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ABSTRACT


In this work a parallel multi-objective genetic algorithm is pre-
sented. The population selection and mating phase is kept dis-
tinct from the population fitness evaluation loop, that is imple-
mented in parallel. The population can be logically split in sub-
populations which number does not depend on the number of
processors available for computation. Different sub-population
topologies and migration rates among sub-populations can be
used. Applications are illustrated both for single and multi-
objective mathematical test cases, and aerodynamic transonic
wing design.


1. INTRODUCTION


Multiobjective optimization through genetic algorithms is cur-
rently applied to a growing set of aerospace design tasks, rang-
ing from multipoint aerodynamic design to multidisciplinary
optimization problems. However, the heavier constraint to a
widespread application of such a technique is the high computa-
tional cost of the numerical programs used to evaluate the func-
tions to be optimized.


Parallelization of genetic optimizers is one of the solution of-
ten proposed to this problem. To this purpose, various ad hoc
algorithms have been developed for parallel machines, most of
which take advantage from splitting the population into multiple
sub-populations, showing results that are, on average, better than
those of their serial, one-population based, counterparts [1, 2].
Sub-populations, in fact, may allow sometimes a better control
on population diversity, reducing the appearance of premature
convergence and genetic drift. However, although this approach
can be easily and naturally implemented on parallel computers,
it is not exclusive domain of such kind of machines.


This work describes a parallel genetic algorithm in which par-
allel evaluation of population elements and population splitting
into sub-populations are kept conceptually and physically sep-
arated. Therefore, when the problem at hand can favorably be
solved using different sub-populations evolving at the same time,
this can be obtained independently of the number of available
processing elements.


The application examples reported are related both to mathe-
matical function optimization and aerodynamic wing design; for
each of the cases considered, the possible advantagesof adopting
sub-populations are discussed.


2. GENETIC ALGORITHM WITH
SUB-POPULATIONS


The algorithm here described, that will be called Virtual Sub-
population Genetic Algorithm (VSGA), is an extension of the
multi-objective genetic algorithm described in [3]. The two main
new features that distinguish this new algorithm with respect to
the previous one are the sub-population model and the parallel
evaluation loop. The first point will be described here, and the
second in the following paragraph.


In the present context, a genetic algorithm is meant to follow
a sub-population model when different sub-populations are let
evolve at the same time with possible communication strategies
among them.


The model adopted here distributes all the population ele-
ments on a single toroidal landscape [4], and the subpopulations
are obtained introducing logical boundaries that define the do-
main assigned to each sub-population.


The selection scheme adopted is the random walk: for each
element in the current generation, two random walks of assigned
numberof steps are carried out using its position as starting point;
the non dominated individuals among those encountered in each
of these random walks are selected as parents, and the starting
element is replaced in the new generation by one of the offsprings
obtained by their recombination.


The migration strategy, i.e. the way the sub-populations ex-
change individuals, is defined by letting the random walk path
to cross the boundaries between subpopulations on the basis of
a given probability function. In the presented applications this
function is a simple switch that allows the boundary crossing
with an assigned probability, equal for each boundary and cho-
sen between 0 and 1, that will be called flip rate. Thus, a flip rate
of 0 corresponds to not crossable boundaries, while a flip rate of
1 is equivalent to the lack of boundaries.


The Pareto front of the current generation is obtained extract-
ing the non dominated individuals with respect to the whole pop-
ulation and the Pareto front of the previous generation. However,
for each element belonging to the front, information is retained
on the sub-population of provenance.


The elitism strategy is implemented by randomly selecting an
assigned percentage of parents from the current set of non dom-
inated solutions. In this case two possible mechanisms can be
adopted:


1. the offspring is assigned to the same sub-population of the
Pareto front parent selected;


2. the offspring is assigned to a sub-population chosen at ran-







dom.


The latter mechanism is, from another point ov view, another
communication policy, thus, for example, if the elitism strategy is
active and the flip rate is set equal to 0 only the elements belong-
ing to the current front can migrate between sub-populations.


