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Abstract – This inquiry explores the effectiveness of a 
class of modern evolutionary algorithms, represented 
by NSGA-II, for solving optimisation tasks with many 
conflicting objectives. Optimiser behaviour is assessed 
for a grid of recombination operator configurations. 
Performance maps are obtained for the dual aims of 
proximity to, and distribution across, the optimal 
trade-off surface. Classical settings for recombination 
are shown to be suitable for small numbers of 
objectives but correspond to very poor performance as 
the number of objectives is increased, even when large 
population sizes are used. Explanations for this 
behaviour are offered via the concepts of dominance 
resistance and active diversity promotion. 

1 Introduction 

Much of the research into multi-objective evolutionary 
algorithms (MOEAs) concentrates on optimisation tasks 
with two conflicting objectives. However, the real-world 
challenges to which these algorithms are applied often 
feature many more objectives (Coello et al, 2002). Hence, 
there is a clear need to extend evolutionary multi-
objective optimisation (EMO) research into the realm of 
many-objectives (Farina and Amato, 2002). 

Interactions often arise between objectives. These can 
be classified as conflicting or harmonious, and both 
interactions may co-exist between two objectives in the 
context of a single optimisation problem (Purshouse and 
Fleming, 2003a). In the case of conflict, a solution 
modification that will improve performance in one 
objective is seen to cause deterioration in a second 
objective. In the case of harmony, the modification causes 
simultaneous improvement to both objectives. The 
conflict that exists in a many-objective optimisation task 
has been identified as a serious challenge for 
contemporary EMO researchers, and it is this relationship 
that is explored in this paper. 

If the only assumption concerning decision-maker 
(DM) preferences is that a unidirectional line of 
preference (Edgeworth, 1932) exists for each objective 
then performance comparisons between solutions can be 
based on the notion of Pareto dominance. For further 
details refer to Coello et al (2002). In these conditions, the 
optimal solution to an M-objective task, in which all 
objectives conflict, is an (M-1)-dimensional hypersurface. 
The number of samples required to represent the surface at 

a fixed resolution is exponential in M. Even if such an 
approximation set (Zitzler et al, 2003) could be achieved, 
the quantity of information contained within the set may 
overwhelm the DM, who must ultimately select a single 
solution. 

The inherent difficulties in solving many-objective 
problems have lead EMO researchers to incorporate 
preference-based schemes into their algorithms, as 
comprehensively reviewed by Coello et al (2002). The 
fundamental aim of these methods is to limit the search 
requirements of the optimiser to a sub-region of overall 
objective-space. However, as argued by Knowles (2002), 
the potential for an exclusively Pareto-based solution to 
the many-objective optimisation problem remains a matter 
of some interest. Indeed, if the resolution of the obtained 
approximation set is regarded as a function of some 
maximum limit imposed on the size of the set (such as the 
population size of an MOEA), then there is no a priori
restriction that prevents the achieved set from being 
globally non-dominated and optimally distributed across 
the trade-off surface. But is it possible to design an 
evolutionary algorithm that is capable of generating such 
results, given finite resources, when faced with many 
conflicting objectives? 

A family of tractable, real-parameter optimisation tasks 
that are scalable to any number of conflicting objectives 
was proposed by Deb et al (2002a) to stimulate research 
into many-objective optimisation. In the first known study 
of its kind, this test suite was used by Khare et al (2003) 
to investigate the scalability of some contemporary 
MOEAs. An implementation of Corne et al's (2000) PESA
was found to generate approximation sets with good 
proximity and poor distribution as M increases, whilst 
both Deb et al's (2002b) NSGA-II and Zitzler et al's 
(2001) SPEA2 were found to produce the opposite result. 
However, since a single design-space instance of each 
algorithm was used, and each algorithm is itself a 
complicated structure of basic EMO components, it is not 
immediately clear from the study which components and 
processes are critical from the many-objective 
optimisation perspective. 

This paper focuses on the behaviour of a single 
MOEA, NSGA-II, which can be considered generally 
representative of a larger class of EMO optimisers. 
Behaviour can then be explained through decompositions 
of the algorithm in terms of fundamental search 
components and processes. In addition, results are 
generated for a map of variation operator configuration 



settings. This permits analysis to be made in terms of the 
exploration-exploitation (EE) trade-offs in EMO (Bosman 
and Thierens, 2003) and for performance sweet-spots to 
be identified (Goldberg, 1998). 

