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ABSTRACT

Evolutionary agorithms (EA) are search strategies that
mimic the process of natural evolution. All EA’s have two
fundamental strategies, a selection and a recombination
strategy both of which are known to largely influence the
performance of the dgorithm. The sdlection strategy
ensures fitter individuals have agreater chance of surviva
and a greater paticipation in mating while the
recombination strategy aims to inherit meaningful parent
properties. In this paper a new fithess assgnment scheme
and a new parent selection strategy is proposed. The
individuals are assigned separae fithess vaues in the
objective ad the constraint space unlike most EAs that
use a sngle fithess measure for selection. The parent
sdection mechanism employed in the dgorithm is both
elitist and adaptive. The recombination strategy is based
on a paent centric operator that explores the
neighborhoods of good parents in search for better ones.
In this paper we present the results obtained by our
algorithm and compare it with the reported results on a
suite of six single objective mnstrained test problems.

1. INTRODUCTION

Evolutionary algorithms are apopular choice in atempts
to solve red life optimization problems. EAs are
particularly attractive & they are aplicable to a wide
class of problems and can deal with models without
simplifying assumptions of linearity or continuity. The
success of any evolutionary algorithm can be dtributed to
two fundamenta  processes of sdection and
recombination. In order to perform sdection, every
individual needs to be asigned a fitness value. This
messure of fitness is used to determine whether or nat an
individual survives and copies itself to the next generation
and whether or not it participatesin mating.

The fitness vaues can be asigned to individuals
based on either its objective function value or its rank for
unconstrained problems. However, the asignment of
fitness values to individuals for constrained problems is
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non trivial as it requires a means to compare infeasible
solutions. Existing evolutionary methods use sum of
constraint violations, sum of scaed congrant violations,
amount of largest congraint violation, weighted and
scaled combinations of the above or adaptive weights and
scaling factors to assign fithess vaues to infeasble
individuals. These methods of fithess assessment are
computationally simple but often require alditional inputs
or intrinsicaly define fitness measures that may or may
not be desirable.

In this paper, a forma notion of comparison is
proposed that forms the basis of the dgorithm presented
later in Section 2. The algorithm is built upon the
following concepts, the details of which are outlined in
Section 2.

1. A feasible solution is preferred over an infeasible
solution.

2. Between two feasble solutions, one with a better
objective function valueif preferable over the other.

3. Between two infeasible solutions, one with a lower
Pareto Rank based on the Congraint matrix is
preferred over the other.

4. The dgorithm drives a populaion towards feasibili ty
first before trying to improve an individuas
objective function vaue.

2. MATHEMATICAL FORMULATION
A single objective mnstrained optimization problem can
be presented as foll ows:

Minimize
f(x) 1)
Subject to
g(x)=za ,i=1,2,..,9 2
hy(x)=b;,j=12,...r 3



where there ae q inequality and r equality constraints and
X :[x1 X, ... X,] is the vector of n design
variables. In order to handle equdity congraints, each
equality congtraint is replaced by a pair of inequdities of
theformh; (x) <b; + 6 andh; (x) = b, — 6. Thusr equality
constraints lead to 2r inequalities, and the total number of
inequalities for the problem is denoted by s=q+2r. For
each individual, c denotes the constraint satisfaction
vector ¢ :[cl C, CS]Where G >0 indicates the
violation of the i"" constraint. The CONSTRAINT matrix
for apopulation of M individuals assumes the form
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One can use a Nondominated Sorting to rank the
individuals based on the Constraint matrix while a simple
sorting can be used rank the individuas based on the
Objective matrix. A linear expression o fitnessis used in
this study where fitnessof the i" individual is presented as
follows:

fitness = 1+ MaxRank- Rank(i) (6)

It can be observed from the constraint matrix that when all
the indviduals in the population are infeasible, the
Rank=1 solutions are the best in terms of minima
constraint violation. Whenever there is one or more
feasble individuas in the population, the feasble
solutions assume the rank of 1. The pseudo code of the
algorithmis presented below.

