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Abstract

This paper presents a solution methodology for the op-
timal placement of convectively and conductively air-
cooled electronic components on planar printed wiring
boards considering thermal and electrical/cost design
objectives. The methodology combines the use of a
heat transfer solver for the prediction of the tempe-
rature distribution among the electronic components
and & genetic algorithm for the adaptive search of op-
timal or near optimal solutions and a multiobjective
optimization strategy (Pareto optimization and Mul-
tiattribute utility analysis). After proper validation of
the elements of the solution methodology (heat transfer
solver /genetic algorithm) in isolation, the methodology
under consideration is tested using a placement pro-
blem (case study) that considers as optimization crite-
ria the minimization of an estimate of the failure rate
of the system of components due to thermal overhea-
ting (via an Arrhenius relation) and the minimization
of the total wiring length (given some interconnectivity
requirements. Results corresponding to the case study
are presented and discussed for both Pareto optimiza-
tion and Multiattribute utility analysis.

1 Introduction

The optimal placement of components on printed wi-
ring boards requires satisfying multiple, possibly con-
flicting, design objectives. As pointed out by Moresco
[1], these design objectives may be very different in na-
ture - geometrical, electrical, thermal, mechanical, and
cost (manufacturing and maintenance) - which makes
finding the ”best” design a complicated task.

Two major design objectives are related to the reliabi-
lity (thermal/mechanical/cost) and the routing (elec-
trical/cost) requirements of the component placement
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design. Specifically, the minimization of estimates of
the failure rate of the system and fotal wiring length
are design objectives of prominent interest. The for-
mer optimization criterion imposes crucial heat trans-
fer requirements on the design because of the combi-
ned effects of: i) rapidly increasing packaging density
and power dissipation requirements; and, ii) potentia-
ly high costs associated with the failure of electronic
components, as pointed out by Weiss et al. [2] and
Wessely et al. [3] among others. The latter is critical
because of electrical performance, speed and transmis-
sion line requirements and its impact on the manufac-
turing costs.

Most optimization studies regarding component place-
ment have modeled the electronic components on prin-
ted wiring boards as heat sources distributed along
n in-line positions in 2-D channels; see, for example,
Dancer et al. [4], Osterman et al. [5], Queipo et al.
[8], Queipo et al. [9], and Queipo et al. [11]. The
few optimization studies that have taken a more re-
alistic model from a geometrical point of view; that is,
to model the electronic components on printed wiring
boards as heat sources in 3-D enclosures, i) have not
considered multiple design objectives, such as the mi-
nimization of the failure rate and total wiring length of
the system (Cahlon et al. [12]; Eliasi et al. [6], or, ii)
have failed to provide rigorous methods to select the
”best” design when multiples objectives are present
(Pecht et al. [7]).

This study overcomes the limitations of previous stu-
dies in this area and discusses a methodology to select
the ”best” component placement design when multi-
ple design objectives are present. The methodology is
based on the concepts of Pareto optimality (Balachan-
dran et al. [13] and Multi-Attribute Utility Analysis
(Keeney et al. [14]). The Pareto optimization provides
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a set of alternative component placements from whi-
ch the "best” design must be selected, and the MAUA
assists in the process of articulating the designer’s pre-
ferences and identifying the ”best” component place-
ment (decision problem). As reported by Thurston
[15], the MAUA has been successfully applied to a wi-
de variety of decision problems, including trajectory
selection for NASA missions, nuclear power plant site
selection, telecommunication system architecture des-
ign, and many others.

The methodology is illustrated using a model for the
problem of finding the optimal placement of air-cooled
electronic components on a printed wiring board sub-
ject to the minimization of an estimate of the failure
rate of the system and of the total inter-component wi-
ring length. The model is formulated and solved with
the assistance of adaptive search procedures, loosely
based on the Darwinian notion of evolution, called Ge-
netic Algorithms (Holland [22); Goldberg [23]; Queipo
et al. [8]). The model seeks to find the optimal, or near
optimal arrangement of n X n conductively and convec-
tively cooled heat sources distributed among n xn po-
sitions. The heat sources represent electronic compo-
nents with different heat generation rates and thermal
sensitivities. Interconnectivity requirements (specifi-
cation of functionally related electronic components)
are provided through an interconnectivity matrix as
illustrated in Figure 3.

Results of the present multiocbjective optimization met-
hodology for a case study are presented and discus-
sed. With reference to Figure 1, the results correspond
to conductively and convectively air-cooled electronic
components with the steady state temperature of the
heat sources modeling the aforementioned components
calculated numerically using a thermal resistive net-
work model. The maximum temperature of the heat
sources are used to estimate the failure rate of diffe-
rent component placements (Arrhenius equation). The
total wiring length of a given arrangement of compo-
nents is computed as the sum of the length (Manhattan
distance) between functionally related components.

