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Abstract. Improved sample-based trade-off surface representations for large
numbers of performance criteria can be achieved by dividing the global problem
into groups of independent, parallel sub-problems, where possible. This paper
describes a progressive criterion-space decomposition methodology for evolu-
tionary optimisers, which uses concepts from parallel evolutionary algorithms
and nonparametric statistics. The method is evaluated both quantitatively and
qualitatively using a rigorous experimental framework. Proof-of-principle re-
sults confirm the potential of the adaptive divide-and-conquer strategy.


1 Introduction


Treatments for the evolutionary optimisation of large numbers of criteria can poten-
tially be discovered through analysis of the relationships between the criteria [1]. This
paper considers divide-and-conquer strategies based on the concept of independence
between a pair of criteria, in which performance in each criterion is entirely unrelated
to performance in the other.


An independent set is herein defined as a set whose members are linked by de-
pendencies, and for which no dependencies exist with elements external to the set.
Consider a problem with n independent sets of criteria [z1,…,zn] and associated inde-
pendent sets of decision variables [x1,…,xn]. If knowledge of these sets is available
then the global problem, p, can be decomposed into a group of parallel sub-problems
[p1,…,pn] that can be optimised independently of each other to ultimately yield n
independent trade-off surfaces.


This paper demonstrates the benefit of using such a divide-and-conquer strategy
when the correct decompositions are known in advance. It also proposes a general
methodology for identifying, and subsequently exploiting, the decomposition during
the optimisation process. An empirical framework is described in Sect. 2, which is
then used to establish the case for divide-and-conquer in Sect. 3. An on-line adaptive
strategy is proposed in Sect. 4 that exploits the iterative, population-based nature of
the evolutionary computing paradigm. Independent sets of criteria are identified using
nonparametric statistical methods of independence testing. Sub-populations are as-
signed to the optimisation of each set, with migration between these occurring as the
decomposition is revised over the course of the optimisation. Proof-of-principle re-
sults are presented in Sect. 5, together with a discussion of issues raised by the study.







2 Experimental Methodology


2.1 Baseline Algorithm


The baseline evolutionary multi-criterion optimiser chosen in this work is an elitist
multi-objective genetic algorithm (MOGA) [2]. An overview is shown in Table 1.
Parameter settings are derived from the literature and tuning has not been attempted.


Table 1. Baseline multi-objective evolutionary algorithm (MOEA) used in the study


EMO component Strategy


General Total population = 100n, Generations = 250
Elitism Ceiling of 20%-of-population-size of non-dominated solutions


preserved. Reduction using SPEA2 clustering [3].
Selection Binary tournament selection using Pareto-based ranking [4].
Representation Concatenation of real number decision variables. Accuracy


bounded by machine precision.
Variation Uniform SBX crossover with ηc = 15, exchange probability =


0.5 and crossover probability = 1 [5].
Element-wise polynomial mutation with ηm = 20 and mutation
probability = (chromosome length)-1 [6].


2.2 Test Functions


A simple way to create independent multi-criterion test functions is to concatenate
existing test problems from the literature, within which dependencies exist between
all criteria. In this proof-of-principle study, only the test function ZDT-1 proposed in
[7] is used. The recently proposed scalable problems [8] will be used in later studies.


Definition 1. Concatenated ZDT-1 test function.
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where [1,..., ]i n= is a particular sub-problem, m = 30 is the number of decision


variables per sub-problem, and [ ]0,1jx j∈ ∀ . An instance is denoted by C-ZDT-1(i).


The global solution to this problem is a set of bi-criterion trade-off surfaces (z1 versus
z2, z3 versus z4, and so forth). Each trade-off surface is a convex curve in the region
[0 1]2 (for which the summation in Definition 1 is zero). The ideal vector is [0 0]. The
anti-ideal vector of worst possible performance in each criterion is [1 10].