Initialize a Population (P) with M individuals using a
Uniform Random Generator and the Variable Bounds;
Do {

Compute Objective \alue the Constraint Satisfaction
Vector for each Individual in the P,

Sort and Rank the Individuals of P based on their
Objective Function values;

Sort and Rank the Individuals of P based on their
Congtraint Satisfaction Vector using Non
Dominated Sating;

Compute the Average Objective and Average
Constraint Rank;

Count the Number of Feasible Individuals;
Assign Individuals with Objective Rank < Average

Objective Rankto St A;

Assign Individuals with Constraint Rank < Average

Constraint Rank to Set B;

Assign Feasible Individualsas Set C;
Compute AnB and AnC;
If (Sze of Set C = 0): Assign Individuals with Rank

Constraint = 1to St E;

If (Size of Set C > M/2) and (Sze of AnC > 0):

Assign IndividualsAnCto S E;

If (Size of Sat C > M/2) and (Size of AnC=0): Assign

Individuals of Cto S#t E;

If (Sze of Sat C <= M/2) and (Size of C>0): Assign

Individuals of Cto S#t E;

Copy Individuals of Set E to the Population for the

Next Generation;

Do {

Sort and Rank the Individuals of Set E based on
their Objective Function values,

Sort and Rank the Individuals of Set E based on
their Constraint Satisfaction Vector using
Non Dominated Sorting;

If (Sze of C=0): Sdect Dad using Roulette
Wheel based on Constraint Rank of the
Individuals of Set E.

If (Sze of C>0) Sdect Dad using Roulette Whed
based on Objective Rank of the Individuals
of SetE.

If (Size of C>M/2): Sdect Mum 1 and Mum 2
using Roulette Whed based on Objective
Rank of the Individuals of the Population
(P).

If (Sze of C<=M/2): Sdect Mum 1 and Mum 2
using Roulette Whed based on Constraint
Rank of the Individuals of the Population
(P).

If Mum 1 is Feasible and Mum 2 is not: Partner
isMum1.

If Mum 2 is Feasible and Mum 1 is not: Partner
isMum 2.

If both Mum 1 and Mum 2 are Feasible: Partner
isthe one with mimimum Cbjective Rank.

If both Mum 1 ard Mum 2 are Infeasble:
Partner isthe one with mimimum Congtraint
Rank.

Mate Dad with the Partner to generate a Child
using a Parent Centric Crossover Operator.

Copy the Child to the Population of the Next
Generation.

} while Population isnot Full;
} while (termination condition = False)




Pseudo code of the parent centric recombination operator.

Select a Parent (P) randomly among parents P1 and P2;
Compute the Euclidian distance (D) between P1 and P2in
the parametric space;
For i =1 to Number of Variables
Generatea random number (R) usinga Gaussan
distributionwithy=0and o= 1,
C(i) = P(i) +RD;

An instance of a population can assume any of the dove-
forms.

OO @

Form. |
@ ‘
Form. [l Form. IV

Form 1 and Form II: A populaion d a highly
constrained problem during the initia generations is likely
to assume such forms where there are no feasble
solutions. The dites refer to individuas that have a
constraint rank =1. The parents are selected using a
Roulette whed based on the onstraint rank of the
individuals.

Form Il and Form 1V: A population will assume dther
of these forms when there ae one or more feasble
solutions. If the number of feasible solutions is less than
half the size of the population, al the feasible individuals
are assigned as dites. If the number of feasible solutions is
more than hdf the size of the population, the set of
solutions that are both feasible and good in objective
performance are asigned as dlites. As for mating, a parent
P1 is sected from the set of dites using a Roulette wheel
based on its objective rank. Two potentid partners P2 and

P3 are selected using Roulette whed based on dbjective
rank if the number of feasible solutions are more than haf
the population a sedlected using Roulette wheel based on
constraint rank if the number of feasible solutions are less
than helf the popuation. A tournament selection between
P2 and P3 isused to decide the winner that mates with P1.

3. RESULTSAND DISCUSSION

In this paper, a new evolutionary algorithm is proposed to
solve mnstrained single objective optimization problems.
The dgorithm is attractive, as it does not require any
additional inputs (scaling factors or weights) to handle
constraints. The algorithm employs a parent centric
recombination operator that is amed to explore
neighborhoods of good parents unlike some dgorithms
that use mean centric recombination.