The remainder of the paper is organised as follows.
The fundamental processes that comprise the NSGA-II 
optimiser are described in Section 2, with reference to 
similar components of other MOEAs. In Section 3, the 
design of the empirical inquiry is introduced. The 
optimisation task and performance indicators considered 
are described and a new framework for studies into many-
objective optimisation, based on the methodologies of 
Laumanns et al (2001) and Purshouse and Fleming (2002) 
is also proposed. The results of the inquiry are presented 
in Section 4, and these are subsequently analysed in 
Section 5. The paper concludes in Section 6 with the key 
issues raised by the study and suggested directions for 
future work. Note that an extended research report into 
evolutionary many-objective optimisation is also available 
(Purshouse and Fleming, 2003b). 

2 NSGA-II Processes 

The search mechanism, often described in terms of 
exploration and exploitation, employed by the class of 
evolutionary optimiser considered in this inquiry can be 
summarised by Equation 1. 

[ ] [ ]( ) [ ]( )1 ,s vP t s v s P t P t� �+ = � �  (1) 

P[t] is the population at iteration t, sv is the selection-
for-variation operator, v is the variation operator, and ss is 
the selection-for-survival operator. 

sv, usually known simply as the selection operator, 
selects candidate solutions from the current population to 
form the mating pool. Variation operators are applied to 
the solutions in the mating pool to create a set of new 
candidate solutions. These new solutions then compete 
with the population of current solutions in the ss stage to 
determine the composition of the subsequent population. 
The ss operator is also known as the population 
management or reinsertion operator. 

The different multi-objective evolutionary optimisers 
proposed in the literature are generally categorised by the 
manner in which selection is performed. One particular 
broad category of selection scheme can be represented by 
the NSGA-II. Whilst this algorithm has its own 
particularities, it can be considered broadly similar to 
other MOEAs that (i) use the concepts of dominance and 
density estimation as bases for fitness assignment, (ii) 
consistently assign equal selection probabilities to 
solutions with equal dominance and density measures, and 
(iii) respect a specific integer bound on population size. 

2.1 Discriminators in Selection Processes 
NSGA-II uses Pareto dominance comparisons between 
pairs of candidate solutions to form a partial ordering 

across a set of solutions, via Goldberg's (1989) non-
dominated sorting method. This is a coarse-grained 
relative of Pareto-based ranking (Fonseca and Fleming, 
1993) and the strength approach (Zitzler et al, 2001) used 
in other MOEAs. 

Density estimation is also used as a basis for 
discrimination in NSGA-II. The density at a solution 
location is calculated using the first-nearest-neighbour 
(1NN) crowding distance estimator (Deb et al, 2002b), 
which is defined as the mean side length of the hypercube 
formed using 1NN values in each objective as vertices. In 
this inquiry, the boundary condition for an objective is set 
to the maximum non-boundary value calculated for that 
objective. This ensures that the estimator is unbiased for 
the equilibrium condition of a perfectly distributed 
approximation set. Crowding distance is a low complexity 
estimator with limited accuracy, and its effectiveness has 
been questioned (Laumanns et al, 2001; Deb et al, 2003).  
Nevertheless, the general effects of its inclusion are 
argued to be broadly representative of the effects of any 
estimator used in EMO. 

2.2 Selection-for-Variation in NSGA-II 
NSGA-II uses a type of binary tournament selection, 
defined by Deb et al (2002b) as the crowded-comparison 
operator, for sv. From two solutions chosen at random 
(with replacement) from the population, selection is made 
via a primary comparison of non-dominated ranks. If the 
ranks are equal, a secondary comparison is made between 
density estimates. If the densities are equal, the tertiary 
stage selects one of the solutions at random for inclusion 
in the mating pool. 

2.3 Selection-for-Survival in NSGA-II 
In the ss stage, both non-dominated sorting and density 
estimation are undertaken for the combined P[t] and post-
variation solution sets. This allows a new partial ordering 
to be constructed, based primarily on dominance, and 
secondarily on density. This is a similar technique to both 
SPEA2 fitness assignment (Zitzler et al, 2001) and intra-
ranking (Purshouse and Fleming, 2002). A complete 
ordering can then be established by applying a random 
ordering within any shared equivalence class. P[t+1] is 
then deterministically designated as the best of this 
hierarchy. Note that Deb et al (2002b) describe an 
efficient implementation of the above elitist concept. 

