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ABSTRACT 

Evolutionary algorithms (EA) are search strategies that 
mimic the process of natural evolution. All EA’s have two 
fundamental strategies; a selection and a recombination 
strategy both of which are known to largely influence the 
performance of the algorithm. The selection strategy 
ensures fitter individuals have a greater chance of survival 
and a greater participation in mating while the 
recombination strategy aims to inherit meaningful parent 
properties. In this paper a new fitness assignment scheme 
and a new parent selection strategy is proposed. The 
individuals are assigned separate fitness values in the 
objective and the constraint space unlike most EAs that 
use a single fitness measure for selection.  The parent 
selection mechanism employed in the algorithm is both 
elitist and adaptive. The recombination strategy is based 
on a parent centric operator that explores the 
neighborhoods of good parents in search for better ones. 
In this paper we present the results obtained by our 
algorithm and compare it with the reported results on a 
suite of six single objective constrained test problems. 
  
 

1. INTRODUCTION 
Evolutionary algorithms are a popular choice in attempts 
to solve real li fe optimization problems. EAs are 
particularly attractive as they are applicable to a wide 
class of problems and can deal with models without 
simplifying assumptions of linearity or continuity.  The 
success of any evolutionary algorithm can be attributed to 
two fundamental processes of selection and 
recombination. In order to perform selection, every 
individual needs to be assigned a fitness value. This 
measure of fitness is used to determine whether or not an 
individual survives and copies itself to the next generation 
and whether or not it participates in mating.  

The fitness values can be assigned to individuals 
based on either its objective function value or its rank for 
unconstrained problems.  However, the assignment of 
fitness values to individuals for constrained problems is 

non trivial as it requires a means to compare infeasible 
solutions. Existing evolutionary methods use sum of 
constraint violations, sum of scaled constraint violations, 
amount of largest constraint violation, weighted and 
scaled combinations of the above or adaptive weights and 
scaling factors to assign fitness values to infeasible 
individuals.  These methods of fitness assessment are 
computationally simple but often require additional inputs 
or intrinsically define fitness measures that may or may 
not be desirable. 

In this paper, a formal notion of comparison is 
proposed that forms the basis of the algorithm presented 
later in Section 2. The algorithm is built upon the 
following concepts, the details of which are outlined in 
Section 2. 

 
1. A feasible solution is preferred over an infeasible 

solution. 
2. Between two feasible solutions, one with a better 

objective function value if preferable over the other. 
3. Between two infeasible solutions, one with a lower 

Pareto Rank based on the Constraint matrix is 
preferred over the other.   

4. The algorithm drives a population towards feasibili ty 
first before trying to improve an individuals’ 
objective function value.  

 
 

2. MATHEMATICAL FORMULATION 
A single objective constrained optimization problem can 
be presented as follows: 
 
Minimize 
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qiag ii ,1,2,,)( �=≥x  (2) 

rjbh jj ,1,2,,)( �==x  (3) 

 



where there are q inequality and r equality constraints and 
[ ]n21 xxx �=x  is the vector of n design 

variables. In order to handle equality constraints, each 
equality constraint is replaced by a pair of inequali ties of 
the form hj (x) 

�
bj �

�
and hj (x) � bj � � . Thus r equality 

constraints lead to 2r inequalities, and the total number of 
inequalities for the problem is denoted by s=q+2r. For 
each individual, c denotes the constraint satisfaction 
vector c = [ ]s21 ccc 	 where ci >0 indicates the 
violation of the ith constraint. The CONSTRAINT matrix 
for a population of M individuals assumes the form 
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The objective matrix of the population assumes the form 
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One can use a Nondominated Sorting to rank the 
individuals based on the Constraint matrix while a simple 
sorting can be used rank the individuals based on the 
Objective matrix. A linear expression of fitness is used in 
this study where fitness of the ith individual is presented as 
follows: 

)(1 iRankMaxRankfitnessi −+=  (6) 

 
It can be observed from the constraint matrix that when all 
the individuals in the population are infeasible, the 
Rank=1 solutions are the best in terms of minimal 
constraint violation. Whenever there is one or more 
feasible individuals in the population, the feasible 
solutions assume the rank of 1.  The pseudo code of the 
algorithm is presented below. 