We have reported our results for al the inequality
constrained problems (without trigonometric functions)
that appear in Koziel and Michaewicz[1]. The results of
this gudy are based on 50 independent trials for each
problem. The performance of the dgorithm and the
popuation histories are arrently being studied to gain
better insights on the process of evolution.
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Table1: Natureof the Test Functions

N [ Typeof % LI [ NI [Act
Function Feasble Congt
Gl 13 | Quadratic 0.0111 9 0 6
G4 5 | Quadratic 52.1230 | O 6 2
G6 2 | Cubic 0.0066 0 2 2
G7 10 | Quadratic 0.0003 3 5 6
G9 7 Polynomial 0.5121 0 4 2
G10 |8 | Linear 0.0010 3 3 6
Table2: Comparison of Resultsfor G1
Best Avg. /Med. Worst Fun. Evds.
Gl Present 50 20,000 -15.0 -14.7531 -13.0 718,854
-15.0
Ref.1 70 5,000 -14.7207 -14.4609 -14.0566 350,000
Ref.1 70 20,000 -14.7864 -14.7082 -14.6154 1,400,000
Ref .2 130 500 150 | - -13.0 65,130
-15.0
The optimum solution to thisproblemis(1,1,1,1,1,1,1,1,1,3,3,3,1) with f =-15.0.
Table3: Comparison of Resultsfor G4
Best Avg. /Med. Worst Fun. Evds.
G4 Present 50 20,000 -30603.0 -30306.0 -29849.0 11,523
-30312.0
Ref.1 70 5,000 -30662.5 -30643.8 -30617.0 350,000
Ref.1 70 20,000 -30664.5 -30655.3 -30645.9 1,400,000
Ref .2 50 1,000 -30646.469 | -——-—— -29794.441 50,000
-30279.744
Ref .2 50 5,000 -30665.537 | - -29846.654 250,000
-30665.535
Ref.3 90 10,000 -30664.8 -30632.4 -30493.7 900,000
The optimum solution is( 78, 33, 29.995256,45,36.775812) with f = -30665.539.
Table4: Comparison of Resultsfor G6
Best Avg. /Med. Worst Fun. Evds.
G6 Present 50 20,000 -6960.7 -6885.3 -6477.6 504,989
-6911.1
Ref.1 70 5,000 -6901.5 -6191.2 -4236.7 350,000
Ref.1 70 20,000 -6952.1 -6342.6 -5473.9 1,400,000
Ref.3 90 5,000 -6961.7 -6950.7 -6819.0 450,000

The optimum solution is (14.095, 0.84296) with f= -6961.81381.




Table5: Comparison of Resultsfor G7

Best Avg. /Med. Worst Fun. Evds.
G7 Present 50 20,000 24.5553 30.4769 39.7454 517,887
29.2198
Ref.1 70 5,000 25.132 26.619 38.682 350,000
Ref.1 70 20,000 24.620 24.826 25.069 1,400,000
Ref. 2 100 1,000 2487747 | - 50.40042 100,000
26.73401
Ref. 2 100 3,500 2437248 | - 25.07530 350,100
24.40940
The optimum solution is (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927) with f=24.3062091.
Table6: Comparison of Resultsfor G9
Best Avg. /Med. Worst Fun. Evds.
G9 Present 50 20,000 680.7160 683.6598 714.4940 520,285
682.1545
Ref.1 70 5,000 681.43 682.18 682.88 350,000
Ref.1 70 20,000 680.91 681.16 683.18 1,400,000
Ref .2 70 1,000 680.659424 | - 687.188599 70,070
681.525635
Ref .2 70 5,000 680.634460 | -—--—-—- 680.650879 350,070
680.641724

Theoptimal solution (2.330499, 1.951372, -0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227) with
f =680.6300573.

Table7: Comparison of Resultsfor G10

Best Avg. /Med. Worst Fun. Evds.
Gl10 Present 50 20,000 73234 8828.8 12675.0 185,107
8565.0
Ref.1 70 5,000 7215.8 9141.7 11894.5 350,000
Ref.1 70 20,000 7147.9 9659.3 1,400,000
Ref. 2 80 1,000 7065.742 10925.165 80,080
Ref. 2 80 4,000 7060.221 | - 10230.834 320,080
7220.026
Ref. 4 70 2,000 7063.95605 7310.10449 7854.61475 140,000

Theoptimal solution (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)
with f=7049.330923.
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