The remainder of this paper is structured as follows.
Section 2 provides a formal definition of the problem
of interest and Section 3 gives a description of the dif-
ferent elements of the present solution methodology
and their interaction. In particular, Section 3 descri-
bes a heat transfer solver, a genetic algorithm and two
different multiobjective optimization strategies (Pare-
to optimization and Multiattribute utility analysis). A
description of a case study designed to validate and
evaluate the present solution methodology is the sub-
ject of Section 4. The paper ends with the application
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of the present solution methodology to a multiobjecti-
ve optimization problem (a variation of the case study)
using both Pareto optimization and Multiattribute uti-
lity analysis.

2 Problem definition

The problem of interest here corresponds to the opti-
mal placement of conductively and convectively cooled
electronic components on printed wiring boards (P-
WB) subject to thermal and non-thermal optimization
criteria. Because of its cost effectiveness and mechani-
cal simplicity, forced air cooling is the most frequently
used technique for cooling electronic components in
personal computers and workstations. These systems
comprise a major portion of the market with moderate
heat transfer rate requirements. The conductively and
convectively cooled electronic components on printed
wiring boards are modeled here as equally spaced heat
sources placed on a conductive substrate, as illustrated
in Figure 2. The printed wiring board is aligned para-
llel to the coolant flow with each component dissipa-
ting a constant amount of heat that may differ among
components.

printed wiring board

—

)/ ) )
ﬁ”ﬁﬁﬁﬁg

electronic component

air flow

X

Figure 1: Schematic of the heat transfer configuration
of interest.

Regarding thermal optimization, forced air cooling is
usually limited by acoustic noise constraints placed on
the fan driving the flow, and arrangements of electro-
nic components that maximize reliability and minimize
thermo-mechanically induced stresses are highly des-
irable. Examples of non-thermal optimization crite-
ria include the need to minimize the total wire length
on the PWB, clustering functionally related compo-
nents to conform to speed and transmission line requi-
rements, and keeping analog components and digital
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Figure 2: Model of the heat transfer configuration of
interest.

components separate to reduce crosstalk.

In this study, the minimization of the failure rate of t-
he electronic components on the printed wiring boards
due to thermal overheating, and the minimization of
the total wiring length satisfying the requirements s-
pecified by an interconnectivity matrix, are selected
as thermal and non-thermal optimization criteria, res-
pectively.

The reliability prediction is the statistical estimate of
the value of time over which a device will function.
The inverse of the reliability of a device is called its
failure rate and is measured in failures per megahours
(fr Mh~1). As indicated by, for example, Moresco et
al. [1], and Wessely et al. [3], the failure rate of an
electronic component is a strong function of its tem-
perature.

Even though various functional relationships between
failure rate and temperature in electronic components
have been suggested (Wong [16]), according to Blan-
ks [17], the Arrhenius relation is the most widespread
model among practitioners in the electronic packaging
industry. In this study, the failure rate of electronic
component “i” is estimated using the Arrhenius rela-
tion as:

i = Ajexp(—B;[T{"%) (1)

Here A; and B; are constants associated with the t-
hermal sensitivity of the electronic component, whi-
le T/™** is the maximum temperature of component
“”_ Of interest here is the general case for which the
electronic components on the PWB may differ in heat
dissipation rate and thermal sensitivity.

One of the objective functions to be minimized in this
study is the total failure rate of a system consisting of
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a number of electronic components equal to N2, and
given by the sum of the individual component failure

rates as shown in Equation 2.

Neom

Atotal = E A

The wiring requirements among different components
is represented by an interconnectivity matrix (I). An
entry I;; in the interconnectivity matrix (see Figure 3)
is given the value 1 if component ”i” is functionally
related to component "j” or the value 0 otherwise.

If we denote the wiring length between components
*1” and ”j” by the variable L;;, the additional objective
function to be satisfied is the minimization of Equation
3.

@)

Neomp 4

9= Y > Ll

i=1 j=1

(3)

In summary, the problem of interest may be stated
as follows: given N2 heat sources to be distribu-
ted among Negm X Neom equally-spaced locations on
a conductive substrate, what are some of the arrange-
ments that minimize both a measure of the failure rate
of the system and the total wiring length required to
meet the wiring requirements associated with a given

interconnectivity matrix?