Motivated by the desire to control the EE trade-off via 
elitism, some modifications to the above strategy have 
been proposed (Deb and Goel, 2001; Laumanns et al, 
2001). For simplicity, this inquiry assumes that the EE 
trade-off can be adequately controlled by the variation 
operator settings. 

2.4 Variation 
A two-parent recombination operator, simulated binary 
crossover (SBX), is used at the v stage (Deb and Agrawal, 
1995). This is a popular operator that has been previously 
used in the context of NSGA-II for real-parameter 
function optimisation (Deb et al, 2002a; Khare et al, 
2003). SBX generates child solutions according to a 



symmetric, self-adaptive, distribution about the parent 
values, with standard deviation based on (i) the distance 
between parents and (ii) a distribution parameter �

c (a 
larger value for �

c corresponds to a smaller expected 
relative closeness of children to their parents). Child 
values are then swapped with probability pe. The operator 
is applied to a parent pair with probability pc. In a uniform 
recombination scheme, given that SBX is to be applied to 
a decision vector, the probability of applying SBX to each 
element of the vector is pic. By setting pc = 1, the 
probability of applying recombination to a vector is then 
equivalent to the probability of applying a standard 
mutation operator, thus simplifying comparisons with such 
schemes (Purshouse and Fleming, 2003b). This approach 
is adopted in the inquiry. Also, for simplicity, pe = 0. 

3 Experimental Design 

3.1 Many-Objective Optimisation Task 
This inquiry considers a real-parameter function 
optimisation task known as DTLZ2, which is defined in 
Equation 2. The task is taken from a highly tractable set of 
problems developed by Deb et al (2002a) specifically for 
studies into many-objective optimisation. The global 
Pareto front is continuous and non-convex. Distance from 
the front is determined by a single, unimodal cost 
function, g. 
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M is the number of objectives, n=M+k-1 is the number 
of decision variables, k is a difficulty parameter set to 10 
in this study, xM = [xM,…,xn], and 0 � xi � 1 for i = 
[1,…,n]. 

DTLZ2 is comprised of decision variables of two 
distinct functional types: those that control convergence 
towards the globally optimal surface (x1,…,xM-1) and those 
that control distribution in objective-space (xM,…,xn). The 
convergence-variables define the distance of the solution 
vector from the true front via a k-dimensional quadratic 
bowl, g, with global minimum xM,…,n = 0.5. The 
distribution-variables describe position on the positive 
quadrant of the unit hypersphere. An M-objective instance 
of DTLZ2 is denoted as DTLZ2(M). 

3.2 Performance Indicators 
In the context of this inquiry, performance relates to the 
quality of the trade-off surface discovered by an optimiser, 
given a finite number of candidate solution evaluations. 
Quality is generally expressed in terms of (i) the proximity 
of the obtained locally non-dominated vectors to the true 

Pareto surface and (ii) the distribution of those vectors 
across the surface (Bosman and Thierens, 2003). Ideally, 
the optimiser should obtain solutions that are Pareto 
optimal (are of distance zero from the global front), that 
extend across the full range of optimal objective values, 
and that are as near uniformly distributed as the true 
surface permits. 

Various performance indicators have been proposed to 
measure the different aspects of quality (Deb, 2001). 
Many indicators are unary (they describe the absolute 
performance of one approximation set), although a few are 
binary (they describe the relative performance of two 
sets). Zitzler et al (2003) have shown that no finite 
combination of unary measures can indicate whether one 
approximation set is superior to another (from the 
perspective of the dominance relation). Thus, care must be 
taken when making statements about global performance. 

This study adopts the functional approach described by 
Deb and Jain (2002). Specific unary indicators are used to 
evaluate specific aspects of performance. There is no 
attempt to describe global performance using a unary 
indicator or indeed a combination of such indicators. 

3.2.1 Proximity indicator 
The proximity indicator measures a median level of 
distance of the approximation set, ZA, from the global 
trade-off surface. In terms of attainment across the 
objectives, an objective vector for DTLZ2 will respect 
Equation 3. The equality condition will only hold for a 
globally optimal vector. Thus, a specialised proximity 
indicator, IP, for DTLZ2 can naturally be described by 
Equation 4. This is essentially the same as Veldhuizen’s 
(1999) generational distance metric, for the case of a 
continuous globally optimal reference set, ZT. 
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In the inquiry, in order to clearly show the direction of 
optimiser evolution, proximity is calculated by subtracting 
the IP calculated for the first generation from the median IP

obtained for the final 100 generations of the optimiser. 

