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A Swarm Metaphor for Multiobjective Design Optimization

Abstract: In this paper we present a new optimization algorithm to solve multiobjective
design optimization problems based on behavioral concepts similar to that of a real
swarm. The individuals of a swarm update their flying direction through communication
with their neighboring leaders with an aim to collectively attain a common goal. The
success of the swarm is attributed to three fundamental processes: identification of a set
of leaders, selection of a leader for information acquisition and finally a meaningful
information transfer scheme. The proposed algorithm mimics the above behavioral
processes of a real swarm. The algorithm employs a multilevel sieve to generate a set of
leaders, a probabilistic crowding radius-based strategy for leader selection and a simple
generational operator for information transfer. Two test problems, one with a
discontinuous Pareto front and the other with a multi-modal Pareto front is solved to
illustrate the capabilities of the algorithm in handling mathematically complex problems.
Three well-studied engineering design optimization problems (unconstrained and
constrained problems with continuous and discrete variables) are solved to illustrate the
efficiency and applicability of the algorithm for multiobjective design optimization. The
results clearly indicate that the swarm algorithm is capable of generating an extended
Pareto front, consisting of well spread Pareto points with significantly less number of
function evaluations when compared to the nondominated sorting genetic algorithm

(NSGA).
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1. Introduction

Swarm strategies are fairly new methods that have received considerable attention over
recent years as optimization methods for complex functions. Kennedy and Eberhart
(1995) initially proposed the swarm strategy for optimization. Unlike conventional
evolutionary methods, the swarm strategy is based on simulation of social behavior
where each individual in a swarm adjusts its flying according to its own flying experience
and companions' flying experience. The key to the success of such a strategy in solving
an optimization problem lies on the mechanism of information sharing across individuals
to collectively attain a common goal. After the initial concept was proposed, there have
been comparative studies between swarm and other evolutionary strategies by Eberhart
and Shi (1998) and Angeline (1998).

In any multiobjective optimization problem (in absence of preference information
among the objectives) the goal is to arrive at a set of Pareto optimal solutions. It is
preferable to have such solutions well spread along the Pareto front while maintaining
diversity in the parametric space as it would to allow the designer to choose from a set of
competing solutions. A comprehensive review on various multiobjective optimization
methods appears in Fonseca and Flemming (1995). A more recent paper by Coello (1999)
outlines various multiobjective optimization methods and lists their advantages and
disadvantages. One may refer to the above references for the necessary background on
multiobjective optimization, as it is not repeated here.

It is well known that the presence of constraints significantly affects the
performance of all optimization algorithms including evolutionary search methods. There
has been a number of approaches to handle constraints in the domain of evolutionary

computing including rejection of infeasible individuals, penalty functions and their



variants, repair methods, use of decoders, separate treatment of constraints and objectives
and hybrid methods incorporating knowledge of constraint satisfaction. Michalewicz and
Schoenauer (1996) provide a comprehensive review on constraint handling methods. All
the methods have limited success as they are problem dependent and require a number of
additional inputs. Penalty functions using static, dynamic or adaptive concepts have been
developed over the years. All of them suffer from common problems of aggregation and
scaling. Repair methods are based on additional function evaluations, while the decoders
and special operators or constraint satisfaction methods are problem specific and cannot
be used to model a generic constraint.

The use of Pareto ranks based on constraint violations is quite an innovative
approach to handle constraints. Surry et al. (1995) applied the Pareto ranking scheme
among constraints while fitness was used in the objective function space for the
optimization of gas supply networks. Fonseca and Flemming (1998) proposed a unified
formulation to handle multiple constraints and objectives based on Pareto ranking
scheme. Ray et al. (2000) introduced a multiobjective evolutionary algorithm using
Pareto ranking in both the objective and constraint domain along with partner matching
strategies to efficiently handle a wide variety of single and multiobjective unconstrained
and constrained optimization problems. The use of Pareto ranking to handle constraints
on one hand eliminates the need for additional inputs while on the other adds on to the
computational cost as Pareto ranking is computationally expensive and more so in
presence of multiple constraints.