1 2 3 4 5
1 ! 1 1 0 0
2 1 1 0 : 0
3 1 1 1 0 0
4 0 i 0 1 0
s 0 0 0 0 1

Figure 3: Example of an interconnectivity matrix for
five components. A unit entry indicates a pair of com-
ponents that are "functionally related” while a zero en-
try indicates a pair of components that are "not func-
tionally related”.
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3 Solution methodology

The solution methodology, illustrated in Figure 4 has
three elements: a heat transfer solver, a genetic algo-
rithm and a multiobjective optimization strategy. The
heat transfer solver is responsible for the prediction of
the maximum temperature of each heat source used
for calculating the individual failure rates. The mul-
tiobjective optimization strategy provides the means to
convert the original multiobjective optimization pro-
blem into a form amenable to be solved by the genetic
algorithm. The genetic algorithm is responsible for the
adaptive search of optimal or near-optimal solutions.
Note that even for the simplified model formulated in
this study the thermal optimal placement of electronic
components with different heat generation rates and t-
hermal sensitivities would require an exhaustive inves-
tigation of the entire solution space which, in this case,
is combinatorial. For example, if 36 different compo-
nents are considered, the number of possible arrange-
ments is 36! = 3.71 x 10*! and, as indicated by De Jong
[18], non-adaptive search procedures may be compu-
tationally prohibitive.

Multiobjective
Optimization Strategy

N
comp.dat
Genetic Heat
Algorithm L Sequencedat | roynter Solver
{Program CSGA) (Program HTS)
temp.dat
 — L_—____/

Figure 4: Hlustration of the solution methodology.

3.1 Heat transfer solver

For the purpose of estimating the failure rate of a gi-
ven arrangement of electronic components on a prin-
ted wiring board using the model adopted in this in-
vestigation, it is necessary to estimate the maximum
temperature of each heat source. This temperature,
in the resistive network approach, can be obtained by
solving the algebraic system of equations that results
from performing a heat balance at each node (i,j). T-
he heat sources interact with their neighbors via heat
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conduction and exchange heat with an air current; Fi-
gure 2, despicts an schematic of the node (i,j) under
consideration. The discretized form of the heat equa-
tion corresponding to node (i,j), can be written in ex-
plicit form as:

TP = TP 4 Moy (TP, -T) (@
+aiy1,i (T ; — T1F)
+bii (TG — TF
+bij41 (T4 — T

+hPj + bR j(To — TPWTe — T

subject to the following initial and boundary condi-
tions:

TS =Tg5Vi=1I j=1,J
Tp=Tf fori=0ii=I+1landj=0;j=J+1

Note that there are I x J internal nodes which repre-
sent the electronic components while the nodes with
it=0i=I+1orj =07 =J+1 specify the
boundaries of the computational domain.

Hence, the steady state values associated with ma-
ximum temperatures are found through a time mar-
ching process where the temperature at time level
t = (m + 1)k is computed from the known tempe-
ratures at time level t = mh. The variables a;; and
b;; represent heat conduction coeflicients between the
node (i,j) and the nodes (i-1,j) and (i,j-1), respectively,
T, denotes the ambient temperature, R;; represents a
heat exchange coefficient, P;; expresses a measure of
power dissipation, and v is a coefficient that allows
to select between a linear (y = 1.0) and non-linear
(v = 1.25) versions of the problem. The values assig-
ned to asj, bij, Rij, P;ij, and -y are considered constants
throughout the time marching process.

The values for a,b,P and R for predicting the tempe-
rature distribution among the heat sources modeling
the electronic components, are taken from Steinberg
[19] as referenced in Cahlon et al. [12]). Considering
a problem with 36 heat sources modeling electronic
components, the heat conduction coefficients are:

by = by = b = by = bs = bg = 20/262[sec™]

for the nodes along the bottom wall with temperature
T;

a1 = ar = Q13 = Q19 = Qg5 = Qa1 = 25/262[sec™]
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for the nodes along the left and right walls;
bsr = bag = byy = bso = bay = baa = Ofsec™*]

for the nodes along the top wall (insulated in this di-
rection);

a = by = 18/262[sec™!], otherwise

The value for P;; is one of four diffe-
rent values: 0.239/2.62[°C/sec], 0.717/2.62[°C/sec],
1.19/2.62[°C/sec], 1.65/2.62[°C/sec], corresponding
to heat dissipation rates of @1= 1 watt, Q2= 2 watts,
(Q3=b watts, and Q,=7 watts. The heat generation
rates py assigned to the different heat sources (with
k =1,36) are:

pr=p3=ps=ps =1

P1 =P =Pr =P12=D13 = P18 = P1g =
D24 = Pas = P30 = D31 = P3s = Q2

D8 =P =Pi10 =P11 = P14 = P17 = P20 =
D23 = P2g = P29 = P32 = P35 = Q3

P15 = P16 = P21 = D22 = P27 = P28 =
P33 = Ppag = Q4

Similarly, the heat exchange coefficients r;, assigned to
the different heat sources are selected as 0.02[sec™].

