Definition 1. Note that all criteria are to be minimised.

Definition 1. 3-criterion DTLZ2 test function [2].

Min. ( ) ( ) ( ) ( )1 3 12 1 21 ,..., cos 2 cos 2z g x x x xπ π� �= +� �x ,

Min. ( ) ( ) ( ) ( )2 3 12 1 21 ,..., cos 2 sin 2z g x x x xπ π� �= +� �x ,

Min. ( ) ( ) ( )3 3 12 11 ,..., sin 2z g x x x π� �= +� �x ,

where 0 1ix≤ ≤ , for 1, 2,...,12i = ,

and ( ) ( )12 2
3 12 3
,..., 0.5ii

g x x x
=

= −� .

2 Relationships Between Criteria

2.1 Classification

In theoretical EMO studies, the criteria are generally considered to be in some form of
conflict with each other. Thus, in the bi-criterion case, the optimal solution is a one-
dimensional (parametrically speaking) trade-off surface upon which conflict is always
observed between the two criteria. However, other relationships can exist between
criteria and these may vary within the search environment. A basic classification of
possible relationships is offered in Fig. 1. These relationships are explained in the
remainder of the paper.
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Fig. 1. Classification of relationships between criteria



The dependency classifications are not necessarily mutually exclusive. For example,
in the case of three conflicting criteria, there may be regions where two criteria can be
improved simultaneously at the expense of the third. This is illustrated in Fig. 2 for
the final on-line archive of a MOGA solving the 3-criterion DTLZ2 problem (see
Definition 1). For example, ideal performance in z2 and z3 (evidence of harmony) can
be achieved at the expense of nadir performance in z1 (evidence of conflict), as indi-
cated by the left-most criterion vector in the figure. However, on the far right of the
figure, z1 and z3 are now in harmony and are both in conflict with z2. Thus, the nature
of the relationships change across the Pareto front.

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

z1
z2

z3

Fig. 2. Final on-line archive of MOGA (depicted as circles) solving DTLZ2, superimposed on
the global trade-off surface

2.2 Notation

The following notation is used in the remainder of the paper: M is the number of crite-
ria to be considered in the optimisation procedure, Z is the set of all realisable crite-

rion vectors M∈z � , and ZR is a particular region of interest in criterion-space,

RZ Z⊆ . If ZR = Z then the relationship is said to be global, otherwise it is described
as local. The case ZR = Z*, where Z* is the Pareto optimal set, may be of particular
interest since these are typically the relationships that will be presented to the deci-
sion-maker (DM). The DM is the entity that expresses preferences within the optimi-
sation and selects an acceptable solution from the set returned by the optimisation
process. The DM is usually one or several humans.



Let i and j be indices to particular criteria: [ ], 1,...,i j M∈ . Let a and b be indices to

individual criterion vector instances: , 1 ... : ,a b
R Ra b Z Z� �∈ ∈� � z z . Also let ( ),a b

denote a pair of instances for which a b≠ . Minimisation is assumed throughout the
paper without loss of generality.

The dependency relationships that can be identified via pair-wise analysis are
summarised in Fig. 3. They are based on the position of criterion vector zb relative to
the position of za. These relationships are explored in more detail in Sect. 3 and
Sect. 4 to follow.
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Fig. 3. Dependency relationship regions between a pair of criteria, i and j, identified using the
location of sample vector zb relative to that of za

3 Conflicting Criteria

3.1 Definitions of Conflict

A relationship in which performance in one criterion is seen to deteriorate as perform-
ance in another is improved is described as conflicting. This is summarised by Defini-
tion 2 below and can be related to the zb-relative-to-za regions marked as such in
Fig. 3.

Definition 2. Criteria i and j exhibit evidence of conflict according to the condition

( ) ( )a b a b
i i j j< ∧ >z z z z . If ∃ ( ),a b for which the condition holds then there is no



conflict, if ( ),a b∃ then there is conflict, whilst if the condition holds ( ),a b∀ then

there is total conflict.

Note that no attempt has been made to define intermediate levels of conflict (or har-
mony, as discussed in Sect. 4) since this requires further DM preference information.

