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Abstract. This paper presents an evolutionary algorithm that incorporates a
multilevel pairing strategy to solve single and multiobjective optimization problems.
The algorithm is based on nondominance of solutions separately in the objective and
the constraint space and uses cooperative mating strategies between solutions. Since
the methodology is based on nondominance separately in the objective and the
constraint space, scaling and aggregation affecting conventional penalty function
methods for constraint handling does not arise. The proposed cooperative and
intelligent pairing strategies result in mating between solutions that are good in
objectives with those that are good in constraint satisfaction, thus helping to speed up
convergence. The diversification mechanism in the algorithm is based on niching that
results in a wide spread of solutions in the parametric space. Three constrained
multiobjective design examples and a single objective optimization problem with
continuous and mixed variables are used to illustrate the performance of the proposed
algorithm.

1 Introduction

Optimization problems inherently involve optimizing multiple non-commensurable
and conflicting objectives subject to various specifications and constraints. In a single
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objective problem, the aim is to find the best solution that maximizes or minimizes the
objective, while in a multiobjective optimization problem (in absence of inter-objective
preference information) the goal is to arrive at a set of Pareto optimal designs. It is
useful to make that set of Pareto optimal designs diverse so as to provide a wide choice
for the decision-maker.

Classical optimization methods are in general not efficient for multiobjective
problems as they often lead to a single solution instead of a set of optimal solutions.
Multiple runs of the same method cannot guarantee a different point on the Pareto
frontier each time and some methods cannot even handle problems with multiple
optimal solutions. Evolutionary methods maintain a set of solutions as a population
during its course of search and thus can result in a set of Pareto optimal solutions in a
single run. A widely differing set of Pareto optimal solutions can be generated using a
diversification strategy (e.g. niching) within the evolutionary algorithm.

In this paper, we propose an evolutionary algorithm that is capable of handling
single and multiobjective design optimization problems. It incorporates a Pareto
ranking scheme separately in the constraint and the objective function space, thereby
eliminating the problems of objective or constraint aggregation and scaling. Since the
algorithm does not involve any aggregation of objectives or constraints, it optimizes
the true objective function. Incorporated within the algorithm are schemes for
intelligent cooperative mating that use knowledge of individual constraint satisfaction
and performance in the objective function domain to speed up convergence.

Section 2 provides a brief overview of multiobjective optimization and constraint
handling concepts in the context of evolutionary computing. The proposed algorithm
and its details are discussed in Section 3. The performance of the algorithm is
illustrated by the design examples in Section 4.

2 Overview of Multiobjective Optimization and Constraint
Handling Methods

Multiobjective problems form a major class of design optimization problems. Majority
of these problems involve constraints arising out of physical laws, statutory
requirements or resource limitations. Section 2.1 highlights the features of various
evolutionary multiobjective formulations while Section 2.2 focuses on implementation
issues of various constraint handling methods in the context of evolutionary
computation.

2.1  Multiobjective Optimization

The goal in a multiobjective optimization problem (in absence of preference
information among the objectives) is to arrive at a set of Pareto optimal solutions. As
identified earlier, it is necessary to provide a wide variety in the set of solutions for the
decision-maker to choose from. Fonseca and Flemming[10] present an excellent



review of multiobjective optimization methods while a comprehensive recent survey
has been reported by Coello[2].

Vector Evaluated Genetic Algorithm (VEGA) is the earliest example of an
evolutionary algorithm designed for finding an approximation to the Pareto optimal
solution set of a multiobjective problem. Shaffer[28] proposed VEGA as an extension
of Grefenstette's[12] (GENESIS) program for simple genetic algorithm. It is based on
the use of multiple populations and selective migration of individuals from one
population to another. The methodology is simple to understand and implement but
requires a large number of subpopulations with sufficient number of individuals in
them for problems with many objectives. In addition to that, a fitness evaluation
mechanism based on a linear combination of the objectives will fail to generate Pareto
optimal solutions for non-convex search spaces regardless of weights used. Lis and
Eiben[23] advocated the use of multiparent crossovers among individuals of different
genders. One parent from each gender is selected to contribute to the generation of a
child, and the child inherits the gender of parent that contributed to the maximum
number of genes. The methodology requires a large population size incase of multiple
objectives, as sufficient number of individuals of each gender should be present in the
population apart from the fact that the panmictic crossover requires more number of
parents to generate a child and is computationally expensive.