3.2 Genetic algorithm ,

Genetic algorithms are adaptive search procedures lo-
osely based on the Darwinian notion of evolution that
have been employed successfully in a variety of sear-
ch, optimization and machine learning applications. T-
he genetic algorithm in this study corresponds to the
Combinatorial Simple Genetic Algorithm encoded in
the program CSGA, documented in Queipo [10]. T-
he CSGA program has the structure of the program
GAucsd (v. 1.4) developed by Schraudolph et al. [20],
but uses a different representation (integer representa-
tion) and different recombination operators (partially
matched crossover). In addition, the random number
generator in the program CSGA is the routine RAN2
available in Numerical Recipes by Press et al. [21].
For a general introduction to genetic algorithms, see
Holland [22], or Goldberg [23]. An introduction to ge-
netic algorithms in the context of thermosciences ap-
plications is given by Queipo et al. [8].

The interaction between the Heat Transfer Solver and
the Genetic Algorithm is illustrated in Figure 4. T-
here are two key elements to consider in describing
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the connection between CSGA and HTS: i) the con-
trol structure of their coupled execution; and, ii) the
information exchange between the two programs.

During the coupled execution of the CSGA and the
HTS programs, CSGA is the master process and HTS
is the slave process. Each time the program CSGA
requires the evaluation of a new candidate solution, a
slave process is created and the execution of CSGA
is suspended. Within the slave process, the program
HTS is invoked and after its successful completion,
CSGA resumes its execution. All this is done within a
UNIX operating system environment.

The CSGA and the HTS programs exchange informa-
tion through data files. The program CSGA makes
available to HTS two files: i) a file called comp.dat
describing the geometrical and thermal caracteristics
of the heat sources in the candidate solution; and, ii)
a file called sequence.dat describing the order in which
the heat sources specified in components.dat are posi-
tioned along the bottom wall of the ventilated channel.
The program HTS generates the file temp.dat after its
successful execution. The file temp.dat contains the
maximum temperature of each of the heat sources in
the candidate solution.

3.3 Multiobjective optimization

In contrast to the optimization of a single function whe-
re the term optimum value has a unique meaning and
geometric interpretation, in the case of multiobjecti-
ve optimization there is not a general definition of the
optimal values. Here, the term optimization means to
find a solution that provides acceptable values for the
objective functions and that satisfies the preference s-
tructure of the person posing the problem; that is, the
designer.

Hence, the problem in multiobjective optimization con-
sists in finding a vector of design variables that satisfies
a set of constraints and that optimizes a second vec-
tor whose elements represent the objective functions.
There is no single best approach for solving these pro-
blems. Different philosophies and methodologies co-
exist for addressing optimization problems with multi-
ple objectives. The approaches differ in their view con-
cerning whether or not it is possible (or practical) to
capture the preference structure of the designer. The
spectrum of methods begins with Pareto optimization
where there is no information regarding the preference
structure of the designer, and ends with the Multiat-
tribute utility analysis (Keeney et al. [14]) where it is
assumed possible to capture the aforementioned prefe-
rence structure.

Thirteenth IEEE SEMI-THERM™ Symposium



3.3.1 Pareto optimization

A vector of decision or design variables belongs to the
Pareto optimal set or set of non-dominated solutions if
there is no other solution that could improve the value
of one of the objective functions without deteriorating
at Ieast one of the others objective functions. Exam-
ples of Pareto solutions are the solutions obtained by
optimizing the objective functions individually.

In the case of Pareto optimization, no information is
assumed regarding the designer except for his ”pre-
ference independence”. Preference independence des-
cribes the situation where lowering the values of the
objective function is always better (assuming the pro-
blem is one of minimization). The methods in this ca-
tegory attempt to provide a representative approxima-
tion of the Pareto optimal set and some of the criteria
to evaluate such methods include: i) how good is the
approximation provided by the method of the Pareto
optimal set and if it is able to generate a non-convex
Pareto set, ii) how fast the computational effort of its
use grows with respect to the number of variables, and
iii) how easy it is to implement. Some of the methods
that belong to this category are: the weighting method,
the non-inferior set method and the restriction method
(Balachandran et al. [13]).

The Pareto optimization in this work is conducted
using the weighting method. The weighting method
converts the multiobjective problem to a scalar opti-
mization problem, in which the objective function be-
comes a weighted sum of the individual objective func-
tions. That is,

n
min Y w; fi(3) with 1<i<n
i=1

wherein, the w}s represent the weights and the f!s re-
present the individual objective functions. The above
problem is a single-objective optimization problem and
it is solved using a genetic algorithm. This is a very
simple approach that fits the purpose of this investi-
gation. However, the weighting method is not without
" its drawbacks: it does not uncover solutions in non-
convex regions of the Pareto optimal set; and it finds
the Pareto optimal set by solving multiple scalar op-
timization problems (different set of weights) which
may be computational expensive.