3.2 Effect on EMO

For M conflicting criteria, an (M – 1)-dimensional trade-off hypersurface exists in
criterion-space. The number of samples required to achieve an adequate representa-
tion of the surface is exponential in M. Given a finite population, an evolutionary
optimiser will encounter intractable difficulties in representing the surface when large
numbers of conflicting criteria are considered. Even if such a representation were
possible, the value to the DM of such a large number of candidate solutions is ques-
tionable.

Deb [4, pp400-405] has shown that the proportion of locally non-dominated crite-
rion vectors in a finite randomly-generated sample becomes very large as the number
of criteria increases (interestingly, it would appear to be possible to optimise all of the
criteria independently in this particular study). Similar results were reported in [5b]
for the final non-dominated set of a real-world MOEA application. Since dominance
is used to drive the search towards the true Pareto front, there may be insufficient
selective pressure to make such progress. The use of a large population can help re-
duce the proportion, but this is impractical for many real-world problems in which
evaluation of a single candidate solution is very time-consuming. Also, the benefit
would appear to become progressively weaker as the number of criteria increases.

Many MOEAs use some method of population density estimation, either to modify
the selection probability of an individual or as part of the on-line archive acceptance
procedure, to achieve a good distribution of solutions. Density estimation also be-
comes increasingly difficult as the dimensionality of the problem increases (the num-
ber of criteria, for density estimation in criterion-space). Due to the ‘curse of dimen-
sionality’ (the sparseness of data in high dimensions), the ability to fully explore sur-
faces in greater than five dimensions is regarded as highly limited [6]. Statisticians
generally use dimensionality reduction techniques prior to application of the estima-
tor. This assumes that the ‘true’ structure of the surface is of lower dimension, but the
potential for reduction may be limited for a trade-off surface in which all criteria are
in conflict with each other.

3.3 Remedial Measures

Preferences. The exploitation of DM preferences is arguably the current best tech-
nique for handling large numbers of conflicting criteria. In this case, the aim of EMO
is to achieve a good representation of trade-off regions of interest to the DM (essen-
tially limiting the ambition of the optimiser by requiring it to represent only a sub-
space of the trade-off hypersurface). This sub-section provides a brief overview of



preference articulation within MCDM, before examining two popular techniques that
use DM preferences to handle large numbers of conflicting criteria.

Preference articulation overview. Preference information can be classified into four
distinct types:

– definitions of the criteria and problem domain,
– requirements of a solution,
– abstract judgements on the relative importance of criteria,
– specific judgements on a set of candidate solutions.

Definitions of the problem domain and the criteria to be optimised are essential to the
optimisation process. However, this information is not necessarily readily available a
priori and may contain a degree of uncertainty. Problem domain definitions include
limits on the range of decision variables. Development of a good set of criteria is
critical to the performance of the optimiser.

Requirements of a solution tend to be specified at criterion level, resulting in the
formulation of an ideal or acceptable global solution. Definitions of unacceptability
may also be given. In this approach, the DM could specify goals for particular objec-
tives. These goals may be a requirement that must be met (a hard constraint) or may
represent softer aspirations.

The DM may wish to provide abstract information about the relative importance of
criteria. This may include precise, or perhaps rather vague, information about the level
of trade-off that the DM is willing to accept between two criteria (for example, an
acceptance of ‘an improvement of ∆1 in criterion i in exchange for a detriment of ∆2

in criterion j’). Priority information may also be provided, in which the DM expresses
a preference for some criteria being more important than others. This information may
be imprecise. It may also be qualitative (‘much more important’) or quantitative
(‘twice as important’). Priority information can be used to build a partial ordering of
criteria, perhaps to be optimised lexicographically, or to determine weights in an
aggregation of criteria.

Given a set of candidate solutions, the DM may be able to express preferences for
some candidate solutions over others (perhaps allowing a partial ordering of potential
solutions to be generated). Again, this information may be qualitative or quantitative,
and is likely to be somewhat imprecise.

Preference articulation schemes are generally classified according to when the
preference data is elicited from the DM:

– a priori, in which preference data is incorporated prior to execution of the opti-
miser,

– progressive, in which the information is requested and exploited during the optimi-
sation process,

– a posteriori, where a solution is chosen from a group of results returned by the
completed optimisation process.