3.2.2 Spread indicator 
To achieve high quantisation of the non-dominated set, it 
would be advantageous to express both the extent and 
uniformity aspects of distribution within a single indicator. 
This approach has been implemented in Deb et al’s 
(2002b) �  metric. Unfortunately, it can become unclear 
which aspect of the distribution is responsible for the 
observed indicator value. For example, errors on the 
spread of the distribution can potentially mask difficulties 
with uniformity. To manage the complexity of the inquiry, 
only the spread of solutions is considered further.



The study uses a variant of Zitzler’ s (1999) maximum 
spread indicator. This metric measures the length of the 
diagonal of the hypercube with vertices set to the extreme 
objective values observed in the achieved approximation 
set, as defined in Equation 5. 
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It is possible to achieve too much or too little spread. 
In the former case, the vectors span regions that are not 
part of the global trade-off surface, (highlighting a 
relationship between spread and proximity). In the latter 
case, the optimiser has converged to a sub-region (that 
may be globally optimal). To highlight the requirement for 
an intermediate spread value, the indicator, IS, is formed 
by normalising D with respect to the optimal spread, as 
indicated in Equation 6. IS values decreasing from unity to 
zero now represent increasing levels of convergence to a 
sub-region. Thus, globally optimal regions of the surface 
are certain to be missing. Indicator values increasing from 
unity demonstrate widespread dispersal of vectors 
throughout non-optimal objective-space. 
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In the inquiry, spread is calculated as the median value 
of IS for the final 100 generations of the optimiser. 

3.3 Inquiry Framework 
The inherent high dimensionality of many-objective 
optimisation presents both conceptual and computational 
challenges to the analysis of algorithm behaviour. Thus, 
the inquiry framework is aimed towards exploratory data 
analysis rather than statistically significant performance 
comparison. Following the methodology of Laumanns et 
al (2001), single replication results are generated for a 
wide variety of configuration instances (each representing 
a particular EE trade-off setting) to yield a response map
in optimiser design-space. The use of multiple replications 
is still regarded as preferable, but this is computationally 
impractical for this inquiry. Note that spatial similarity 
between optimiser responses arguably provides some 
support for statistical confidence (or otherwise) in the 
observed behaviour. 

The configuration of the recombination operator, via 
pic and � c, provides suitable control over the EE trade-off. 
Optimiser responses have been obtained for all pair-wise 
permutations from sample sets of pic and � c, with elements 
chosen according to a heuristic, pseudo-logarithmic scale 
that helps to show relativity within and between different 
response maps. The maps themselves portray scalar 
summary statistics for each overall response, such as 
proximity and spread indicator values. 

In Section 4 optimiser responses, measured over 1000 
generations, are generated for varying M with the 

population size fixed at 100. Deb (2001) has suggested 
that a main method for coping with large M is to increase 
the population size, since this will tend to reduce the 
proportion of the population that is non-dominated and 
thus provide improved dominance-based discrimination. 
Whilst this approach is unlikely to be practical in many 
real-world applications, where the computational cost of 
evaluating a candidate solution may be very high, the 
effect of population size is considered at the analysis stage 
of the inquiry in Section 5. 

3.4 Presentation of Results 
An example response map for IP is shown in Figure 1. 
Performance for each {pic, � c} setting is indicated by a 
grey-scale square at the appropriate location. Lighter 
shades of grey indicate better proximity, as shown by the 
colour-bars of indicator values to the right of the map. A 
region of good proximity is evident for � c values in the 
range [0 50] together with variation probabilities in the 
order of [0.01 1]. Conversely, a relatively poor value of 
proximity is evident for {pic = 5×10-05, � c = 5}. The grid 
squares highlighted by a solid boundary correspond to 
configurations that exceed a performance threshold for 
proximity of -0.5: {pic = 0.05, � c = 100} is one such 
example in Figure 1. For the spread response maps, such 
as that provided in Figure 4, performance is highlighted 
for IS in the range [0.75 1.25]. 