Having provided a brief discussion and relevant references on multiobjective and
constraint modeling methods, the concept of the swarm is introduced. A swarm in the

present context of an optimization problem is considered as a collection of individuals



having a goal to reach the best value (minimum or maximum) of a function. In a
multiobjective optimization problem, in absence of any preference among the objectives,
the goal as already mentioned earlier is to arrive at a set of Pareto optimal solutions.
Ideally, the set of Pareto solutions should maintain a uniform spread along the Pareto
front and maintain diversity in the parametric space. A set of diverse solutions in the
parametric space allows the designer to choose from a set of alternative designs. For a
swarm strategy to be efficient for constrained problems there is additional information
about the constraint satisfaction that needs to be meaningfully shared among the
individuals. In an unconstrained problem, the nondominated rank of the solutions based
on the objective values are used to generate the set of leaders (SOL) while a multilevel
sieve is implemented to generate the SOL for constrained problems. From the SOL, a
leader is probabilistically selected based on the crowding radius of the leaders (in the
objective space). Leaders with less number of individuals around them have a higher
probability of being selected for information sharing thus allowing the strategy to explore
new areas and maintain a spread along the Pareto front. The information acquisition
strategy is based on a simple generational operator that ensures all the individuals in the
swarm are unique (based on the variable space) as in a real swarm, where at a given time
instant two individuals cannot share the same location. The proposed algorithm is
described in detail in the next section separately for unconstrained and constrained

multiobjective problems.



2. Mathematical Formulation
A general constrained multiobjective optimization problem (in minimization sense) is

presented as:
Minimize  f=[fi(x) f£,(x) - f,(x)]
gix)=a; ,i=1,2,...q9.
Subject to
hijx)=b;, j=1,2,...7r.
where there are ¢ inequality and r equality constraints and x = [x ;X .. xn] is the
vector of n design variables.
It is a common practice to transform the equality constraints (with a tolerance o)
to a set of inequalities and use a unified formulation for all constraints:
hj(x) < b; + 0 which is same as — h; (x) > — b;— o and h; (x) > b, — 0.
Thus r equality constraints will give rise to 2r inequalities, and the total number
of inequalities for the problem is denoted by s, where s=g+2r.

For each individual, ¢ denotes the constraint satisfaction vector given by c

=[c, Cy ... cs]where
0 if i" constraint s satisfied ,i=1,2,.., s
a, — g,(x) if i" constraint is violated ,i=1.2,.., q
Cc. =

b, — & — h,(x) if i" constraint is violated ,i=q+1,q+2,... q+r

—b, -0+ h,(x) if i™ constraint  is violated ,i=q+r+1,q+r+2,.,s
For the above ¢;'s, ¢; = 0 indicates the i™ constraint is satisfied, whereas ¢,> 0

indicates the violation of the constraint. The CONSTRAINT matrix for a swarm of M

individuals assumes the form



CONSTRAINT = | 2 7
Cy1 Car Chss
The objective matrix assumes the form
Ju  fio S
oiEcTive = |7 i % 2o /. *
S Juz S

In a swarm of M individuals, all nondominated individuals are assigned a rank of
1. The rank 1 individuals are removed from the swarm and the new set of nondominated
individuals is assigned a rank of 2. The process is continued until every individual in the
swarm is assigned a rank. Rank=1 in the objective or the constraint matrix indicates that
the individual is nondominated. It can be observed from the constraint matrix that when
all the individuals in the swarm are infeasible, the Rank=1 solutions are the best in terms
of minimal constraint violation. Whenever there is one or more feasible individual in the
swarm, the feasible solutions assume the rank of 1.

The initial swarm consists of a collection of random individuals. Over time, the
individuals communicate with the better performers and derive information from them.

The pseudo code of the algorithm is presented below.

2.1 Algorithm

Initialize Munique individuals in the Swarm
Unconstrai ned Problem Strategy

Do {

Conput e Cbj ective Values of each Individual in the Swarm

Conput e Ranks based on the Objective Matri x;



Comput e the Average
Count the Nunmber of

Rank based on the Cbjective Mtri x;
Rank 1 I ndividual s;

If (Number of Rank 1 Individuals < M2)

Assign Individuals to SOL if their Rank < Average

Rank;

[f (Nunmber of Rank 1 Individuals > M2)

Assign Rank 1 Individuals to SC;

For (Each I ndivi dual

not in SOL) {

Do {
Sel ect a Leader from SOL to derive information;
Acquire information fromthe Leader and nove to a
new point in the search space;

} while (all individuals are not unique)

}

} while (termination condition = Fal se)