Refer to [1, pp321-344] for a review of preference articulation schemes in the EMO
literature.



Aggregation. One method for reducing the number of conflicting performance criteria
is to combine several of them into a single optimisation criterion. Aggregation may be
achieved by means of a weighted-sum, or a more complicated function. In this ap-
proach, the DM pre-specifies the trade-offs between the combined subset of criteria.
This eliminates the requirement for the optimiser to represent this portion of the
global trade-off surface. The inherent disadvantage of the approach is that the DM
must be able to specify the required trade-off a priori. Also, any adjustments to the
preferences will require a complete re-run of the optimisation. Nevertheless, this may
be an appropriate technique, especially when faced with very large numbers of crite-
ria.

Goals and Priorities. Greater flexibility can be achieved in terms of criterion reduc-
tion by exploiting goal values and priorities for various criteria, if these can be elicited
from the DM. The preferability relation developed in [5a] unifies various classical
operations research (OR) schemes based on goals and priorities and applies them
within the context of EMO. In essence, the method adaptively switches on or off
different criteria, from the perspective of the dominance relation, for each pair of
vectors considered. The iterative nature of the EA paradigm can be exploited to up-
date the preferences as information becomes progressively available to the DM.

Dimension Reduction. Existing dimensionality reduction techniques could be used to
transform criterion-space into a lower dimension. This could be done prior to the
optimisation, based on some preliminary analysis, or could be updated on-line as the
MOEA evolves. The key benefit of the latter approach is that, as the MOEA progres-
sively identifies the trade-off surface, the reduction is performed on a space more
relevant to both the EA and the DM. If the reduction is to be performed iteratively
then the balance between capability and complexity of the applied technique must be
considered. For example, curvilinear component analysis [7] has good general appli-
cability but a significant computational overhead, whilst principal components analy-
sis [8] has the opposite features.

Dimension reduction methods can be applied directly to the density estimation
process to preserve trade-off diversity in information-rich spaces. However, since the
methods do not respect the dominance relation, they cannot be used directly in the
Pareto ranking process without modification.

Visualisation. Note that the ability to visualise the developing trade-off surface be-
comes increasingly difficult as the number of criteria increases. The method of paral-
lel coordinates is a popular countermeasure for large numbers of criteria. Scatter-plots
with brushing and glyph approaches, such as Chernoff faces [9], are amongst the
possible alternatives [6][10]. Parallel coordinates and scatter-plots are both closely
linked to the concepts of conflict and harmony described in this paper, and are dis-
cussed further in Sect. 6.



4 Harmonious Criteria

4.1 Definitions of Harmony

A relationship in which enhancement of performance in a criterion is witnessed as
another criterion is improved can be described as harmonious. If performance in the
criterion is unaffected, the relationship is described as weakly harmonious. Complete
definitions are provided below and can be related to the relevant zb-relative-to-za

regions and lines in Fig. 3.

Definition 3. Levels of harmony are determined by the condition

( ) ( )a b a b
i i j j< ∧ <z z z z . If ∃ ( ),a b for which the condition holds then there is no

harmony, if ( ),a b∃ then there is harmony, and if the condition holds ( ),a b∀ then

there is total harmony.

Definition 4. Levels of weak harmony are determined by the condition

( ) ( ) ( ) ( )a b a b a b a b
i i j j i i j j

� � � �< ∧ = ∨ = ∧ <� � � �� � � �
z z z z z z z z . If ∃ ( ),a b for which the condition

holds then there is no weak harmony, if ( ),a b∃ then there is weak harmony, and if the

condition holds ( ),a b∀ then there is total weak harmony.

Definition 5. Neutrality is determined by the condition ( ) ( )a b a b
i i j j= ∧ =z z z z . If

∃ ( ),a b for which the condition holds then there is no neutrality, if ( ),a b∃ then there

is neutrality, and if the condition holds ( ),a b∀ then there is total neutrality.

Harmonious relationships have been observed in several EMO application papers,
where they are indicated by non-crossing lines between pairs of criteria on a parallel
coordinates plot (see Sect. 6), including the following:

– passenger cabin acceleration versus control voltage in electromagnetic suspension
controller design for a maglev vehicle [11],

– gain margin versus phase margin, and 70% rise time versus 10% settling time, in
the design of a Pegasus low-pressure spool speed governor [5b].