2.3 Performance Metrics


Hypervolume. A quantitative measure of the quality of a trade-off surface is made
using the hypervolume S unary performance metric [9]. The hypervolume metric
measures the amount of criterion-space dominated by the obtained non-dominated
front, and is one of the best unary measures currently available, although it has limita-
tions [10][11]. The anti-ideal vector is taken as the reference point. The metric is
normalised using the hypervolume of the ideal vector, as illustrated in Fig. 1a.
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Fig. 1. (a) Hypervolume metric, (b) Attainment surface


Attainment surfaces. Given a set of non-dominated vectors produced by a single run
of an MOEA, the attainment surface is the boundary in criterion-space that separates
the region that is dominated by or equal to the set from the region that is non-
dominated. An example attainment surface is shown in Fig. 1b. Performance across
multiple runs can be described in terms of regions that are dominated in a given pro-
portion of runs and can be interpreted probabilistically. For example, the 50%-
attainment surface is similar to the median, whilst the 25%- and 75%-attainment sur-
faces are akin to the quartiles of a distribution. Univariate statistical tests can be per-
formed on attainment surfaces using the concept of auxiliary lines [12][13]. However,
in this paper, the technique is simply used to provide a qualitative comparison of the
median performance of two algorithms, supported by quantitative hypervolume-based
significance testing.


2.4 Analysis Methods


For the type of MOEA described in Table 1, the final population represents an appro-
priate data set upon which to measure performance. 35 runs of each algorithm con-
figuration have been conducted in order to generate statistically reliable results. Quan-
titative performance is then expressed in the distribution of obtained hypervolumes. A
comparison between configurations is made via the difference between the means of
the distributions.







The significance of the observed result is assessed using the simple, yet effective,
nonparametric method of randomisation testing [14]. The central premise of the
method is that, if the observed result has arisen by chance, then this value will not
appear unusual in a distribution of results obtained through many random relabellings
of the samples. Let S1 be the distribution of hypervolume metrics for algorithm_1,
and let S2 be the corresponding distribution for algorithm_2. The randomisation
method for algorithm_1 versus algorithm_2 proceeds as follows:


– Subtract the mean of S2 from the mean of S1: this is the observed difference.
– Randomly reallocate half of all samples to one algorithm and half to the other.


Compute the difference between the means as before.
– Repeat Step 2 until 5000 randomised differences have been generated, and con-


struct a distribution of these values.
– If the observed value is within the central 99% of the distribution, then accept the


null hypothesis that there is no performance difference between the algorithms.
Otherwise consider the alternative hypotheses. Since optimal performance is
achieved by maximising hypervolume, if the observed value falls to the left of the
distribution then there is strong evidence to suggest that algorithm_2 has outper-
formed algorithm_1. If the observed result falls to the right, then superior perform-
ance is indicated for algorithm_1. This is a two-tailed test at the 1%-level.


2.5 Presentation of results


Comparisons of algorithm_1 versus algorithm_2 for n = [1,…,4] are summarised
within a single figure such as Fig. 2, for which algorithm_1 is the baseline algorithm
of Table 1 (with no decomposition) and algorithm_2 is a parallel version with an a
priori decomposition of both criterion-space and decision-space. Region (a) shows the
validation case of one independent set, C-ZDT-1(1), whilst regions (b), (c), and (d)
show two, three, and four sets respectively. Within each region, each row indicates a
bi-criterion comparison. The left-hand column shows the results of the randomisation
test on hypervolume (if the observed value, indicated by the filled circle, lies to the
right of the distribution then this favours algorithm_1), whilst the right-hand column
shows the median attainment surfaces (the unbroken line is algorithm_1).