Constrai ned Probl em Strateqgy

Do {

Conput e Obj ective values for each Individual in the Swarm

Conmput e Constraint values for each Individual in the Swarm

Use Non Doninated
oj ective Matri x;
Use Non Doninated
Constraint Matrix;
Comput e the Average
Count the Number
oj ective Matri x;
Conput e the Average
Count the Number
Constraint Matrix;

Sorting to Rank |Individuals based on

Sorting to Rank |Individuals based on

Rank based on the Cbjective Mtrix;
of Rank 1 Individuals based on the

Rank based on the Constraint Mtrix;

of Rank 1 Individuals based on the



Count the Nunmber of Feasible Individuals;
If Nurmber of Individuals with Objective Rank=1 > M 2:
Average Obj ective Rank=1;
If Nunmber of Individuals with Constraint Rank=1 > M 2:
Average Constraint Rank=1;
I f Nunber of Feasible Individuals = 0 {
Assign Individuals to SO wth Constraint Rank <
Aver age Constraint Rank;

Shrink the above SO., to contain Individuals wth
Obj ective Rank < Average (bjective Rank;

}
I f Nunber of Feasible Individuals > 0 {

Assign Feasible Individuals to SC;

Shrink the above SO., to contain Individuals wth

hj ective Rank < Average bjective Rank;

}
For (Each Individual not in SQ.) {
Do {
Select a Leader from the SOL to derive
i nformati on;
Acquire information fromthe Leader and nove to a
new point in the search space;
} while (all individuals are not unique)

}

} while (term nation condition = Fal se)

For a constrained problem, individuals with a constraint rank = 1 (nondominated
based on constraint matrix) are the best performers based on constraint satisfaction.

When there are no feasible individuals in the swarm, the SOL consists of all
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nondominated individuals based on the constraint matrix. When there is one or more
feasible individuals, the SOL will consist of all feasible individuals as they will have a
constraint rank = 1. The size of SOL is expected to grow, as more and more individuals
become feasible. To maintain a selective pressure in such a feasible SOL, individuals are
allowed to be members of SOL only if they are better than average performers based on
objective ranks. This process ensures that there is a pressure maintained among the
feasible SOL members to improve their objective performance to remain as SOL

members.

2.2 Selection of a Leader from SOL

The selection of a leader from the SOL is an important element of this algorithm that
results in the spread of points along the Pareto frontier and extended limits of the Pareto
curve. For every member of SOL, a crowding radius is computed that is the average of
the distance between its left and right neighbor (based on the objective space) in the
swarm. SOL members with a smaller crowding radius indicate that there are more
individuals in the objective space around it. Deb et al. (2000) implemented a similar
crowding radius concept in their fast elitist NSGA implementation. Selection of a leader
from the SOL is based on a roulette wheel scheme that ensures SOL members with a
larger crowding radius have a higher probability of being selected as a leader. The

process in turn results in a spread along the Pareto frontier.

2.3 Acquiring Information through the Generational Operator
A simple generational operator is used in this study to acquire information from a leader.

The operator can result in a variable value even if it does not exist in either the individual



or its leader, which is useful to avoid premature convergence. The probability of a
variable value generated between an individual and its leader is 50%. The probability of a
variable value generated between the lowerbound of the variable and the minimum
among the individual and its leader or between the upperbound of the variable and the
maximum among the individual and its leader is 25% each. In addition to the above
process, a solution is regenerated if it is non-unique in the variable space. The above
generational operator has been used in an evolutionary algorithm to solve single objective
constrained optimization problems by Ray et al (2000) and for multiobjective engineering
design optimization problems by Ray et al (2001). Though the present examples have
been solved using the above operator, other generational operators like the simulated

binary crossover (SBX) proposed by Deb and Kumar (1995) may well be used instead.

3. Examples

Two test functions one with a discontinuous Pareto front and the other with a multimodal
Pareto front is taken up to illustrate the capabilities of the proposed algorithm to handle
mathematically difficult problems. Three engineering design optimization problems are
then solved to illustrate the efficiency and applicability of the algorithm for

multiobjective design optimization problems.

3.1 Discontinuous Pareto Optimal Front
Deb (1999) introduced this multiobjective optimization problem that has a discontinuous
Pareto optimal front.