4.2 Effect on EMO

In either form of total harmony, one of the criteria can be removed without affecting
the partial ordering imposed by the Pareto dominance relation on the set ZR of candi-



date solutions. This type of relationship has received some consideration in the classi-
cal OR community, usually for ZR = Z*, where one member of the criterion pair is
known variously as redundant, supportive, or nonessential [12][13][14]. It remains an
open question whether or not to include redundant criteria in the optimisation process.
Reasons to keep such criteria include:

– knowledge of the relationship may be of interest to the DM, especially if the rate of
harmonious behaviour changes over the course of the search space,

– the relationship may not be apparent from a random finite sample of the search
space,

– inclusion does not, necessarily, harm the search,
– the DM may be more comfortable with the inclusion of the criterion.

Reasons to remove redundant criteria include:

– to eliminate the extra burden on the DM, who must inspect and make decisions on
matters that do not affect the search and may be misleading,

– to reduce the computational load, in terms of both performance evaluations and
comparisons.

The inclusion of a redundant criterion does not affect the partial ordering of candidate
solutions imposed by the Pareto dominance operator. Thus, progress towards the
global Pareto front is unaffected. It is, however, possible that such an inclusion could
affect the diversity in the representation of the trade-off hypersurface. This depends
on the definition of distance between criterion vectors used by the density estimator.
For example, any procedure using Euclidean distances or the NSGA-II crowding algo-
rithm [15] could suffer from potential bias. Consider the case of three criteria: where
z1 and z2 totally conflict, z1 and z3 totally conflict, and z2 and z3 are in total harmony.
The resulting trade-off surface is one-dimensional, and can be represented by the
conflict between z1 and z2. A uniform distribution in the Euclidean sense may not be
arrived at across the normalised trade-off surface, even if such a distribution is
achievable, because the Euclidean distance calculation is biased in favour of z2 since
{z2 z3} has greater influence on the Euclidean distance measure than z1. Thus, a diver-
sity preservation technique would bias in favour of diversity in z2 on the trade-off
surface. The overall effect of this depends on the trade-off surface in question: some-
times, good diversity in z2 will naturally lead to good diversity in z1 but this is not
guaranteed to be the case.

4.3 Remedial Measures

Redundant criteria may be identified by using the sample set contained within the EA
population for each criterion and looking for large positive correlations between the
data sets for each pair of criteria. Redundant criteria may be removed if this is felt
appropriate for the problem in-hand. Alternatively, the criteria may be selectively
ignored in the density estimation process (and also the ranking process in order to
reduce the number of unnecessary comparisons) and yet still be presented to the DM.



5 Independent Criteria

5.1 Independence in the context of EMO

In this paper, independence refers to the ability to decompose the global optimisation
problem into a group of sub-problems that can be solved separately from each other.
Thus, different criteria and decision variables will be allocated to different sub-
problems.

In the context of the relationship between a pair of criteria, independence means
that the criteria can, in theory, be optimised completely separately from each other. As
with a harmonious relationship, it is possible to make improvements to both criteria
simultaneously (from the perspective of the complete solution). The difference be-
tween independence and harmony is that appropriate adjustments must be made to
two distinct parts of the complete solution in the former case, whilst in the latter case
a single good decision modification for one of the criteria will naturally produce im-
provement in the second criterion.

If two criteria are independent then they do not form part of the same trade-off sur-
face. Thus multiple, distinct, trade-off surfaces exist, each of which should be repre-
sented separately for inspection by the DM.

5.2 Effects of Independence on EMO

Consider a global problem, p, comprised of n independent sub-problems [p1,…,pn]
with associated independent sets of criteria [z1,…,zn] and independent sets of decision
variables [x1,…xn]. If advance knowledge of these sets is available then the global
problem can be decomposed into the groups of sub-problems prior to optimisation.
Then a proportion of the total available resources (candidate solution evaluations)
could be exclusively allocated to the optimisation of each sub-problem. Both a global
approach and the aforementioned divide-and-conquer method should yield the same
solution of n independent trade-off surfaces. From an EMO perspective, it then be-
comes a matter of interest as to which technique produces superior results in terms of
trade-off surface quality. Is the effort expended identifying and exploiting the correct
decompositions rewarded with improved results?