Fig. 1 reports an example of virtual subpopulation organiza-
tion. For the sake of simplicity, the toroidal landscape las been
represented as a rectangle, but the elements can pass through the
external sides of the rectangle too.
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Figure 1: Virtual subpopulation organization


The evaluation of the offsprings obtained using the above pro-
cedure is postponed to a second phase of the computation, that
is the only one that is actually carried out in parallel. VSGA is
therefore able to take the maximum advantagefrom parallel com-
putation even when different sub-population sizes are used at the
same time.


3. PARALLEL EVALUATION LOOP


The genetic algorithm evaluates the new population members in
a single loop that follows the recombination phase and that can be
carried out in parallel. The parallel programming model adopted
relies on shared memory multiprocessing and the parallelism is
implemented at the process level.


The parallel machine adopted is a SGI POWER CHAL-
LENGE system with 16 R-10000 processors. The parallel code
has been implemented using the lightweight UNIX process prim-
itives available on this machine [5].


The software is organized following the master-slave
paradigm. Figure 2 shows the architecture of the parallel
evaluation loop.


In the initialization phase that precedes the first execution of
the evaluation loop, the master process creates a pool containing
a number of processes, equal to the maximum number of pro-
cessors available for the computation (NPROC). The child pro-
cesses created are immediately put in a wait state, and they will
remain in such a state until they receive a “go ahead” signal from
the master to start the computation. This architecture has been
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Figure 2: Parallel evaluation loop


chosen to avoid the inefficiency of creating a child process every
time a computation is needed and killing it at the end.


When the master process enters the evaluation loop, it splits
the population in subsets of maximum NPROC elements and
then, for each subset, it copies the data relevant to a single com-
putation in a shared memory area that is accessed by one of the
child processes; afterwards, a signal is sent to the child, through
a standard POSIX semaphore, so that the computation can be-
gin. When the child terminates its computation, it copies the re-
sults in a memory region accessible to the master, but not over-
writable by the other children. Thereafter, it sends a comple-
tion signal to the master (using another POSIX semaphore). The
master waits for the completion of all child processes in a syn-
chronization point. When this happens, the master passes to the
next subset of population elements. The child processes are ter-
minated at the very end of the program, when all the evaluation
loops related to each generation have been completed.


It can be observed that this architecture is efficient only when
each sub-process has an even computational charge. If this is not
the case, the computation process can loose efficiency because
the master has to wait at the synchronization point for the com-
pletion of the slowest process. Fortunately, this is not the case
for the kind of application considered so that the efficiency de-
cay can be neglected. However it is not difficult to modify the







master so that it can assign a new task to a child as soon as this
has completed the previous one.


4. SINGLE-OBJECTIVE MATHEMATICAL
PROBLEM


The sub-population algorithm has been applied to the well known
Rastringin’s function:


f(x) =


n∑
i=1


[
x2
i − 10 cos(2πxi) + 10


]
(1)


with: n = 16; xi ∈ [−5.12, 5.12]. The main characteristic of
this function is that, within the assigned variation range for the
variables, it is characterized by 11n local minima, and by only
one global minimum f(0) = 0. It is therefore very easy for
an optimizer to be trapped in a local minima, which makes this
function a suitable candidate to investigate the robustness of an
optimization procedure. The results reported are related to six
different population sizes (64, 144, 256, 400, 576, 900), and for
each population size 10 runs have been done with different start-
ing populations; the maximum number of generations has been
set to 2000, and the best minimum value for the objective func-
tion to 1e-6. The elitist strategy has been adopted, and the vari-
ables have been discretized with a precision of 30 bits; the mu-
tation rate has been set to 8%, and a three step length has been
adopted for the random walk; the one-point crossover has been
chosen with an application rate of 85%. The toroidal landscape
has been split in 4 regions of equal dimension and shape. Each
set of runs has been repeated for the following flip rates:


0.0000 0.0005 0.0010 0.0100 0.0500 1.0000


The averagedobjective function values resulting from each set
of runs are reported in fig. 3, while the figs. 4 and 5 report the av-
eraged convergence histories related to populations of 400 and
900 elements. Finally, in fig. 6 the whole set of best function
values obtained for each run is reported for population of 144,
400 and 900 elements. The presented data show that the sub-
population model can improve the robustnessof the genetic algo-
rithm in this particular case. However, the number of runs carried
out is not enough to settle a clear correlation between the optimal
flip rate and the population size.