 
Initialize a Population (P) with M individuals using a 
Uniform Random Generator and the Variable Bounds; 
Do { 

Compute Objective value the Constraint Satisfaction 
Vector for each Individual in the P; 

Sort and Rank the Individuals of P based on their 
Objective Function values; 

Sort and Rank the Individuals of P based on their 
Constraint Satisfaction Vector using Non 
Dominated Sorting; 

Compute the Average Objective and Average 
Constraint Rank; 

Count the Number of Feasible Individuals; 
Assign Individuals with Objective Rank < Average 

Objective Rank to Set A; 
Assign Individuals with Constraint Rank < Average 

Constraint Rank to Set B; 
Assign Feasible Individuals as Set C; 
Compute A∩B and A∩C; 
If (Size of Set C = 0): Assign Individuals with Rank 

Constraint = 1 to Set E; 
If (Size of Set C > M/2) and (Size of A∩C > 0): 

Assign Individuals A∩C to Set E; 
 If (Size of Set C > M/2) and (Size of A∩C=0): Assign 

Individuals of C to Set E; 
If (Size of Set C <= M/2) and (Size of C>0): Assign 

Individuals of C to Set E; 
Copy Individuals of Set E to the Population for the 

Next Generation; 
Do { 

Sort and Rank the Individuals of Set E based on 
their Objective Function values; 

Sort and Rank the Individuals of Set E based on 
their Constraint Satisfaction Vector using 
Non Dominated Sorting; 

 If (Size of C=0): Select Dad using Roulette 
Wheel based on Constraint Rank of the 
Individuals of Set E. 

If (Size of C>0) Select Dad using Roulette Wheel 
based on Objective Rank of the Individuals 
of Set E. 

If (Size of C>M/2): Select Mum 1 and Mum 2 
using Roulette Wheel based on Objective 
Rank of the Individuals of the Population 
(P). 

If (Size of C<=M/2): Select Mum 1 and Mum 2 
using Roulette Wheel based on Constraint 
Rank of the Individuals of the Population 
(P). 

If Mum 1 is Feasible and Mum 2 is not: Partner 
is Mum 1. 

If Mum 2 is Feasible and Mum 1 is not: Partner 
is Mum 2. 

If both Mum 1 and Mum 2 are Feasible: Partner 
is the one with mimimum Objective Rank. 

If both Mum 1 and Mum 2 are Infeasible: 
Partner is the one with mimimum Constraint 
Rank. 

Mate Dad with the Partner to generate a Child 
using a Parent Centric Crossover Operator. 

Copy the Child to the Population of the Next 
Generation. 

} while Population is not Full ; 
} while (termination condition = False) 

 



Pseudo code of the parent centric recombination operator. 
 

Select a Parent (P) randomly among parents P1 and P2; 
Compute the Euclidian distance (D) between P1 and P2 in 
the parametric space; 
For i =1 to Number of Variables 

Generate a random number (R) using a Gaussian 
distribution with µ = 0 and σ = 1;  

 C(i) = P(i) +R.D;  
 

An instance of a population can assume any of the above- 
forms.  
 
 

 
 

 
 

Form. I          Form. II  
 
 

 
 

 
 

Form. III          Form. IV 
 
Form 1 and Form II: A population of a highly 
constrained problem during the initial generations is likely 
to assume such forms where there are no feasible 
solutions. The elites refer to individuals that have a 
constraint rank =1.  The parents are selected using a 
Roulette wheel based on the constraint rank of the 
individuals. 
 
Form III and Form IV: A population will assume either 
of these forms when there are one or more feasible 
solutions. If the number of feasible solutions is less than 
half the size of the population, all  the feasible individuals 
are assigned as elites. If the number of feasible solutions is 
more than half the size of the population, the set of 
solutions that are both feasible and good in objective 
performance are assigned as elites. As for mating, a parent 
P1 is selected from the set of eli tes using a Roulette wheel 
based on its objective rank. Two potential partners P2 and 

P3 are selected using Roulette wheel based on objective 
rank if the number of feasible solutions are more than half 
the population or selected using Roulette wheel based on 
constraint rank if the number of feasible solutions are less 
than half the population. A tournament selection between 
P2 and P3 is used to decide the winner that mates with P1. 
 
 

3. RESULTS AND DISCUSSION 
In this paper, a new evolutionary algorithm is proposed to 
solve constrained single objective optimization problems. 
The algorithm is attractive, as it does not require any 
additional inputs (scaling factors or weights) to handle 
constraints. The algorithm employs a parent centric 
recombination operator that is aimed to explore 
neighborhoods of good parents unlike some algorithms 
that use mean centric recombination.  