Studies of Pareto optimization using genetic algorit-
hms to obtain the set of non-dominated solutions at
once have been attempted. The first effort in the use of
genetic algorithms in multiobjective optimization pro-
blems (Pareto optimization) is due to Shaffer [24]. In
his genetic algorithm the population is divided into
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sub-populations with the fitness of the chromosomes in
different sub-populations being evaluated using the dif-
ferent objective functions. Shaffer’s approach has the
problem that it does not provide a uniform approxima-
tion of the pareto set with the solutions obtained con-
centrated around the extremes of the non-dominated
solutions set. A recent genetic algorithm claiming to
provide a good approximation of the Pareto optimal
set using genetic algorithms is reported by Horn et al.
[25].

3.3.2 Multiattribute utility analysis

Pareto optimization is a member of a family of met-
hods based on the measurement of the values of ea-
ch objective function and on the knowledge of their
relative priority. While this approach may be found
useful, as pointed out by Thurston [15] it is limited
in two respects: 1) the direct measurement of the ob-
jective functions or attributes of the design, does not
necessarily reflect the subsequent value or worth to the
designer; and, ii) methods that rely on the concept of
relative importance or priority might not accurately
quantify attribute tradeoffs. Attribute tradeoffs refer
to the designer’s willingness to ”pay” for improvement
in one attribute at the expense of the other. In contrast
to Pareto optimization, Multiattribute utility analysis
concentrates on finding the overall value of the des-
igns; hence, the design with the highest value to the
designer can be identified.

The MUA method becomes practical when the so ca-
lled preferential and wtility independence assumptions
are met. Preferencial independence makes reference
to situations where the designer always prefers less to
more of an attribute (or more to less depending of the
attribute) regardless of the level of the other attributes.
Utility independence means that the general shape of
the utility functions associated with each attribute {to
be discussed later) is not altered by levels of the other
attributes. Under this conditions, the overall worth of
a design U( f3 can be calculated using Equation 5 (see
Keeney et al. [14]),

1

U(f) = =[1®0, (Kk:Ui(f:) + 1] = 1] (5)

x|

wherein,

U(f) = overall worth of the set of attributes f;
fi = level of attribute f;

f = set of attributes levels (f1s f2y-fn)

k; = assessed single attribute scaling constant
U;:(f;) = assessed single attribute utility function
K = scaling constant
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n = number of attributes
If the more restrictive additive independence condition
reported by Thurston [15] is satisfied, that is,

S oki=1 (6)
=1
It can be shown that Equation 5 reduces to,
U(f) =D kUi(f:) )
=1

Equation 7 leaves the designer with two tasks: i) t-
he identification of the worth of the different levels of
each attribute in isolation expressed in the single attri-
bute utility function U;(fi); and, ii) a measure of the
tradeoffs the designer is willing to make, in the form
of the attribute’s scaling constant k;. The constants
k; should not be confused with relative importance of
attributes or weighting factors.

Points in the single attribute utility functions U;(f;)
and the attribute’s scaling constant k; can be obtained
using the ”certainty equivalent” method. An example
of the lottery questions used in the certainty equiva-
lent method to determine points in the utility function
Ui(f:) is given in Figure 5.

CERTAIN LOTTERY

Design with certain failure rate fl Design with uncertain failure rate

| DA% B

f1= 100e 03 rMa

Vi

12.399-03 fr M 1

Figure 5: An example of the lottery questions used
in the certainty equivalent method to assess the single
attribute utility function U;(f;) for failure rate.

The designer is asked to imagine two alternative des-
igns: the ”certain” alternative is know with certainty
to be some value f, while the "lottery” alternative re-
presents a design alternative in which there is uncer-
tainty as to the attribute level. The lottery in Figure 5,
shows a probability p of 30% that the failure rate (f1)
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will be at the estimated best possible level (fi3) and a
probability of (1 — p) of 70% that failure rate will be
at the estimated worst possible value (f1,,). When the
indiference point is reached, that is, when the designer
is equally likely to take the "lottery” or stay with t-
he ”certain” alternative, a point in the single attribute
utility function, U;(f;) = p, is obained. The following
equations shows the derivation of this result.