Minimize f,(x) = x,
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2
C X x, sin(8zx,)
Minimize x)=(1+10x,)| 1- 1 _ 1
= 2)( [1+10sz 1+10x, J

Subjectto 0<x<I.
The Pareto optimal front obtained by the swarm algorithm is presented in Figure
1. A discontinuous Pareto front is considered difficult to obtain by methods using
function space niching and such fronts can only be generated by an effective
diversification mechanism (Deb, 1999). The Pareto front consists of 40 points and was
obtained after 29,572 function evaluations that compares well with the Pareto front

obtained by Deb (1999) using 60,000 function evaluations.
Insert Figure 1

3.2 Multimodal Multiobjective Problem

This bimodal, two objective problem has also been introduced by Deb (1999). The
problem is considered difficult as a local Pareto front exists at x,=0.6, while the global
front exists at x,=0.2 (which is a sharp inverted spike). Deb (1999) obtained the global
front in 41 instances out of 100 trials with a population size of 60 running for 100
generations. The proposed algorithm reached the global Pareto front consisting of 100
solutions using 2323 function evaluations in all 10 out of 10 trials when run with a swarm
size of 100 flying for 1000 time steps.

Minimize f,(x)=x,

x, —0.2)’ x, ~0.6)’
M. .. :2'0_ _ 2 —08 - 2
inimize £, (x) eXp{ ( 0.004 j } exp{ ( 0.4 j }

Subjectto 0 <x, <l and 0 <x, <1.

11



Insert Figure 2

3.3 Design of a Welded Beam

This example deals with a welded beam that is to be designed for minimum cost and
minimum end deflection subject to constraints on shear stress, bending stress and
buckling load. The four design variables 4, I, t and b correspond to x;, x2, x3 and x4 and
are shown in Figure 3. This problem has been solved by Deb (1999) using a real coded
GA with simulated binary crossover (SBX) with a population size of 100 running for 500

generations. The mathematical formulation of the problem is presented below.

Insert Figure 3

Insert Figure 4

Minimize f,(x)=1.10471x}x, +0.04811x,x,(14.0 + x,)
Minimize f,(x) = d(x)
Subject to

T(X) ~Tpp <0

o(xX)—0,, <0

x,—x, <0
0.125-x, <0
P-P.(x)<0

"
27'c'x,

where 7(x) = \/(r’) + SR +(z")
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T =
V2x,x,
, MR
"=
J
M=P(L+22

6PL
o(x)=——
X,y
4PL
o(x) = 3
Ex,x,

2 6
X3 X,

4.013E7 N 7
fe)=—"7 [“ﬁmj

P =6000 Ib, L = 14 in, 8max = 0.25 in, E =30 x 10° psi, G = 12 x 10° psi, Tmax = 13,600

psi, Omax = 30,000 psi, 0.125 < x;<5.0, 0.1 < x>,<10.0, 0.1 < x3< 10 and 0.125 < x4<

5.0.

Insert Figure 5§

The Pareto front obtained by the swarm algorithm is presented in Figure 4. A
swarm size of 100 flying for 500 time steps resulted the front. It consists of 42 points and

was obtained after 18,389 evaluations. It can be observed from Figure 4 that the Pareto
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front is similar to the one presented by Deb (1999) and both of them have the same limits
of the Pareto curve. The progress of the swarm is presented in Figure 5. It can be
observed from Figure 5 that the swarm initially has about 30% feasible individuals while
towards the end has about 70% to 85% feasible solutions indicating that the process of
communication between the individuals and their leaders have helped to improve
feasibility of the individuals in the swarm. The number of individuals in the Pareto front

also increased from a mere 5% to approximately 40% of the swarm over the time period.

3.4 Design of a Disc Brake

This example deals with the design of a multiple disc brake and has been discussed by
Osyczka and Kundu (1995). The objectives of the design are to minimize the mass of the
brake and to minimize the stopping time. The variables are the inner radius of the discs,
outer radius of the discs, the engaging force and the number of friction surfaces and are
represented as x;, x2, x3 and x; respectively. The constraints for the design include
minimum distance between the radii, maximum length of the brake, pressure, temperature
and torque limitations. The problem is a mixed, constrained, multiobjective problem. The

mathematical details of the optimization problem formulation are presented below.
Minimize f,(x)=4.9x107(xJ — x)(x, —1)

9.82x10°(x2 —x7)

3 3
X3X, (x5 —x7)

Minimize f,(x)=

Subject to
(x, —x,)—20=0

30-2.5(x, +1)> 0
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X3

3.14(x; —x;)

1_2.22><10—3x3(x§ -x})

>0
(x; —x7)°

2.66x10 2 x,x,(x3 — x7)

~900> 0
(x3 =)

where 55<x; <80, 75<x; < 110, 1000< x3 <3000 and 2< x4 < 20.