Weighted aggregation method was an obvious extension to the classical single
objective optimization formulation to handle multiobjective problems. The principle of
weighted aggregation of objectives is reflected in the works of Ishibuchi and
Murata[17] and Hajela and Lin[13]. Ishibuchi and Murata[17] used a combination of a
weighted-sum-based evolutionary algorithm [EA] and a local search algorithm while
Hajela and Lin[13] employed a variable set of weights for objective aggregation along
with sharing and mating restrictions. In both of these methods, multiple objectives are
transformed to a single measure by the use of weights, and hence all the drawbacks of
objective aggregation exist though it eliminates the requirement of having a number of
subpopulations. Moreover, additional input parameters are required for sharing and
mating restriction as in the method of Hajela and Lin[13], and these may not be easy to
provide.

The use of Pareto ranks instead of aggregated fitness values is another approach to
handle multiple objectives. Multiobjective Genetic Algorithm (MOGA) as proposed by
Fonseca and Flemming[11] and the Nondominated Sorting Genetic Algorithm (NSGA)
by Srinivas and Deb[31] belongs to this category. In MOGA, a solution is assigned a
rank based on the number of solutions in that population that dominates it.
Subsequently, a fitness value is assigned to the solution based on its rank. The process
of Pareto ranking is computationally expensive and the use of blocked fitness
assignment to a set of solutions with the same rank results in a large selection pressure
and leads to premature convergence. To distribute the points evenly over the Pareto
optimal region, MOGA employs a sharing mechanism in the objective function space.
As sharing is performed in the objective function space, MOGA may not be able to
find solutions to problems where different Pareto optimal points correspond to the
same objective function value. NSGA on the other hand is based on multi-layered
classification of nondominance and is computationally even more expensive when



compared with MOGA. In addition, NSGA requires the sharing parameter as an input
that may not be easy for the user to provide.

Apart from these three fundamental approaches for multiobjective modeling, there
have also been interesting attempts to develop algorithms that share features of more
than one of the above approaches. In order to carry good solutions across generations,
the use of elitist strategy is quite common. Laumanns et al.[22] proposed the unified
model for multiobjective optimization with elitism, while Deb et al.[4] introduced a
fast, elligist NSGA. Horn et al.[16] incorporated the concepts of tournament selection
and Pareto dominance in Niched Pareto Genetic Algorithm (NPGA). The performance
of the NPGA is largely dependent on the size of the population against which a
solution is compared to compute its nondominance. A small population size for
comparison results in a few nondominated points in the population while a large one
results in premature convergence. Valenzuela-Rendon and Uresti-Charre[33] used a
Pareto selection and fitness sharing in their nongenerational GA model. The
multiobjective problem is transformed to a bi-objective one by minimizing the
domination count of an individual (weighted average of the number of individuals that
have been dominated so far) and the minimization of its moving niche count (weighted
average of the number of individuals that lie close to the above individual based on a
sharing function). Additional inputs are required in the above method for weights and
sharing function that may not be easy for the user to provide. Osyczka and
Kundu[25,26] also proposed a multiobjective evolutionary algorithm that is based on
the concepts of Pareto distance. This method does not require an explicit sharing
function but the performance is largely dependent on the starting distance used to
compare the quality of the solutions.

Some of the limitations that exist in modeling multiobjective optimization
problems are be summarized as follows:

1. Weighted aggregation of objectives or constraints lead to problems of
scaling and proper identification of weights may be difficult.