Ui(fi) = pUi(fip) + (1 = p).U(fiw) (8)
Ui(f) =p.(1) + (1 = p).(0) 9)
Ufi)=p (10)

The value of p at which the designer will be indifferent
is obtained by iterating through extreme values of p.
The value of k; is equal to the utility where the at-
tribute f; is at its best level, f;; and all of the ot-
her attributes are at their worst levels; at this point
U(fiw,--fiby - Faw) = ki- The "certain” alternati-
ve shown in Figure 6 represents a design alternati-
ve with attribute levels known with certainty, and t-
he lottery represents a design with uncertain attribu-
te levels. The lottery shows a probability p of 60%
that the design has the estimated best attribute le-
vels (fy = 9.419¢ — 03 fr Mh™1;f, = 0.4 m) and a
probability (1 — p) and a probability of 40% that the
design will exhibit the estimated worst attribute levels
(fi = 12.399 — 03 fr Mh~'; fo = 0.8 m).

CERTAIN LOTTERY

Design with certain atiribute levels Design with uncertain attribute levels

!

| o 9410803 fr Mh
c 10.0e-03 fr Mh " p=06 04m
f2= 06m
p=b4
10395 03 frMh
08m

Figure 6: An example of the lottery questions used
in the certainty equivalent method to assess the single
attribute scaling constant & for failure rate (%1).

The value of k; is equal to the value of p corresponding
to the indiference point; see the following equations for
the derivation of this result.

Ulfrwfipe-frw) = U () + (1=~ p).U(fu)(11)
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(12)
(13)

U(fiw-fibee-frw) = (1) + (1 — p).(0)
U(flw---fib~~-fnw) = k;

Details of the certainty equivalent method can be found
in Keeney et al. [14].

4 Case study

The case study represents the problem of placing a
set of thirty six heat sources with heat generation
rates and thermal sensitivities as specified in Table
4 with B = 400 fr Mh™1,B, = 800 fr Mh™1,
B3 = 1200 fr Mh™',By = 1600 fr MAh™', using t-
he solution methodology discussed in the previous sec-
tion. The optimal placement includes both the mini-
mization of the failure rate of the system (Equation 2)
and the minimization of the wiring length (Equation 3)
using an interconnectivity matrix to be specified later.
Before presenting and discussing the results associated
with these two multiobjective optimization strategies,
the elements of the solution methodology were subject
to a validation process. The genetic algorithm has be-
en validated elsewhere (see, Queipo et al. [8], Queipo
[10], and Queipo et al. [11]), and the heat transfer sol-
ver predicted the same temperature distributions than
those reported by Cahlon et al. citecah for selected
component placements, such as the one illustrated in
Figure 8. See Figure 7 for the interpretation of the
figures depicting the temperature distribution among

heat sources.
[—] 0 7// q % 0,
1 L-I Bl.

1 ']
e L 5
Figure 7: Legend used for graphically identifying the
heat generation rates and thermal sensitivities of the

heat sources when reporting temperature distributions
among them.

7

B,

4.1 Control parameters for the genetic al-
gorithm
. Considering a linear version of the problem (y = 1.0)
and having the minimization of the failure rate as t-
he sole optimization criterion, numerical simulations
of the genetic algorithm were conducted for a range of
crossover rates, mutation rates, number of generations
and population size. The crossover and mutation rates
considered were (0.4,0.6,0.75, and 0.9) and (0.4,0.65
and 0.9), respectively. Furthermore, three different va-
lues for the population size (7,10,and 12) and number
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Figure 8: Temperature distribution among the heat
sources for a testing configuration.

of generations (8,10,12) were evaluated. The sigma
scaling factor was fixed at a value equal to 3. The
present genetic algorithm exhibited a robust behavior
providing what are considered to be optimal or near
optimal solutions for a variety of combinations of cros-
sover rate, mutation rate, population size and number
of generations (C,M,P,QG); for example, (0.6,0.9,12,10),
(0.6,0.65,12,12), (0.75,0.4,7,10), and (0.9,0.65,12,12).
The best arragement for the conditions specified in this
section exhibited a failure rate of 9.166 x 10~ 3 frMh~!
and an interconnectivity length of 7.92 m.

All the results reported throughout the study corres-
pond to a crossover rate of 0.6, a mutation rate of 0.9,
a population size of 12, and a number of generations
equal to 8.

Note that the size of the solution space is given by the
expression 36!/(3!8.214) = 1.38 x 1034; if each function
evaluation takes 1 second, it would take 4.39 x 1026
years to exhaustively investigate the solution space.
As a result, heuristic methods such as genetic algo-
rithms to adaptively search for optimal solutions are
mandatory.