3 The Effect of Independence


The potential of a divide-and-conquer strategy can be examined by comparing a
global solution to the concatenated ZDT-1 problem to a priori correct decompositions
in terms of decision-space, criterion-space, or both. Consider a scheme in which a
sub-population of 100 individuals is evolved in isolation for each independent set.
Each EA uses only the relevant criteria and decision variables. This is compared to a
global approach, with a single population of size 100n, using all criteria and decision
variables in Fig. 2. Substantially improved performance is shown for the divide-and-
conquer scheme.
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Fig. 2. Global model versus decomposition of both criterion-space and decision-space
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Fig. 3. Decomposition of both criterion-space and decision-space versus decision-space de-
composition alone







To clarify which parts of the decomposition are important, sub-population schemes
that decompose decision-space whilst treating criterion-space globally and vice versa
are now considered. In the decision-space scheme, each 100 individual sub-population
operates on the correct subset of decision variables. However, fitness values (and
elitism) are globally determined. Elite solutions are reinserted into the most appropri-
ate sub-population depending on their ranking on local criterion sets. Assignment is
random in the case of a tie. Performance is compared to the ideal decomposition in
Fig. 3. It is evident that decision-space decomposition alone is not responsible for the
results in Fig. 2, and that the quality of the trade-off surfaces deteriorates with n. The
attainment surfaces for cases (c) and (d) suggest that the global treatment of criteria
may be affecting the shape of the identified surface.
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Fig. 4. Decision-space decomposition versus criterion-space decomposition


In the criterion-space scheme, each sub-population operates on the correct subset
of criteria (fitness and elitism is isolated within the sub-population), but the EA oper-
ates on the global set of decision variables. A comparison with the decision-space
method is shown in Fig. 4. No statistically significant performance difference is evi-
dent in any of the cases. Thus, criterion-space decomposition alone is also not respon-
sible for the achievement in Fig. 2. Note that if single-point rather than uniform cross-
over had been used then results would have been much worse for the global treatment
of decision-space since, for the former operator, the probability of affecting any single







element of the chromosome (and thus the relevant section) decreases with chromo-
some length.


The above results indicate that a sub-population-based decomposition of either cri-
terion-space or decision-space can significantly benefit performance. Best results are
obtained when both domains are decomposed. Given that, in general, the correct de-
composition for either domain is not known in advance, the choice of domain will
depend on which is less demanding to analyse. Note that if criterion-space is decom-
posed then decision-space decomposition is also required at some point in order to
synthesise a global solution. However, the converse is not the case. Decomposition
may be a priori, progressive, or a posteriori with respect to the optimisation. A correct
early decomposition in both spaces would be ideal but this may not be achievable.


4 Exploiting Independence via Criterion-Space Decomposition


4.1 Overview of the Methodology


A progressive decomposition of criteria, together with a retrospective decomposition
of decision variables, is proposed in this paper. This is appropriate for problem do-
mains where the number of criteria is significantly fewer than the number of decision
variables. A sub-population approach is taken, in which the selection probability of an
individual in a sub-population is determined using only the subset of criteria assigned
to that sub-population. The topology of this parallel model can vary over the course of
the optimisation.
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Fig. 5. Schematic overview of the progressive decomposition methodology


An overall schematic of the technique is given in Fig. 5. The process begins with a
global population model. The multi-criterion performance of each candidate solution
is then obtained. From the perspective of a single criterion, the population provides a







set of observations for that criterion. Pair-wise statistical tests for independence are
then performed for all possible pairs of criteria to determine between which criteria
dependencies exist. Linkages are created for each dependent relationship. A sub-
problem is then identified as a linked set of criteria. This concept is illustrated for an
ideal decomposition of C-ZDT-1(2) in Fig. 6. Of all pair-wise dependency tests, sig-
nificant dependencies have been identified between z1 and z2, and between z3 and z4.
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sub-problem
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Fig. 6. Identification of sub-problems [z1 z2] and [z3 z4] via linkage


The new topology of the population model follows from the decomposition. Split and
join operations are implemented to allow criteria (and associated candidate solutions)
to migrate between sub-problems as appropriate.


When each new sub-population has been formed, selection probabilities and the
identification (and management) of elites are determined using the current subset of
criteria. Performance across all other criteria is ignored. Selection and variation opera-
tors are then applied within the boundaries of the sub-population. The size of the
resulting new sub-population is pre-determined by the population management proc-
ess.