Insert Figure 6

The Pareto front is presented in Figure 6 as obtained with a swarm size of 500
flying for 20 time steps. It consists of 52 points and was obtained after 6,385 evaluations.
The proposed algorithm results in an extended Pareto curve between (0.2, 32) and (2.7, 2)
whereas Osyczka and Kundu (1995) reported 30 Pareto solutions between (1.7, 2.9) and
(3.4, 2.1) with 10,000 function evaluations. It is interesting to note that the proposed
algorithm generated the extended Pareto front with more number of evenly spread Pareto

points using significantly less number of function evaluations.

3.5 Design of a Four Bar Truss

This problem has been introduced by Stadler and Dauer (1992). Cheng and Li (1999)
solved the problem and obtained a single point in the Pareto front based on a generalized
center method. Figure 7 illustrates the problem where the structural volume (f;) and the
displacement (f>) at joint (2) are to be minimized subject to the stress constraints on the

members. The cross sectional areas of the members 1, 2, 3 and 4 are the design variables
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represented as x;, x,, x3 and x4 respectively. Figure 8 presents the Pareto optimal front for

the problem.

Minimize f,(x)= L(2x, + \/Exz + \/§x3 +x,)

FL 2 22 242 2

Minimize f,(x)=—(—+ +—)
E x x, Xy X,

Subject to: Flo<x <3F/c
\/EF/O'Sx2 <3F/o
V2F/o<x,<3F/c
Flo<x,<3F/c

where F= 10 kN, E = 2.00E05 kN/cm?, L = 200 cm and o= 10 kN/cm?

Insert Figure 7

Insert Figure 8

Cheng and Li (1999) obtained a single solution on the Pareto optimal front while
the present algorithm resulted in a set of solutions along the Pareto optimal curve
between (3000, 0.0035) and (1400, 0.035) as shown in Figure 8. The algorithm with a
swarm size of 100 flying for 100 time steps resulted in 91 Pareto optimal points after

2,525 function evaluations.

4. Summary and Conclusions
A new algorithm has been introduced in this paper that mimics the social behavior of a

real swarm. The algorithm is capable of handling unconstrained and constrained
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multiobjective problems with continuous, discrete or mixed variables without having any
restriction on the number of variables, constraints or objectives. Moreover the algorithm
does not require any additional inputs or need further assumptions on functional form or
continuity. The success of the swarm is attributed the identification of a set of leaders,
selection of a leader for information acquisition and finally the effective information
sharing between the leaders and the rest of the individuals. The above information
sharing process results in the holistic improvement of swarm rather than a greedy search
improving a few individuals of the swarm. Such a feature is effective for problems with
multiple sub-optimal Pareto fronts.

The use of Pareto ranks to handle constraints eliminates the problem of scaling
and aggregation at the expense of nondominated sorting. Nondominated sorting is a
computationally expensive process. However, in solving problems in engineering design,
it is meaningful to make use of all computed information to better guide the search, as
objective function evaluations are equally (or a few times more) expensive.

Unlike a real swarm, where a leader is a neighbor in the variable space, a new
leader selection process is introduced in this algorithm that is based on the objective
space to help maintain a spread along the Pareto front. The probabilistic selection of a
leader from the set of leaders is based on the crowding radius. The roulette wheel
selection scheme ensures that the solutions having less number of individuals around
them (in the objective space) have a greater chance of being selected as leaders.
Subsequently, a simple generational operator is used to derive information from its
leader. The process is effective in finding extended limits of the Pareto curve while

maintaining a reasonable spread along the front.
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The results of the mathematical test problems clearly illustrate that the swarm
algorithm is capable of solving problems with multimodal Pareto fronts and even
problems with discontinuous Pareto fronts. For the three engineering design optimization
problems, the swarm algorithm consistently resulted in more number of Pareto points
with fewer function evaluations. It also identified extended limits of the Pareto front

while maintaining a good spread along the front.

5 Future Work

The preliminary results of the swarm algorithm are promising. New leader selection and
individual-to-leader matching strategies are currently being investigated that can reduce
the number of function evaluations while maintaining the same spread. The algorithm is
also currently being tested on a suite of mathematical test functions for constrained and
unconstrained multiobjective optimization to conclusively comment on its performance.

Such results will be reported once the studies are complete.
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Figure 3 Welded Beam
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Figure 7 Four Bar Truss
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