5 Results and discussion

This section addresses the situation where the heat
sources may differ in their heat generation rates or
their thermal sensitivities and the optimization crite-
ria include both thermal and non-thermal optimization
criteria. As previously discussed, in the case of mul-
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Heat source | Heat generation | Thermal sensitivity

ID Watts (fr Mh™1)
5 Q1 B,
2 ! By
3 Q1 B3
4 G B4
1,13,25 Q2 By
6,18,30 Q- B,
710,31 Q2 B
12,24,36 Q2 B,
9,17,29 Q3 B;
10,14,26 Q3 B,
11,23,35 Q3 B;
8,20,32 (o} B,
21,33 Qa B,
22,34 Q4 B,
15,27 Qs B,
16,28 Qa By

Table 1: Thermal characteristics of the heat sources
considered in the present case study.

tiobjective optimization there is not a general defini-
tion of the optimal values and no single best approach
for solving these problems. As a result, different phi-
losophies and methodologies, such as Pareto optimi-
zation and Multiattribute utility analysis, co-exist for
addressing optimization problems with multiple objec-
tives. :

The thermal and non-thermal optimization criteria co-
rrespond to the minimization of the failure rate of the
system computed using the Arrhenius relation and of t-
he total wiring length according to an interconnectivity
matrix. The present interconnectivity requirement is
that each of the heat sources identified with numbers
between 1 and 6 must be wired with those identified
with numbers between 7 and 12. Next, each of the
heat sources identified with numbers between 1% and
18, must be wired with those identified with numbers
between 19 and 24. The same pattern continues and
ends with the connection of each of the following heat
sources (25,26,27,28,29,30) with those identified with
the numbers between 81 and 36. The distance betwe-
en heat sources modeling the electronic components is
0.02m.

The total interconnectivity length and total failure ra-
te of the arrangements of heat sources are denoted by
the functions A (Equation 2) and g (Equation 3), res-
pectively. '

5.1 Pareto optimization

Solutions expected to belong to the Pareto optimal set
are calculated using the weighting method (Balachan-
dran et al. [13]) which converts the multiobjective
problem to a single objective problem, in which the
function to be optimized is the weighted sum of the
individual objective functions. In this case, the func-
tion f to be minimized has the form:

F=wy * Aotar + Wq * (Cog) (14)

where C, represents a scaling factor, calculated for
each generation in order to render the average contri-
bution of the interconnectivity term in the sum compa-
rable in magnitude to the average contribution due to
the total failure rate. The coefficients wx and w, are
weighting factors representing the relative importance
of the optimization criteria, with wx + wy = 1. In this
work, three sets of weighting coefficients are exercised;
the extreme cases and a situation where the optimiza-
tion criteria are considered to be equally important,
that is: (wx,wy): (1.0,0.0), (0.5,0.5) and (0.0,1.0).
The solution corresponding to weighting factors
(1.0,0.0) has a failure rate of 9.166 x 10=2 fr Mh™!
and an interconnectivy length of 7.92 m, and a failure
rate of 8.525 x 10~3 fr Mh~! and an interconnectivy
length of 8.44 m, for the linear and non-linear versions
of the problem respectively. This solution was found
for the linear (non-linear) case after 9 (8) generations
and 101 (95) objective function evaluations and co-
rresponds to a situation where the minimization of the
failure rate is the sole optimization criterion. Figures
9 and 10 show the evolution of the lowest failure rate
value found along the search process for the linear and
non-linear versions of the problem. Note that better
solutions may be found if the search is extended to a
greater number of generations,

Figure 11 depicts the temperature distribution for the
arrangement with the lowest failure rate for a linear
version of the problem (y = 1.0).

A solution corresponding to the other extreme of t-
he Pareto optimal set; that is, the situation where the
minimization of the wiring length is the only optimi-
zation criterion (wy = 0 and w, = 1.0) was selected
by inspection of the interconnectivity requirement. T-
he optimal solution selected for this case correspond
to the initial configuration depicted in Figure 8 with a
failure rate of 10.36 x 10~3 fr Mh~! and an optimal
wiring length of 6.36 m.

The Pareto optimal solutions associated with the si-
tuation with equal weighting factors for the linear
(non-linear) version of the problem is shown in Ta-
ble 2 (3), respectively. Figure 14 shows the tempe-
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Figure 9: Evolution of the lowest failure rate value

failure rate (fr Mh™!)

along the search process considering v = 1.0 and
(wx = 1.0, wy = 0.0) (Pareto optimization).
Failure rate | Interconnectivity | Gen. | No. fun.
frMh! length (m) eval.
9572 x 103 8.20 9 110
9.578 x 103 7.96 9 117
9.810 x 103 7.80 1 22

Table 2: Pareto optimal solutions (Linear case).

rature distribution among the heat sources for one
of the Pareto optimal solutions, the one with fr =
9.578 x 10~3 frMh~!, and interconnectivity length
equal to 7.96 m.

Figures 12 and 13 depict the Pareto optimal solutions
for the sets of weighting factors considered in the pre-
sent situation for the linear (y = 1.0) and non-linear
cases (y = 1.25), respectively.