4 Results 

A broad region of good proximity for intermediate to high 
pic and 1/ � c is evident for the map obtained for DTLZ2(3) 
shown in Figure 1. As the number of objectives, M, is 
increased to six, as shown in Figure 2, this sweet-spot 
contracts to areas of intermediate pic. For high pic, 
proximity values are worse than those that would be 
obtained from a random sample. This divergence 
behaviour becomes even more extensive as M is increased 
still further. Proximity results for DTLZ2(12) are shown 
in Figure 3. 
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Figure 1: NSGA-II proximity map for DTLZ2(3) 
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Figure 2: NSGA-II proximity map for DTLZ2(6) 
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Figure 3: NSGA-II proximity map for DTLZ2(12) 

The NSGA-II spread map for DTLZ2(3) is shown in 
Figure 4. A large sweet-spot is evident, largely 
corresponding to the regions of good proximity identified 
in Figure 1. Very small spread values are obtained for low 
pic, indicating that the approximation set represents a 
highly limited section of objective-space. 
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Figure 4: NSGA-II spread map for DTLZ2(3) 

As the number of objectives is increased, the region of 
good spread becomes limited to intermediate pic. The 
sweet-spot is broadest in the area of high expected 

recombination perturbation (corresponding to low � c) for 
DTLZ2(6) as shown in Figure 5. As M is increased still 
further the band of good spread becomes even thinner. 
The spread map for DTLZ2(12) is shown in Figure 6. For 
high pic, the approximation set is spread widely throughout 
non-optimal regions of objective-space. The relationship 
to poor proximity is clear through comparison with 
Figure 3. 
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Figure 5: NSGA-II spread map for DTLZ2(6) 
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Figure 6: NSGA-II spread map for DTLZ2(12) 

The standard SBX configuration for real-parameter 
optimisation tasks is {pic = 0.5, � c = 15} with pc = 1.0 
(Deb et al, 2002a). As evident from Figures 1 and 4, these 
choices are appropriate for small M. However, as M is 
increased the settings would appear to become 
unacceptable. Figures 3 and 6 suggest that the 
forthcoming approximation set would be spread widely 
through regions of objective-space with very poor 
proximity to the true Pareto front. 

5 Analysis 

Explanations for the observed results in Section 4 can be 
found through consideration of the selection and variation 
processes of NSGA-II. The effect of the diversity-
promoting mechanisms is considered in Section 5.1. The 



effect of population size on the quality of achieved 
approximation sets is studied in Section 5.2. 

5.1 Active Diversity Promotion 
Diversity promotion mechanisms are present in both the 
selection-for-variation and selection-for-survival aspects 
of NSGA-II, as detailed in Section 2. The DTLZ2(6) 
proximity map obtained for the optimiser when the 
diversity mechanisms are removed is shown in Figure 7. 
Comparing this to the equivalent results for the full 
version of NSGA-II in Figure 2, it can be seen that the 
proximity for high pic is much improved. Elsewhere, 
performance remains largely equivalent. 
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Figure 7: Non-crowding proximity map for DTLZ2(6) 

For a fixed population size, the proportion of the 
population that is locally non-dominated is known to 
increase rapidly with M. Thus, for tasks with more than a 
small number of objectives, the secondary density-based 
selection mechanisms will be active in the original 
NSGA-II. As illustrated in Figure 8, the crowding distance 
density estimator will bias in favour of boundary 
solutions, other remote solutions, and the immediate 
neighbours of remote solutions. The volume of feasible 
objective-space increases with M, thus providing more 
opportunity for a solution to be remote, distant from the 
global surface, and still be locally non-dominated. In these 
circumstances, active diversity promotion will bias the 
search towards solutions with poor proximity. This 
produces difficulties in the overall optimiser if the 
variation operators are not capable of producing children 
that dominate their parents. The probability of this 
occuring is larger in regions of high pic for SBX on 
DTLZ2 and also increases with M. Hence, approximation 
sets with a high proximity cost are produced for NSGA-II 
in regions of high pic for anything other than low M.  In 
regions of lower pic, SBX success rates are higher and so 
the search progresses towards the global surface. Removal 
of diversity promotion also restricts poor-proximity 
behaviour. Note that the difficulties in producing children 
that will dominate existing parents, a problem known as 
dominance resistance, was first identified by Ikeda et al
(2001) and, in the context of many-objective optimisation, 
by Deb et al (2002a). 
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Figure 8: Crowding distance estimator 

In regions of low pic, many of the children produced by 
recombination are copies of their parents. Since the 
density estimator used in NSGA-II is a type of first 
nearest-neighbour, as detailed in Section 2.1, these 
solutions will have the maximum possible density estimate 
(corresponding to a crowding distance of zero). This 
neutralises any density-dependent selection mechanisms 
because the densities of most solutions are identical. Thus, 
little difference is evident between algorithms that 
incorporate such a discriminator and those that do not for 
low pic configurations (compare the upper regions of 
Figure 7 to those of Figure 2). 