2. Additional parameters for sharing or niche count may not be easy to
provide.

3. Large population size or a large number of subpopulations may be
necessary for some of the approaches.

4. No specific guidelines are outlined in the multiobjective methods to
incorporate constraints.

Comparison between various multiobjective optimization algorithms is a
difficult task as identifying proper measures of performance is often non-trivial.
Veldhuizen and Lamont[34] proposed the use of error ratio and generational distances
to compare between Pareto fronts obtained by various multiobjective algorithms.
However, both the measures require a known Pareto front. Zitzler and Thiele[35]
introduced coverage and spread as two new measures that can be used to compare
between fronts. In order to compute spread and coverage, both the solutions and their
objective values are required as obtained by various algorithms. Knowles and
Corne[20] proposed the use of statistical measures based on an attainment surface,
while Fonseca and Flemming[8] applied the concepts of goal and priorities through
relational operations to allow multiobjective decision making. There has also been



significant work done by Hansen and Jaszkiewicz[14] on measures of comparison
between various approximations to the nondominated set in presence of additional
preference information through the use of outperformance, quantitative estimates or
reference based methods. Jaszkiewicz[18] studied and reported the performance of the
multiple objective genetic local search on the 0/1 knapsack problem and compared its
performance with other existing multiobjective methods.

2.2 Constraint Handling Methods

After having discussed the various multiobjective methods and their limitations, it is
necessary to focus our attention on the methods of constraint handling, as most design
optimization problems involve constraints. The presence of constraints significantly
affects the performance of any optimization algorithm including evolutionary
optimization methods. A comprehensive review on constraint handling methods is
presented by Michalewicz[24]. A wide range of constraint handling methods have
evolved over the years ranging from rejection of infeasible solutions, use of penalty
functions and their variants, repair methods, use of decoders, separate treatment of
constraints and objectives and hybrid methods incorporating knowledge of constraint
satisfaction. Each of the methods has its disadvantages; penalty functions using static,
dynamic or adaptive concepts suffer from common problems of aggregation and
scaling. Repair methods are based on additional function evaluations that may be
expensive, while the decoders and special operators or constraint satisfaction methods
are problem specific and cannot be used to model a generic constraint.

Separate treatment of constraints and objectives via Pareto ranking schemes is an
interesting concept that eliminates the problem of constraint or objective scaling and
aggregation. Constraint handling using a Pareto ranking scheme is a relatively new
concept having its origin in multiobjective optimization. Jimenez and Verdegay[19]
used a nondominated sorting ranking scheme as proposed by Srinivas and Deb[31] to
deal with multiple objectives while a separate evaluation function was used for
infeasible solutions. Surry et al.[32] applied a Pareto ranking scheme among
constraints while fitness was used in the objective function space for the optimization
of gas supply networks. Fonseca and Flemming[11] proposed a unified formulation to
handle multiple constraints and objectives based on a Pareto ranking scheme. All the
above attempts successfully eliminate the drawbacks of aggregation and scaling found
in penalty function methods. An interesting attempt to incorporate the knowledge of
constraint satisfaction during mating was proposed by Hinterding and
Michalewicz[15]. In an attempt to match the beauty with the brains, constraint
matching was employed during partner selection. A single measure (sum of squares of
violation) was used to compute a solution's infeasibility. However, a single aggregate
measure of infeasibility fails to incorporate the knowledge of individual constraint
satisfaction/violation and in addition leads to scalability and aggregation problems.
Moreover, the algorithm did not include any niching or diversification mechanism to
ensure a uniform spread of points along the Pareto frontier that is required for



multiobjective problems. There have also been attempts by Koziel and
Michalewicz[21] to handle single objective constrained optimization problems through
the use of homomorphous mapping.

It is clear from the above discussion that a generic evolutionary algorithm for
constrained single and multiobjective optimization should avoid aggregation and
scaling of objectives and constraints, provide a wide spread of points along the Pareto
frontier for multiobjective problems and be computationally efficient as function
evaluations are often expensive. An evolutionary algorithm is presented in this paper
that is based on Pareto ranking separately in the constraint and objective space thereby
eliminating problems of scaling and aggregation. Intelligent parent matching concept
within the algorithm results in mating between solutions that are good in either
constraints or objectives and its complementary partner with the hope of generating
better solutions through collaborative pairing. Different mating strategies for single
objective unconstrained and constrained problems have been discussed by Ray et
al.[27]. Since a wide variety is required among the Pareto optimal points for
multiobjective problems, a diversification strategy is implemented that relies on no
additional inputs for sharing or niching.