5. MULTI-OBJECTIVE MATHEMATICAL
PROBLEM


The multi-objective problem here considered is to find a suitable
approximation of the Pareto front of the following two-objective
problem:


min
x∈X


F(x) (2)


where
F = (F1, . . . , Fk, . . . , Fm),


Fk(x) =


4√√√√√ n∑
i=1


[
(xi − ak)2 − 10cos[2π(xi − ak)] + 10


]
n


,


x = (x1, . . . , xi, . . . , xn) ∈ X ⊆ Rn,


when
m = 2,


n = 16,


xi ∈ [−5.12, 5.12],


and
a1 = 0, a2 = 1.5.


The same parameters of the previous case were adopted for
setting up the genetic algorithm, with the exception of the eli-
tist strategy that was not adopted here. Two different population
sizes have been considered (64, 576), and the results related to
three flip rates (0.0, 0.2, 1.0) are reported. Five runs for each
flip rate have been executed with different starting population,
and the figs. 7 and 8 report the front obtained combining those
related to each single run with a given flip rate. How it can be
observed, the sub-population model does not seem useful in this
case. However the performance of the genetic algorithm is in any
case poor, because it fails to locate the global optima for both
functions.


6. APPLICATIONS TO WING DESIGN


Wing design is a highly multidisciplinary task; the use of de-
signer expertise is therefore necessary to obtain realistic results,
unless the various design criteria and off-design considerations
can be included in the formulation of the optimization problem.
The multiobjective optimization approach offers great advan-
tages for these kind of problems, avoiding the need of arbitrar-
ily interrelating the different design criteria into a single scalar
objective function.


The parallel genetic algorithm has been here applied to the op-
timization of the shape of a wing for transonic flow conditions.
This has been done in two separate steps: first, the wing planform
has been optimized taking into account both aerodynamic and
structural requirements; afterwards, the wing section has been
modified to further reduce aerodynamic drag. The genetic al-
gorithm has been coupled with a finite-difference full potential
flow solver [6]. The design point chosen is set at Mach number
M = 0.85 and lift coefficient cL = 0.5. The starting point cho-
sen is a straight, untwisted and untapered wing of aspect ratio
AR=7, with a RAE 2822 airfoil; for simplicity, the wing plan-
form is maintained trapezoidal, so that all geometric characteris-
tics vary linearly from the root section to the tip. A total of 5 de-
sign variables have been used: 4 of these act directly on the wing
planform, namely the taper ratio λ, the sweep angle at 25% of
the chord Λ, the aspect ratio AR and the twist angle θ; moreover,
the thickness at the wing root has also been included among the
design parameters, while the thickness at the wing tip has been
fixed at t/c |t= 10%. The wing surface is kept constant, so
that the average wing loading is not changed during optimiza-
tion. In table 1 the initial values of the design parameters are
reported together with the allowed variation ranges. The wing
twist is distributed symmetrically between the root and the tip;
in other words, a twist angle θ corresponds to an increase of lo-
cal incidence of θ/2 at the tip, and a decrease of θ/2 at the root.
The wing weight is computed using the algebraic equation of [7]
which combines analytical and empirical methods, and shows de-
sign sensitivity and prediction accuracy that make it possible to
use it with success for preliminary design.







The selection has been carried out through a 2 steps random
walk, with one-point crossover (rate = 100%) and bit mutation
(rate =10%); a population of 64 individuals was let evolve for 50
generations, and several flip rates have been used, ranging from
0 to 1. In fig. 9 the Pareto fronts obtained corresponding to flip
rates of 0 and 1 are illustrated; it can be seen how for this prob-
lem splitting the population into sub-populations doesn’t lead to
significant changes in the results.