In the absence of diversity-based selection, genetic 
drift causes population convergence unless the 
perturbations induced by variation are large. The resulting 
approximation set is only representative of a small area of 
objective-space, as shown by the spread map in Figure 9. 
In the lower-left of the map, pic and 1/ � c are large and thus 
the search retains a high degree of exploration. 
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Figure 9: Non-crowding spread map for DTLZ2(6) 

5.2 Population Size 
Deb (2001) proposes the use of large population sizes as a 
potential method for achieving good many-objective 
optimisation results, since this will reduce the proportion 
of non-dominated solutions in the population and thus 
provide improved Pareto-based discrimation. 



In practice, the use of large population sizes is often 
prohibitive in real-world applications because of the 
computational resources required to evaluate and process 
potential solutions. Nevertheless the benefits, in terms of 
approximation set quality, that can be obtained for larger 
population sizes remain a matter of interest. 

NSGA-II proximity results, for a population size of 
1000, solving DTLZ2(6) are shown in Figure 10. The 
sweet-spot extends further into regions of low pic than for 
the population of 100 shown in Figure 2. In areas of high 
pic, the proximity values are also slightly improved, since 
diversity-based selection will be less active for higher 
population sizes (discrimination is more likely to be based 
on dominance). Note that the classical SBX settings are 
still seen to correspond to poor proximity values. 
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Figure 10: Large population proximity map for DTLZ2(6) 

The DTLZ2(6) spread map obtained for a population 
size of 1000 is shown in Figure 11. The sweet-spot 
extends through all intermediate and low pic, being much 
larger than the corresponding region for a population size 
of 100 shown in Figure 5. The improved spread may 
reflect the increased diversity inherent in the use of larger 
sample sizes. Note also that the two-parent SBX operator 
requires sufficient population diversity in order to have 
exploratory properties. 
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Figure 11: Large population spread map for DTLZ2(6)

6 Conclusions and Future Work 

Insight into the many-objective optimisation process is 
required in order to assess the suitability of existing EMO 
techniques and to develop new methods for the 
simultaneous optimisation of many conflicting objectives. 

This inquiry has considered the behaviour of NSGA-II 
on a many-objective task through analysis of the selection 
and variation processes that underpin the overall 
methodology. NSGA-II can be regarded as part of a 
family of algorithms that evaluate fitness via dominance 
comparisons and density estimation. Thus, generalised 
observations and insight into NSGA-II should be 
transferable to related algorithms, depending on the extent 
to which they share selection-for-variation and selection-
for-survival mechanisms, and also how the EE trade-off 
within the variation operators relates to the EE trade-off in 
selection. 

Simulations have indicated that the sweet-spot 
corresponding to good quality approximation sets 
contracts as the number of conflicting objectives is 
increased. The classical settings for recombination are 
shown to work well for small number of objectives, but 
become increasingly inappropriate as M increases. 

EMO diversity promotion mechanisms can prove 
dangerous for many-objective optimisation. MOEAs are 
required to produce an approximation set with good 
diversity in areas of good proximity. For this reason, 
diversity promotion is generally regarded as a secondary 
selection operator (Bosman and Thierens, 2003). 
However, since the primary convergence-based operator 
uses the relative concept of Pareto dominance, if the 
proportion of non-dominated solutions is large then 
selection is based solely on diversity. As mentioned by 
Bosman and Thierens (2003), obtaining a good diversity 
is not a difficult task in itself, especially in many-objective 
space. Furthermore, the best diversity is often associated 
with very poor proximity values. Thus, if the current 
solutions are dominance resistant, then the many-objective 
search may evolve away from the true trade-off surface, 
with widespread dispersal of solutions in non-optimal 
objective-space. 

Deb and Goldberg (1989) discovered that the 
recombination of spatially-dissimilar parent solutions 
often produced low-performance children, known as 
lethals. The authors were able to improve EA performance 
by only allowing recombination to occur between parents 
located within the same local neighbourhood. This process 
is known as mating restriction. In the context of many-
objective optimisation, lethals could be considered to be 
non-dominated, remote solutions with a highly 
substandard component in one or more objectives. An 
exploration of the effect of mating restriction schemes in 
the context of diversity-promoting mechanisms for many-
objective optimisation may prove rewarding. Also, a clear 
need exists to extend the analysis of evolutionary many-
objective optimisation to include other classes of MOEA, 
other variation operators, and other test problems of a 
different underlying theme. 
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