3 Multiobjective/Single Objective Evolutionary Algor ithm

A general multiobjective optimization problem (in minimization sense) is presented as:
Minimize ])()()([ xxxf k21 fff �=

subject to qiag ii ,1,2,,)( �=≥x

rjbh jj ,1,2,,)( �==x

where f  is a vector of k objectives and ][ n21 xxx �=x is the vector of n design
variables to be minimized subject to q inequality and r equality constraints.

It is common practice to transform each equality constraint into a pair of
inequalities (with a tolerance δ) resulting in a unified formulation for all constraints:

δ+≤ jj bh )(x

δ−≥ jj bh )(x

Thus r equality constraints will give rise to 2r inequalities, and the total number of
inequalities for the problem is denoted by s, where s=q+2r.

For each solution, c denotes the constraint satisfaction vector given by
][ s21 ccc �=c where

For the above ic 's, 0=ic  indicates the i th constraint is satisfied, whereas
0>ic indicates the violation of the constraint.
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With the above understanding of the problem, the pseudo-code of the algorithm is
presented below.

Algor ithm
• Initialize M solutions to form a population

Do {
• Compute Robj, the Pareto ranking based on objective vectors f.
• Compute Rcon, the Pareto ranking based on constraint satisfaction vectors c.
• Compute Rcom, the Pareto ranking based on combined objective and constraint

satisfaction vectors.

Multiobjective Case
• Put Feasible and Rcom =1 individuals into the population for the next generation
Single Objective Case

• Put Feasible individuals with Robj � average of Robj into the population for the next
generation

To fill up the remaining vacancies in the population for the next generation
Do {
• Select an individual A and its partner from the population of this generation
• Mate A with its partner
• Put the children and their parents into the population for the next generation

}  while the population is not full.
• Remove duplicate points in parametric space and shrink population
}  while the stopping condition is not attained.

3.1 Pareto Ranking, Fitness and Selection

From a population of M solutions, all nondominated solutions are assigned a rank of 1.
The rank 1 individuals are removed from the population and the new set of
nondominated solutions is assigned a rank of 2. The process is continued until every
solution is assigned a rank. This ranking scheme is based on Nondominated Sorting
Genetic Algorithm (NSGA) as proposed by Srinivas and Deb[31]. Every individual in
the population has a rank of Robj for an unconstrained problem and ranks of  Robj, Rcon

and Rcom for a constrained problem. These ranks(Robj , Rcon or Rcom ) are converted to
corresponding fitness values using the expression max(R) – R – 1, where R is either
Robj , Rcon or Rcom and max(R) is the maximum rank in the population ( i.e. the rank of
the worst solution). A roulette wheel selection based on the above fitness is used to
choose individuals for mating. The process allows the fitter solutions to have a higher
probability of being selected for mating.



3.2 Multilevel Pair ing Strategy for  Mating

Mating is performed between a solution A and its partner (B or C). The process of
partner selection is dependent on the type of the constrained problem. Problems are
classified into the following:

1. Unconstrained problem (Objective-Objective Mating)
2. Constrained problem (Objective-Constraint Mating)

For an unconstrained problem, A, B and C are selected based on the fitness derived
from Robj. For a constrained problem, selection of A is based on the fitness derived
from Robj while the selection of B and C is based on fitness derived from Rcon. Such a
mating between solutions that are good in objective function with that of solutions that
are good in constraint satisfaction is analogous to mating between the ‘beauty and the
brains’ . The process of partner selection for a constrained problem is described below.

Case 1: B and C are both feasible
If Robj_B < Robj_C , then partner is B
If Robj_B > Robj_C , then partner is C

If Robj_B = Robj_C , then choose the one with the minimum adaptive niche
count (to be explained in Section 3.4).

where Robj_B denotes the rank of solution B based on Robj.

Case 2 : B and C are both infeasible
If Rcon_B < Rcon_C  ,  then partner is B
If Rcon_B > Rcon_C  ,  then partner is C

If Rcon_B = Rcon_C , then choose the one with minimum overlapping
constraint satisfaction with A (to be explained in Section 3.5).