All new solutions are evaluated across the complete set of criteria. This new data is
then used to determine an updated decomposition. In this study, the update is per-
formed at every generation, although in general it could be performed according to
any other schedule. The process then continues in the fashion described above.


4.2 Population Management


The population topology is dependent on the identified decomposition. This can
change during the course of the optimisation, thus requiring some sub-problem re-
sources to be reallocated elsewhere. Operations are required to split some portion of
the candidate solutions from a sub-population and subsequently join this portion on to
another sub-population.


The size of the split is decided using an allocation strategy. Since the number of
candidate solutions required to represent a trade-off surface grows exponentially with
the number of criteria, k, it would seem a reasonable heuristic to use an exponential
allocation strategy such as 2k. As an example, consider a four-criterion problem, k = 4,
with an initial decomposition of {[z1 z2],[z3 z4]}. The suggested new decomposition is
{[z1],[z2 z3 z4]}. The situation is depicted in Fig. 7.
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Fig. 7. Example of the split and join operations


Prior to reallocation, each sub-population should have a proportion 22/(22+22) = 1/2 of
the available resources. z2 is now to be linked with z3 and z4, and must thus be split
from its grouping with z1. Both z1 and z2 will receive 21/(21+21) = 1/2 of the resources
in this sub-population. The actual candidate solutions to be assigned to each part of
the split are determined randomly. The resources allocated to z2 are then added to the
[z3 z4] sub-population. Now z1 has 1/4 of the resources, whilst [z2 z3 z4] has 3/4 of the
resources. The selection and variation operations are then used to return to the re-
quired proportions of 21/(21+23) = 1/5 for z1 and 23/(21+23) = 4/5 for [z2 z3 z4].


4.3 Tests for Independence


A sub-problem group is generated by collecting all criteria that are linked by observed
pair-wise dependencies. In this sub-section, the tests used to determine if a connection
should be made are introduced. Several tests for variable independence based on sam-
ple data exist in the statistics literature [15]. Two nonparametric procedures, the first
based on the Kendall K statistic and the second on the Blum-Kiefer-Rosenblatt D
statistic, are used in this work.


Both methods require special care for the handling of tied data. This is of concern
in an evolutionary algorithm implementation since a particular solution may have
more than a single copy in the current population. Large-sample approximations to
each method have been implemented. This is possible because reasonably large popu-
lation sizes have been used (100 individuals per independent bi-criterion set). All
significance tests are two-tailed at the 1%-level, the null hypothesis being that the
criteria are independent.


Kendall K. A distribution-free bivariate test for independence can be made using the
Kendall sample correlation statistic, K. This statistic measures the level of concor-
dance (as one variable increases/decreases, the other increases/decreases) against the
level of discordance (as one variable increases/decreases, the other de-
creases/increases). This is somewhat analogous to the concepts of harmony and con-
flict in multi-criterion optimisation [1]. The standardised statistic can then be tested
for significance using the normal distribution N(0,1). Ties are handled using a modi-







fied paired sign statistic. A modified null variance is also used in the standardisation
procedure. For further details, refer to [15, pp363-394].


The main concern with this method is that if K = 0 this does not necessarily imply
that the two criteria are independent (although the converse is true). This restricts the
applicability of the method beyond bi-criterion dependencies, where relationships
may not be monotonous.


Blum-Kiefer-Rosenblatt D. As an alternative to the above test based on the sample
correlation coefficient, Blum, Kiefer, and Rosenblatt’s large-sample approximation to
the Hoeffding D statistic has also been considered in this study. This test is able to
detect a much broader class of alternatives to independence. For full details, refer to
[15, pp408-413].


4.4 Decision-Space Decomposition: An Aside


Discussion. In the above methodology, and throughout the forthcoming empirical
analysis of this method in Sect. 5, different sub-populations evolve solutions to differ-
ent sets of criteria. Decision-space decomposition is not attempted. Thus, at the end of
the optimisation process, complete candidate solutions exist for each criterion set. It is
now unclear which decision variables relate to which criterion set. In order to finalise
the global solution, solutions from each trade-off surface must be synthesised via
partitioning of the decision variables.