5.2 Multiattribute utility analysis

This section discusses the solution of the case study
using the single attribute utility functions for failure

Failure rate | Interconnectivity | Gen. | No. fun.
frMpt length (m) eval.
8.803 x 10~3 7.68 8 107
8.764 x 1073 7.78 9 110
8.661 x 10—3 8.08 3 42

Table 3: Pareto optimal solutions (Non-linear case).

8.70
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8.60
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8.45 ol | SIS R NP B | [P VR B |
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generations

Figure 10: Evolution of the lowest failure rate value
along the search process considering v = 1.25 and
(wx = 1.0,wy = 0.0) (Pareto optimization).

rate (f1) and wiring length (f2) shown in Figures 15
and 16, respectively. Figures 15 and 16 corresponds
to quadratic polynomials that interpolate the follo-
wing three points (f;,U(y,)): (9.166e-03 fr MAh~1,1.0).
(9.833¢-03 fr Mh~1,0.4), (10.500e-03 fr MA~1,0.0);
and the points (f2,U(y,)): (6.36 m,1.0), (8.18 m,0.6),
(10.0 m, 0.0), respectively.

The scaling factors reflecting acceptable tradeoffs bet-
ween attributes, are given as k; =0.6 (failure rate) and
ke =0.4 (wiring length). Both, the utility functions and
the scaling factors are assumed to have been obtained
with the participation of the designer and the certainty
equivalent method discussed in a previous section. T-
he function to be maximized is given by Equation 5
with the aforementioned utility functions and scaling
factors.

Considering the linear version of the problem, Table
4 displays the ten best arrangements obtained when
using the multiattribute utility analysis approach. T-
he best arrangement exhibits a failure rate and wiring
length of 9.179¢ — 03frMh~! and 8.56 m, respecti-
vely. The best arrangement was found after 7 genera-
tions and 92 function evaluations with the maximum
temperatures of the heat sources shown in Figure 17.
Note that this approach provides the "best” solution
with a single coupled execution of the heat transfer sol-
ver and the genetic algorithm provided the utility func-
tions {U;) and the scalar constants (k;) are available.
In addition, this approach could be used to identify t-
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Figure 11: Temperature distribution among the heat
sources considering v = 1.0 and (wy = 1.0,w, = 0.0)
(Pareto optimization).

he "best” solution among the Pareto optimal solutions
found (those obtained in the previous section) by com-
puting the utility value of each of the Pareto optimal
solutions and selecting the solution with highest utility
value.

6 Conclusions

A model for the problem of optimal placement of elec-
tronic components on printed wiring boards subject to
thermal and non-thermal optimization criteria has be-
en formulated and solved using a methodology based
on three components: i) a heat transfer solver for t-
he prediction of the maximum temperature of the heat
sources ; ii) a multiobjective optimization strategy for
the scalarization of the vector of design objectives; and,
iii) a genetic algorithm for the search of optimal or near
optimal solutions.

The inclusion of a more accurate and consequently
computationally more expensive heat transfer model,
could be handled with the proposed methodology by
taking advantage of the fact that the cited methodo-
logy can easily be adapted to work in a distributed
computing environment.

The multiobjective optimization strategy embedded in
the solution methodology is flexible enough to account
for two extreme situations (no knowledge/knowledge)
regarding the knowledge of the preference structure of

10.0

9.0 L

80 |

wiring length ()

7.0 L

6.0 L

5,0'.1.1.|.s|.|.1.1.|.|
8.0 8.5 9.0 9.5 10.0 10.5

failure rate (fr Mh-1) 10—3

Figure 12: Best arrangements obtained by the CSGA
using Pareto optimization for the cases of (wy,w,):
(1.0,0.0}, (0.5,0.5) and (0.0,1.0) (Linear case).

the designer by using Pareto optimization and Multiat-
tribute utility analysis.

The solution methodology shows promise as an effec-
tive and efficient tool for providing optimal or near-
optimal solutions for electronic component placement
problems where both thermal and non-thermal opti-
mization criteria are of interest under rather general
conditions regarding component geometries, heat ge-
neration rates and thermal sensitivities.
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ult,)

Figure 16: Single attribute utility function for wiring

length.

wiring length (m)

Failure rate | Interconnectivity | Gen. { No. fun.
frMh—1 length (m) eval.
9.179 x 1073 8.56 7 92
9.372 x 10735 8.44 4 59
9.404 x 10~% 8.28 8 106
9.510 x 10~° 7.76 8 102
9.404 x 10—3 8.32 9 119
9.212 x 10~° 8.84 9 117
9.423 x 1073 8.24 7 0
9.304 x 103 8.36 5 61
9.390 x 10~° 8.36 7 93
9.268 x 10~ 8.64 9 111

Table 4: Ten best arrangements obtained by the CSGA
for the linear version of the case study (Multiattribute
utility analysis).
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