Case 3 : One is feasible and the other is not
If B is feasible, then partner is B
If C is feasible, then partner is C

3.3 Mating

Every mating generates three additional solutions unlike the conventional process of
crossover that generates two children. Out of the three solutions, the uniform crossover
between A and its partner generate one solution while the other two are generated
using the random mix and move. The process of random mix and move for any
continuous variable x is presented as follows:

Considering, for example, that A and B are the two parents contributing the
variable values xA and xB , respectively, and where xA < xB (Figure 1). The child will
have a value of x randomly generated from within either one of the intervals

Aboundlower xxx ≤≤ , BA xxx ≤≤  or boundupperB xxx ≤≤ . The selection of one out of those



three intervals is in turn also random and according to probabilities of 25%, 50% and
25% respectively. In this present work, random mix and move has been used.
However, other operators that generate intermediate variable values like the blend
crossover (BLX) as proposed by Eshelman and Shaffer[6], the simulated binary
crossover (SBX) as proposed by Deb and Agrawal[3] can also be used. The proposed
random mix and move operator is designed to cater to continuous variables in the
domain of parametric design. The operator can easily be extended to handle discrete
and integer value problems.

Figure 1.  Schematic diagram for  Random Mix and Move operator .

3.4 Adaptive Niche Count

A new parametric crowding measure referred as adaptive niche count is introduced in
this work. Adaptive niche count of a solution is the number of other solutions in the
population, which are within the average distance metric of that solution (average of
the Euclidean distances between the solution and the rest of the M-1 members in the
population). A solution with a small niche count physically means that there are few
other solutions in its parametric neighborhood. Such solutions are preferred over others
and this is the diversification strategy used in the algorithm.

3.5 Non-over lapping Constraint Satisfaction

A partner selection strategy is proposed in this work that is based on a non-overlapping
constraint satisfaction mechanism. An individual is allowed to mate with another if it
complements the other towards constraint satisfaction. Such a mating between the
beauty and the brains is incorporated with the hope of generating solutions with better
constraint satisfaction.  If the sets { SA} , { SB}  and { SC}  denote the sets of constraints
satisfied by solution A, B and C respectively, the selection of either B or C as the
partner of A is based on the following conditions:

If ( { SA}  ∩ { SB}  ) > ( { SA}  ∩ { SC}  ) , then partner is C.
If ( { SA}  ∩ { SB}  ) < ( { SA}  ∩ { SC}  ) , then partner is B.
If {  { SA}  ∩ { SB}  ) = ( { SA}  ∩ { SC}  ) , then partner is randomly chosen between

B and C.
The operator ( { SA}  ∩ { SB}  ) indicates the number of constraints that are both

satisfied by A and B.
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3.6 Population Shr inking

After each new population is full, a screening is done to remove identical points in the
parametric (variable) space to give room for new and different solutions.

4 Results and Discussion

Three engineering design examples have been chosen to illustrate the performance of
the algorithm. The first example is a continuous variable, constrained, multiobjective
design of a welded beam with an aim to minimize cost and end deflection subject to
constraints on shear, bending and buckling load. The second example is a
multiobjective bulk carrier design with continuous variables and a large number of
constraints. The third example is a mixed variable, multiobjective, constrained
optimization problem dealing with a tanker fleet design.

4.1 Design of a Welded Beam

A welded beam is to be designed for minimum cost and minimum end deflection
subject to constraints on shear stress, bending stress and buckling load. The four design
variables h, l, t and b correspond to x1, x2, x3 and x4 and are shown in Figure 2.

Figure 2. Welded beam design
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P= 6000 lb, L =14 in, δmax =0.25 in, E =30 × 106 psi, G = 12 × 106 psi, τmax =
13,600 psi, σmax = 30,000 psi, 0.125 ≤  x1 ≤ 5.0, 0.1 ≤  x2 ≤ 10.0, 0.1 ≤  x3 ≤ 10 and
0.125 ≤  x4 ≤ 5.0.

A population size of 100 and a generation count of 300 have been used in the
present study. Results of multiple runs are presented in Table 1. It can be observed
from Table 1 that the number of Pareto points obtained and the number of function



evaluations required are consistent across multiple runs. The Pareto optimal front as
obtained from Run 1 is presented in Figure 3. The front consists of 99 points and has
been obtained after 4481 function evaluations. This problem has also been attempted
by Deb[5] using a real coded GA with simulated binary crossover(SBX). Deb[5]
presented a similar front with the same limits and roughly the same visible spread of
points along the Pareto curve using 50,000 function evaluations.