An a posteriori decomposition, as described below, is simple to implement but has
two clear disadvantages: (1) some reduction in EA efficiency will be incurred because
the operators search over inactive areas of the chromosome (operators that are inde-
pendent of chromosome length should be used), and (2) further analysis is required to
obtain the global solution.


Method. A candidate solution should be selected at random from the overall final
population. Each variable is then perturbed in turn and the effect on the criteria should
be observed. The variable should be associated with whichever criteria are affected.
Then, when the decision-maker selects a solution from the trade-off featuring a par-
ticular set of criteria, the corresponding decision variables are selected from the sub-
population corresponding to this set.


This method requires as many extra candidate solution evaluations as there are de-
cision variables in the problem. For the 4-set concatenated ZDT-1 test function, this is
120 evaluations or 30% of a single generation of the baseline algorithm.


Two special cases must be addressed: (1) If the perturbation of a decision variable
affects criteria in more than one criterion subset, this indicates an invalid decomposi-
tion of criterion-space. Information of this kind could be used progressively to in-
crease the robustness of the decomposition. (2) It is possible that no disturbance of
criteria is seen when the decision variable is perturbed. Here, the alternatives are to
consider another candidate solution or to consider more complicated variable interac-
tions. This may also be an indication that the variable is globally redundant.







5 Preliminary Results


Proof-of-principle results for the adaptive divide-and-conquer strategy devised in
Sect. 4 are presented herein for the concatenated ZDT-1 test function (Definition 1)
with n = [1,…,4]. A summary of the chosen strategy is given in Table 2. Both the
Kendall K method and the Blum-Kiefer-Rosenblatt D method have been considered.


Table 2. Divide-and-conquer settings


EMO component Strategy


Independence test (either) Blum-Kiefer-Rosenblatt D
(or) Kendall K


Resource allocation 2k


Schedule Revise the decomposition every generation


5.1 Blum-Kiefer-Rosenblatt D Results


The performance of this strategy when compared to the baseline case of no decompo-
sition is shown in Fig. 8. Both the hypervolume metric results and the attainment
surfaces indicate that the divide-and-conquer strategy produces trade-off surfaces of
higher quality in cases where independence exists. However, the attainment surfaces
also show that the absolute performance of the method degrades as more independent
sets are included.


The degradation can be partially explained by considering the percentage of correct
decompositions made by the algorithm at each generation (measured over the 35 runs)
shown in Fig. 9a. As the number of independent sets increases, the proportion of cor-
rectly identified decompositions decreases rapidly. Note that this does not necessarily
mean that the algorithm is making invalid decompositions or no decomposition: other
valid decompositions exist, for example {[z1 z2], [z3 z4 z5 z6]} for n = 3, but these are
not globally optimal (also the number of possible decompositions increases exponen-
tially with n.). Indeed, on no occasion did the test produce an invalid decomposition
(identified independence when dependency exists). This is evident from plots of the
decomposition history over the course of the optimisation. A typical history is de-
picted in Fig. 9b. Each criterion is labelled on the vertical axis, whilst the horizontal
axis depicts the current generation of the evolution. At a particular generation, criteria
that have been identified as an independent set are associated with a unique colour.
Thus, as shown in Fig. 9b, at the initial generation z1 and z2 have been identified as a
cluster (white), as have [z3 z4] (black), [z5 z6] (light grey), and [z7 z8] (dark grey). At
generation 200 all the criteria have been grouped together, as indicated by the com-
plete whiteness at this point in the graph. Note that there is no association between the
colours across the generations.
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Fig. 8. No decomposition versus Blum-Kiefer-Rosenblatt D divide-and-conquer
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Fig. 9. Blum-Kiefer-Rosenblatt D: (a) Correct decompositions as a percentage of total runs
over the course of the optimisation. ---- [z1 z2]; -.-. [z1,…,z4]; …. [z1,…,z6]; ____ [z1,…,z8]; (b)
Typical decomposition history for a single replication. Each identified criterion cluster is repre-
sented by a colour (white, light grey, dark grey, black)