In the first study of its kind, an attempt has been made to answer this question in
[16]. The study demonstrated that, for a simple test problem, a divide-and-conquer
strategy could substantially improve MOEA performance. A priori decompositions
were evaluated in criterion-space, decision-space, and both spaces simultaneously.
Parallel EA models were applied to each sub-problem. All three methods led to sig-
nificantly higher-quality trade-off surfaces than the global approach, with both-space
decomposition proving the most attractive. Given that it may not be possible to accu-
rately identify the sub-problems in advance of the optimisation, an on-line adaptive
divide-and-conquer strategy for MOEAs was also proposed and evaluated in [16].
Bivariate statistical tests for independence were applied to the population sample data
in order to identify the independence relationship.



6 Existing Methods for Identifying Pair-Wise Relationships

This paper considers the relationships that exist between pairs of criteria, by compar-
ing pairs of criterion vectors. In this approach, composite relationships must be in-
ferred from these simpler relations. However, the pair-wise methodology is very
popular in multivariate studies and forms a good foundation for analysis, with many
qualitative and quantitative techniques based on this approach. Methods that are
closely linked to the definitions of conflict and harmony described earlier are dis-
cussed in the remainder of this section.

6.1 Qualitative Methods

The method of parallel coordinates, first described in [17] and subsequently applied to
EMO in [18], reduces an arbitrary high-dimensional space to two-dimensions. The
parallel coordinates representation of the on-line archive of Fig. 2 is shown in Fig. 4.
Criterion labels are located at discrete intervals along the horizontal axis (and these
should be interchangeable). Normalised performance in each criterion is indicated on
the vertical axis. A particular criterion vector is displayed by joining the performance
levels in all adjacent criteria by straight lines. Then, considering two criterion vector
instances for a pair of criteria, the lines representing the two instances will cross if
conflict is exhibited according to Definition 2 or will fail to cross if harmony is ob-
served according to Definitions 3 or 4 (in the case of Definition 5, the lines will be
superimposed). Thus, the magnitude of conflict is heuristically visualised as ‘many’
crossing lines.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

va
lu

e

criterion

Fig. 4. Parallel coordinates representation of the data shown in Fig. 2



Wegman [19] presents some valuable insights and extensions towards using the
parallel coordinates representation as a high-dimensional data analysis tool. Statistical
interpretations of the plots are possible, with features such as marginal densities, cor-
relations, clusters, and modes proving readily identifiable. Parallel coordinates plots
can suffer from over-plotting for large data sets and thus a density plot variant is also
presented in the paper to overcome this.

Another popular method of pair-wise visualisation, which in its full form presents
more simultaneous comparisons than the standard parallel coordinates plot, is the
scatterplot matrix [10]. Such a plot for the MOGA on-line archive of Fig. 2 is shown
in Fig. 5. Each element of the matrix of plots shows a particular bi-criterion section of
the trade-off surface. For example, the upper central plot shows z2 on the horizontal
axis and z1 on the vertical axis. It can sometimes be difficult to extract information
from these plots, especially as the number of criteria increases. Highlighting of a
particular criterion vector instance or group of instances – a technique known as
brushing – can often aid higher-order understanding. The filled circle in Fig. 5 indi-
cates one particular vector.
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Fig. 5. Scatterplot matrix representation of the data shown in Fig. 2

6.2 Quantitative Methods

Several pair-wise methods exist for quantifying conflict between criteria that use
similar concepts to the parallel coordinates notion of crossing lines. The Kendall sam-
ple correlation statistic measures the difference between the number of concordant
samples (as one variable increases/decreases, the other follows suit) and the number



of discordant samples (as one variable increases/decreases, the other does the oppo-
site) [20]. Thus, discordance produces crossing lines whilst concordance does not.
Fuzzy measures of conflict also use this type of approach: see, for example, [21].