Figure 3. Pareto front for  the welded beam design

Table 1: Results of Multiple Runs for  the Welded Beam Design

Run 1 Run 2 Run 3 Run 4 Run 5
Number of Pareto
Points

99 91 96 98 96

Number of Function
Evaluations

4481 4417 4472 4468 4470

4.2 Preliminary Design of a Bulk Carr ier

Sen and Yang[30] originally introduced this bulk carrier design example. They
considered the minimization of transportation cost, minimization of lightship mass and
the maximization of annual cargo transport capacity as three objectives for the design.
Since, the objective of lightship mass minimization is related to the maximization of
the annual cargo transport capacity, the formulation presented in this paper considers
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the minimization of transportation cost and the maximization of annual cargo transport
capacity as two objectives for the design. The modified optimization problem of the
bulk carrier design is presented below along with all necessary relations for various
estimates and bounds on the variables and their ratios. There are six continuous
variables (L, T, D, CB, B and V). The bounds for the variables used in the model are 0≤
L ≤ 500, 0≤ T ≤ 50, 0≤ D ≤ 50, 0.63≤ CB ≤ 0.75, 0≤ B ≤ 100 and 14≤ V ≤ 18.

Minimize:  Transportation Cost  = 
A_CARGO 

A_COST

Maximize: Annual Cargo Transport Capacity = RTPAC_DWT ×
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RTM = 5000 nautical miles
FP = 100 pounds / tonne
C_RATE = 8000 tonnes / day
g = 9.8065 m/s2

A population size of 100 running for 50 generations has been used in this study.
Results of multiple runs are presented in Table 2. It can be observed that the results
presented in Table 2 are consistent across multiple runs. The design solutions obtained
from Run 1 are presented in Table 3. The list of symbols used in the formulation is
presented in Table 4.

The Pareto optimal front obtained from Run 1 is presented in Figure 4. The front
consists of 20 points and has been obtained using 2377 function evaluations. The
results are better as compared to Sen and Yang[30] as solutions with transportation
cost of less than 9 pounds/tonne is available as can be seen from Figure 4.

Table 2: Results of Multiple Runs for  the Bulk Carr ier  Design

Run 1 Run 2 Run 3 Run 4 Run 5
Number of Pareto
Points

20 20 20 22 19

Number of Function
Evaluations

2377 2377 2377 2380 2379



Table 3: Pareto Optimal Solutions

Design L T D CB B V
1 335.67580 20.42880 38.21770 0.74000 55.50070 16.33430
2 308.67380 17.11610 27.64110 0.69180 43.37090 16.94170
3 376.33460 18.38100 25.18870 0.73770 38.74600 16.82840
4 302.86420 18.27800 31.69210 0.65810 50.14410 17.07680
5 430.11660 24.82680 45.48020 0.68110 66.85150 17.27140
6 366.88500 22.31300 43.59060 0.70710 60.69840 17.82370
7 279.30360 17.30150 28.56920 0.71290 45.45560 15.66530
8 445.67970 24.48610 44.30420 0.72280 63.17070 17.96510
9 414.13200 23.64740 41.60850 0.73060 61.21980 17.04510
10 466.38480 25.52470 42.59910 0.67740 65.98000 17.48840
11 277.90920 17.02780 26.95820 0.72400 41.81020 16.22230
12 357.12570 21.81900 40.34000 0.71630 59.10760 17.82510
13 339.45320 19.13410 31.13030 0.71530 46.53580 17.86620
14 443.03240 25.30110 47.01590 0.70330 71.49320 17.51720
15 383.07270 22.80840 41.71110 0.71080 63.44940 16.33770
16 271.64910 14.37940 21.34030 0.67950 33.54440 16.27630
17 394.83540 23.07570 43.07370 0.67990 63.10800 17.96290
18 317.06880 18.62170 29.61330 0.72600 46.54240 15.98760
19 403.20650 24.67020 45.77710 0.72040 65.23120 16.82030
20 380.67390 20.76090 32.61870 0.71150 50.51520 17.99200

Figure 1. Pareto Optimal Front for  Bulk Carr ier  Design

Figure 4. Pareto optimal front for  Bulk Carr ier  Design
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Table 4: L ist of Symbols