5.2 Kendall K Results


The performance of the divide-and-conquer algorithm with the Kendall K test for
independence is compared to Blum-Kieffer-Rosenblatt D in Fig. 10. The former test
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appears to offer superior performance as the number of independent sets increases. No
significant performance difference can be found for n = 2, but such a difference can
be seen for two of the surfaces for n = 3, and every surface for n = 4.
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Fig. 10. Blum-Kiefer-Rosenblatt D divide-and-conquer versus Kendall K divide-and-conquer
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Fig. 11. Kendall K: (a) Correct decompositions as a percentage of total runs over the course of
the optimisation. ---- [z1 z2]; -.-. [z1,…,z4]; …. [z1,…,z6]; ____ [z1,…,z8]; (b) Typical decomposi-
tion history. Each identified criterion cluster is represented by a colour (white, light grey, dark
grey, black)
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This difference in performance can be explained by the plot of correct decompositions
shown in Fig. 11a. Whilst the proportion of correct decompositions degrades as n
increases, this degradation is not as severe as for Blum-Kiefer-Rosenblatt D (Fig. 9a).
Also, from the typical decomposition history depicted in Fig. 11b, the valid decompo-
sitions tend to be of higher resolution than those developed by the alternative method
(Fig. 9b).


5.3 Discussion


The obtained results show that the adaptive divide-and-conquer strategy offers sub-
stantially better performance than the global approach in terms of the quality of trade-
off surfaces generated.


Of the two independence tests considered, Kendall K would appear more capable
of finding good decompositions on the benchmark problem considered, especially as
the number of independent sets increases. However, Kendall K may experience diffi-
culties when the dimension of the trade-off surface increases, since it may incorrectly
identify independence due to the variation in the nature of bi-criterion relationships
over the surface (the relationship is not always conflicting, as it is for a bi-criterion
problem). By contrast, Blum-Kiefer-Rosenblatt D offers a more robust search in these
conditions, but is more conservative.


There is a clear need for the procedure to be robust (invalid decompositions should
be avoided, although the progressive nature of the process may somewhat mitigate the
damage from these), but conservativism should be minimised in order to increase the
effectiveness of the methodology. Under these circumstances, it may be prudent to
adopt a voting strategy, in which a decision is made based on the results from several
tests for independence.


The adaptive divide-and-conquer strategy carries some overhead in terms of the
test for independence and the sub-population management activity, which may be
controlled using a scheduling strategy. This must be balanced against the improve-
ments in the quality of the trade-off surfaces identified and the reduction in the com-
plexity of the MOEA ranking and density estimation procedures.


6 Conclusion


This study has shown that, if feasible, a divide-and-conquer strategy can substantially
improve MOEA performance. The decomposition may be made in either criterion-
space or decision-space, with a joint decomposition proving the most effective. Crite-
rion-space decomposition is particularly appealing because it reduces the complexity
of the trade-off surfaces to be presented to the decision-maker. Furthermore, no loss
of trade-off surface shape was observed for the ideal criterion-space decomposition as
it was for the sole decomposition of decision variables.


An adaptive criterion-space decomposition methodology has been presented and
proof-of-principle results on the concatenated ZDT-1 problem have been shown to be
very encouraging. It should be noted that the approach is not confined to criterion-







space: independence tests and identified linkages could equally well have been ap-
plied to decision variable data. In this case, the sub-populations would evolve differ-
ent decision variables, whilst the evaluation would be global. It should also be possi-
ble to use the technique on both spaces simultaneously.


The main limitation of the methodology is the number of pair-wise comparisons
that have to be conducted for high-dimensional spaces. In the concatenated ZDT-1
problem, analysis of the decision variables would be very compute-intensive. Further
techniques for the progressive decomposition of high-dimensional spaces are required
to complete the framework. Future work will also consider further concatenated prob-
lems, especially those of high dimension, with emphasis on real-world applications.
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