As anticipated, after optimization of the planform a further im-
provement of the aerodynamic characteristics has been obtained
by modifying the shape of the wing section. One of the solutions
belonging to the Pareto front has been selected as starting point;
the geometry chosen lies approximately at the center of the front,
being characterized by cD/c2L = 0.776 andW/Wo = 0.65. The
wing section has been modified using the shape functions tech-
nique described in [8]; 12 design variables have been used, and
for simplicity the wing profile has been maintained constant in
the spanwisedirection. The optimization problem in this case has
been formulated so as to reduce wave drag, at the same design
point previously considered; like in the previous case, the lift co-
efficient has been fixed to cL = 0.5, and the maximum thickness
has been maintained at the value obtained by the previous run
at each spanwise station. The same genetic algorithm parame-
ters used for the wing planform optimization have been adopted,
except for the mutation rate which has been reduced to 4%, and
for the population size which has been reduced to 64. In fig. 10
the convergence histories obtained for various flip rates are illus-
trated. It is apparent how the subpopulations strategy seems to
have a negative effect in this case, as the best performance is ob-
tained when no boundaries are established. In fig. 11 the Mach
number distribution over the wing before and after the airfoil op-
timization is shown; it is possible to observe how the intensity of
the shock wave has been substantially reduced all along the span.


design initial allowable selected
variable value range wing
λ 0.0 [ 0.1 , 1.0 ] 0.10
Λ 1.0 [ 0.0 , 50 ] 39.6
θ 0.0 [ -10 , 10 ] -5.2
AR 7.0 [ 6.0 , 8.0 ] 6.41


t/c |r % 12 [ 12 , 15 ] 12.1


Table 1: Design parameters for the wing planform optimization


Finally, fig. 12 shows the parallel genetic algorithm execution
times compared to the scalar version. The comparison has been
made running for 10 generations the same wing section optimiza-
tion problem described above, but with 32 population elements.
The speed-up obtained is generally good, but it should be ob-
served that the scalar version is faster than the parallel one when
only one slave processor is activated. This behavior is due to syn-
chronization and context switching overheads.


7. CONCLUSIONS


The sub-population model may be useful, in some cases, to im-
prove the performance of a genetic algorithm. However it must
be observed that the advantages obtainable are strongly depen-


dent on the problem at hand. In the case of the single objec-
tive Rastringin’s function, for example, the introduction of the
sub-population model substantially improved the average perfor-
mance of the genetic optimizer, but for the multiobjective test
case there were not advantages with respect to the single popula-
tion model. Probably, in this case, the advantage offered by the
sub-populations, in terms of avoiding premature convergence,
was not needed because the already good performance of the ran-
dom walk selection scheme. The aerodynamic design problem
showed, instead, how it can be even detrimental to have a sub-
population organization when there are limits to the maximum
number of objective function evaluations allowed. In such a case
it is far more important to have an efficient and flexible imple-
mentation of a parallel genetic algorithm.
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Figure 3: Rastingin’s function: averaged results
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Figure 4: Rastringin’s function, averaged convergence histories
for a population size of 400 elements
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Figure 5: Rastringin’s function, averaged convergence histories
for a population size of 900 elements
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Figure 6: Rastringin’s function, best values for each run; the
number of runs that produced the same solution is reported on
the sides of the relative point
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Figure 7: multi-objective mathematical problem, Pareto fronts
obtained with a population of 64 elements, after 100 generations
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Figure 8: multi-objective mathematical problem, Pareto fronts
obtained with a population of 576 elements, after 100 generations
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Figure 9: Pareto fronts of the wing planform design
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Figure 10: convergence histories of the wing section optimiza-
tion


Figure 11: Mach number distribution; initial wing on the left, fi-
nal wing on the right
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Figure 12: parallel genetic algorithm execution times