A_CARGO Annual cargo carrying capacity (tonnes/year)
A_COST Annual cost (pounds / year)
B Breadth of the ship (m)
C_DWT Cargo deadwight (tonnes)
C_RATE Cargo handling rate (tonnes / day)
C1, C2 Coeffiecients
CAP_COST Capital cost (pounds / year)
CB Block coefficient
CSW Weight of crew, stores and water (tonnes)
D Depth of the ship (m)
DC Daily consumption of fuel ( tonnes / day)
DISP Displacement (tonnes)
DWT Deadweight (tonnes)
F_COST Fuel cost (pounds)
FL Fuel carried (tonnes)
FP Fuel price (pounds / tonne)
g Acceleration due to gravity (m/s2)
GM Metacentric height (m)
L Length of the ship (m)
LSM Lightship  mass (tonnes)
MAC_MASS Machinery mass (tonnes)
OUT_MASS Outfit mass(tonnes)
P Shaft power (HP)
P_COST Port cost (pounds)
RTM Round trip (miles)
RTPA Number of round trips per year
RUN_COST Running cost (pounds / year)
SD Number of sea days per year
SHIP_COST Cost of ship (pounds)
STEEL_MASS Steel mass (tonnes)
T Draft of the ship (m)
V Speed of the ship (knots)
VOY_COST Voyage cost (pounds / voyage)

4.3 Design of a Tanker  Fleet

Folkers[7] originally presented this tanker design example. A modified form has been
attempted by Azarm and Narayanan[1] with new estimates of weight taken from
Schneekluth[29]. The limits of the variables and their ratios and constraints from the
original formulation of Folkers[7] have been modified substantially by Azarm and
Narayanan[1], thereby making it difficult to compare results. The modified tanker



design optimization problem is presented below that considers the minimization of cost
and the maximization of cargo transportation capacity as two objectives. The cargo
transport capacity in one direction should be greater than 10 million tonnes that
translates to an annual cargo transport capacity of greater than 20 million tonnes as
indicated in the original formulation by Folkers[7].

Minimize: Cost = )( CFCMACCHULLN ++×
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The problem involves eight continuous variables and one integer variable. The
variable bounds used in the model include 0 ≤ B≤ 50, 0 ≤ D ≤ 50, 0 ≤ DWT ≤ 500,000,
150 ≤ L ≤ 480,1 ≤ N ≤ 50, 0 ≤ T ≤ 50, 0 ≤ U ≤ 1, 0 ≤ V ≤ 30, 0 ≤  Z ≤ 600,000.
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Table 5: Results of Multiple Runs for  the Tanker  Fleet Design

Run 1 Run 2 Run 3 Run 4 Run 5
Number of Pareto
Points

10 10 11 11 10

Number of Function
Evaluations

5831 5831 5840 5839 5834



Table 6: Pareto Optimal Solutions

B D DWT L N T U V Z
1 35.880 18.620 41450.000 244.000 24 12.910 0.825 15.170 71640.0
2 40.980 19.390 62310.000 262.200 47 12.090 0.805 12.810 93180.0
3 35.630 14.680 26480.000 205.200 34 9.068 0.814 12.050 44310.0
4 44.080 24.830 75660.000 256.500 49 18.430 0.684 14.310 130000.0
5 43.610 20.590 65970.000 236.300 18 14.070 0.762 14.680 91320.0
6 42.260 18.140 49400.000 237.000 36 12.600 0.701 14.040 78650.0
7 42.160 20.660 54180.000 269.500 35 12.680 0.782 16.450 95960.0
8 39.180 17.980 55690.000 243.300 16 11.810 0.618 12.540 70160.0
9 36.060 18.780 46740.000 207.300 34 12.940 0.756 13.710 64450.0
10 41.410 21.180 58140.000 248.700 13 14.970 0.620 14.740 100700.0

A population size of 200 running for 50 generations has been used in the study.
Results of multiple runs are presented in Table 5. The Pareto optimal front in Figure 5
corresponds to Run 1 and consists of 10 points obtained after 5831 function
evaluations. The design solutions corresponding to Run 1 are presented in Table 6.