We have reported our results for all the inequali ty 
constrained problems (without trigonometric functions) 
that appear in Koziel and Michalewicz[1]. The results of 
this study are based on 50 independent trials for each 
problem. The performance of the algorithm and the 
population histories are currently being studied to gain 
better insights on the process of evolution. 
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Table 1: Nature of the Test Functions 

 
 

 
 
 
 
 
 

 
 

 
Table 2: Comparison of Results for G1 

 
    Best Avg. /Med. Worst Fun. Evals. 
G1 Present 50 20,000 -15.0  -14.7531 

-15.0 
-13.0 718,854 

 Ref.1 70 5,000 -14.7207 -14.4609 
----------- 

-14.0566 350,000 

 Ref.1 70 20,000 -14.7864 -14.7082 
----------- 

-14.6154 1,400,000 

 Ref.2 130 500 -15.0 ----------- 
-15.0 

-13.0 65,130 

 
The optimum solution to this problem is (1,1,1,1,1,1,1,1,1,3,3,3,1) with f =-15.0. 

 
Table 3: Comparison of Results for G4 

 
    Best Avg. /Med. Worst Fun. Evals. 
G4 Present 50 20,000 -30603.0 -30306.0 

-30312.0 
-29849.0 11,523 

 Ref.1 70 5,000 -30662.5 -30643.8 
----------- 

-30617.0 350,000 

 Ref.1 70 20,000 -30664.5 -30655.3 
----------- 

-30645.9 1,400,000 

 Ref.2 50 1,000 -30646.469 ----------- 
-30279.744 

-29794.441 50,000 

 Ref.2 50 5,000 -30665.537 ----------- 
-30665.535 

-29846.654 250,000 

 Ref.3 90 10,000 -30664.8 -30632.4 
----------- 

-30493.7 900,000 

 
The optimum solution is ( 78, 33, 29.995256,45,36.775812) with f = -30665.539. 
 

Table 4: Comparison of Results for G6 
 

    Best Avg. /Med. Worst Fun. Evals. 
G6 Present 50 20,000 -6960.7 -6885.3 

-6911.1 
-6477.6 504,989 

 Ref.1 70 5,000 -6901.5 -6191.2 
----------- 

-4236.7 350,000 

 Ref.1 70 20,000 -6952.1 -6342.6 
----------- 

-5473.9 1,400,000 

 Ref.3 90 5,000 -6961.7 -6950.7 
----------- 

-6819.0 450,000 

 
The optimum solution is (14.095, 0.84296) with f= -6961.81381. 

 

 

 N Type of 
Function 

% 
Feasible 

LI NI Act.  
Const 

G1 13 Quadratic 0.0111  9 0 6 
G4 5 Quadratic 52.1230  0 6 2 
G6 2 Cubic 0.0066  0 2 2 
G7 10 Quadratic 0.0003  3 5 6 
G9 7 Polynomial 0.5121  0 4 2 
G10 8 Linear 0.0010  3 3 6 



 
Table 5: Comparison of Results for G7 

 
    Best Avg. /Med. Worst Fun. Evals. 
G7 Present 50 20,000 24.5553 30.4769 

29.2198 
39.7454 517,887 

 Ref.1 70 5,000 25.132 26.619 
----------- 

38.682 350,000 

 Ref.1 70 20,000 24.620 24.826 
----------- 

25.069 1,400,000 

 Ref. 2 100 1,000 24.87747 ----------- 
26.73401 

50.40042 100,000 

 Ref. 2 100 3,500 24.37248 ----------- 
24.40940 

25.07530 350,100 

 
The optimum solution is (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,  
9.828726, 8.280092, 8.375927) with f= 24.3062091. 

 
Table 6: Comparison of Results for G9 

 
    Best Avg. /Med. Worst Fun. Evals. 
G9 Present 50 20,000 680.7160 683.6598 

682.1545 
714.4940 520,285 

 Ref.1 70 5,000 681.43 682.18 
----------- 

682.88 350,000 

 Ref.1 70 20,000 680.91 681.16 
----------- 

683.18 1,400,000 

 Ref.2 70 1,000 680.659424 ----------- 
681.525635 

687.188599 70,070 

 Ref.2 70 5,000 680.634460 ----------- 
680.641724 

680.650879 350,070 

 
The optimal solution (2.330499, 1.951372, -0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227) with 
f =680.6300573. 

 
Table 7: Comparison of Results for G10 

 
    Best Avg. /Med. Worst Fun. Evals. 
G10 Present 50 20,000 7323.4 8828.8 

8565.0 
  12675.0 185,107 

 Ref.1 70 5,000 7215.8 9141.7 
----------- 

11894.5 350,000 

 Ref.1 70 20,000 7147.9 8163.6 
----------- 

9659.3 1,400,000 

 Ref. 2 80 1,000 7065.742 ----------- 
8274.830 

10925.165 80,080 

 Ref. 2 80 4,000 7060.221 ----------- 
7220.026 

10230.834 320,080 

 Ref. 4 70 2,000 7063.95605 7310.10449 7854.61475 140,000 
 
 

The optimal solution (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)  
with f=7049.330923. 
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