Schroder [22] developed a technique based directly on the method of parallel coor-
dinates. In this approach, each criterion range is partitioned into a number of equally
sized regions. The level of conflict is then defined as a weighted-sum of the crossings
between pairs of regions (rather than actual solutions), where the weights are based on
the separation between the regions. Crossings between distant regions are argued to be
indicative of strong conflict. The method also normalises conflict levels with respect
to population density. This may be appropriate if one particular region is thought to be
over-sampled by the search, but may not in general be correct because if vectors are
similar in two criteria this does not necessarily mean they are from the same region of
the global trade-off surface. The method also requires additional preference informa-
tion, unlike the previous techniques, since it is not based purely on ordinal data. How-
ever, more information can, potentially, be extracted using this method.

7 Conclusions

EMO applications have long considered the simultaneous optimisation of large num-
bers of criteria. However, EMO algorithm developers have tended to concentrate
almost entirely on the bi-criterion domain. Thus, there is a present lack of understand-
ing of how MOEAs cope with larger numbers of criteria. This paper has sought to lay
foundations for future work in this direction by considering how increasing numbers
of criteria affect MOEA search performance.

Three relationships – conflict, harmony, and independence – have been identified.
It has been demonstrated how the relationship between two criteria can contain ele-
ments of both conflict and harmony, resulting from interaction with other criteria.

It has been argued that increasing numbers of conflicting criteria will severely
hamper the ability of an MOEA to represent the global trade-off surface. Thus, in
general, the oft-stated EMO aims of closeness to and diversity across the entire Pareto
front could be little more than a pipedream. It is difficult to see how, when confronted
with large numbers of criteria, increased requirements for preference information can
be avoided. Even if an MOEA was capable of adequately representing the entire,
complicated, high-dimensional trade-off surface, this amount of information is surely
of little benefit to the human DM, who is faced with the task of selecting a single
solution. The dimension of the problem must be kept reasonably low for human DM
analysis to remain tractable: twelve criteria has been suggested as an upper limit [23].
Aggregation of criteria, whilst anathematic to many EMO researchers, may thus be
necessary.

Even if the number of criteria is limited by DM considerations, it may still be pru-
dent to consider further dimensionality reduction in the context of the MOEA search.
This can be achieved by removing some criteria from certain comparisons (and thus
preserving the dominance relation) or by applying some form of transformation to a
new set of coordinates (the standard dimension reduction approach). The utility of
methods based on the latter approach is limited because they do not respect the domi-



nance relation. They may, however, be used to help achieve good diversity in infor-
mation-rich spaces (where ‘information’ is defined according to the chosen method).

Interactive preference articulation schemes, such as [5a], are particularly valuable
in problems with large numbers of conflicting criteria and fit very nicely within the
iterative EA framework. In such schemes, the attention of the optimiser is focused on
various sub-regions of the trade-off surface as the search progresses. This is beneficial
to the DM who may only be interested in learning about certain trade-offs within the
global problem. The progressive nature of the scheme suits the often changing aspira-
tions of the DM as more knowledge is uncovered. The main drawback of this ap-
proach is that it can be rather DM-intensive.

To summarise, increasing numbers of conflicting criteria in a problem transforms
the aim of EMO from identification of a globally optimal solution set towards assist-
ing the DM in learning about the trade-offs between criteria and finding an acceptable
solution.

Harmonious criteria, and the special case of redundancy, do not have the same se-
vere impact on EMO as does conflict. Convergence to the Pareto front is unaffected
by increasing numbers of totally harmonious criteria. Issues surrounding distribution
of solutions across the surface do require some care however. The decision on
whether to eliminate any identified redundant criteria from the search is perhaps best
left to the discretion of the analyst and the DM.

The existence of independence within the global problem leads to multiple, sepa-
rate, trade-off surfaces. If independence can be identified then the deployment of a
divide-and-conquer strategy could potentially improve EMO performance [16].

The recently proposed suite of scalable test problems provides the opportunity to
explore in full the behaviour of the MOEAs in a controlled and tractable manner [2].
Advancements in techniques for performance analysis and visualisation are required
to aid understanding of the results from such problems. Assessment of the utility of
contemporary dimension reduction methods for EMO is a rich area for future re-
search. Alternative methods to the standard sample-based approach of describing the
trade-offs may prove useful both as a decision aid and within the context of the search
itself.

In conclusion, the simultaneous consideration of many criteria is arguably the
greatest challenge facing the EMO community at the present time.
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