Azarm and Narayanan[1] solved the above model without considering the
constraint on minimum annual cargo transport capacity of 20 million tonnes. Pareto
solutions reported by Azarm and Narayanan[1] are (18.00,199.99), (17.83,192.87),
(17.71,181.91), (17.27,178.31) and (16.97,178.13), all with an annual cargo transport
capacity of less than 20 million tonnes. The Pareto front obtained by our proposed
algorithm without the annual transport capacity constraint is presented in Figure 6. The
Pareto front presented in Figure 6 consists of 37 points and has been obtained after
4784 function evaluations with a population size of 200 running for 50 generations.
Figure 7 shows the part of the Pareto curve with annual transport capacity less than 20
million tonnes. It can be clearly observed from Figure 7 that the solutions reported in
this paper dominates the set of solutions presented by Azarm and Narayanan[1].

Figure 5. Pareto Optimal Front for  Tanker  Design
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If the objective of cargo capacity maximization is dropped from initial formulation
while maintaining the constraint on minimum annual cargo transport capacity and all
other constraints, the problem turns out to be a single objective constrained mixed
minimization problem. The best design obtained has a cost of 135,500,000 dollars and
the optimal design is presented in Table 7. The symbols used in the formulation are
listed in Table 8.

Figure 6. Pareto Optimal Front for  Tanker  Design without Transport
Capacity Constraint

Figure 7. Pareto Optimal Front with Capacities less that 20 million tonnes
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Table 7: Results of Single Objective Minimization

B D DWT L N T U V Z
1 27.63 12.090 15200.000 165.200 44 7.4060 0.928 10.910 22660

Table 8: L ist of Symbols

B Breadth of ship (m)
CB Block coefficient
CF Cost of fuel (dollars)
CHULL Cost of hull (dollars)
CM Midship area coefficient
CMAC Cost of machinery (dollars)
D Depth of ship (m)
DWT Deadweight (tonnes)
F Fuel consumption (tonnes / m3)
G Acceleration due to gravity (m / s2)
αL, αT Coefficients
K0, k1, k2 Coefficients
KST Coefficient
Kα Admiralty Coefficient
L Length of ship (m)
N Number of ships
O Loading rate (tonnes / hr)
Q Cargo to be shipped per year (tonnes)
R Range of operation (nautical miles)
SHRS Hours at sea (hr)
T Draft (m)
THRS Total operating hours (hr)
U Utilization rate = hrs at Sea/ Tot. Opr. Hrs.
V Speed of ship (knots)
W Number of operating hrs / year
WST Weight of hull (tonnes)
Z Displacement (tonnes)

5 Concluding Remarks

The evolutionary algorithm introduced in this paper is suitable for both single and
multiobjective optimization problems from the domain of engineering design. The use
of Pareto ranking concept in the objective and the constraint domain eliminates the
problems of scaling and aggregation. The method is problem independent and can
handle any computable constraint and in addition optimizes the true objective function
without any additional user input. Though Pareto ranking is a computationally



intensive operation, it eliminates the problem of finding adequate penalty function
parameters or weights for objective aggregation. With an increase in the number of
constraints or objectives, the process of Pareto ranking will be more and more
computationally expensive. Intelligent multilevel mating strategies with niching i.e.
mating the beauty with the brains result in an evenly spread Pareto optimal front with
minimal function evaluations. Through niching and Pareto ranking are computationally
expensive operations, it is meaningful to make use of all computed information to
guide the search especially for problems with expensive objective function evaluations.
The preliminary results presented in this paper are promising for both multiobjective
and single objective optimization examples. Comprehensive tests are currently being
conducted on suites of multiobjective and single objective examples to establish the
efficiency of the proposed algorithm.

In order to compare results of the single objective optimization problem, the
optimum value and the number of function evaluations for multiple runs have been
reported in this paper. For the multiobjective problems, the visual Pareto front, the
number of points in the front and the number of function evaluations required to attain
the front has been reported in this paper. The Pareto optimal solutions for the bulk
carrier design and the tanker fleet design example have been listed in this paper to
allow future comparisons viable. Solutions to all the three examples including the
welded beam design as discussed in this paper can be obtained from
http://www.cs.put.poznan.pl/fcds/Tapabrata_results.
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