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Fuzzy Logic vs. Niched Pareto Multiobjective Genetic Algorithm Optimization:
Part I: Schaffer’s F2 Problem
Brian J. Reardon, Los Alamos National Laboratory, Los Alamos, NM 87545


Abstract
A new multiobjective selection procedure for Genetic Algorithms based on the
paradigms of fuzzy logic is introduced, discussed, and compared to the niched Pareto
selection procedure.  In the example presented here the fuzzy logic procedure
optimized the parameter of Schaffer’s F2 problem in a manner of comparable
efficiency to that of the niched Pareto approach.  The main advantage, explicitly shown
in this report, that the fuzzy logic approach has over the niched Pareto approach is that
the experimental error or ‘uncertainty’ in the values to which a function is being
optimized towards can be accounted for and thus used to better refine the optimal
parameter range.


1.0 Introduction


1.1 Justification For Work


Numerous problems in materials science require the optimization of nonlinear


(Fraga, 1996), multiparameter (Duggirala, 1994), multiobjective (Ozyurt, 1996)


functions.  In addition, many such materials science optimization problems have


numerous minimums (or maximums) (Morgan, 1996) where all such points need to be


located.  Such problems are typified by atomic structure determination of proteins


(Bush, 1995), of clusters (Zeiri, 1995), of small molecules (Judson, 1993), of alloys


(Sutton, 1994), and of spin glasses (Smith, 1992).  Other problems include, potential


function parameter optimization (Skinner, 1995), x-ray diffraction pattern recognition


(Paszkowicz, 1996), curve fitting (Ahonen, 1997; Karr, 1995), and production


scheduling (Swinehart, 1996).  Unfortunately, such problems are not easily tractable to


such methodologies as Newton - Cauchy (Nazareth, 1995) or maximum entropy (Gzyl,


1995) and thus more robust search procedures are needed.


The requirements of an optimization method that can handle the above


mentioned conditions are that it (i) account for the fact that there may exist an entire


range of feasible solutions and it should determine what that range is, (ii) it must be


capable of multiobjective (or attribute) optimization, (iii) it must be able to conduct


comparisons solely on the final difference between experiment and theory and thus
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aim to minimize that difference, (iv) must obtain reasonable answers in a timely


manner, thus out performing a simple random or Monte Carlo search.  At present, the


only optimization technique that efficiently attempts to fulfill all of these requirements is


the genetic algorithm (GA) (Goldberg, 1989; Holland, 1975).


1.2 Generic GA Description


Generally speaking, one can formulate any optimization problem into a single


standard of measurement - a cost function or a fitness function - that determines the


performance of a decision and then recursively improves the performance by selecting


from the most feasible of alternatives.  For example, the square difference between an


experimental quantity, O, and its theoretical value f(x) could define a fitness function


such as O f x− ( )( )2
, where x represents the independent variable which must be


optimized to minimize O f x− ( )( )2
.  Traditional deterministic optimization techniques


require the use of gradient or higher order statistical analysis of the cost function


(Bazaraa, 1979).  These methods find optimal solutions exponentially fast.


Unfortunately, the solutions are usually locally optimal and insufficient for applied


engineering problems (Anderson, 1986).


Darwinian evolution is an intrinsically robust search and optimization


procedure.  Evolved biota have optimized solutions to complex problems at every level


of organization, from the cell up to the population.  The problems that biota have


solved and continue to improve upon, are typified by chaos, chance, temporality,


nonlinearity, and multidimensionality.  Such problems have proven to be intractable to


deterministic optimization techniques, especially in situations where heuristic solutions


are not available.


A GA falls into the much broader category of evolutionary algorithms.  These


algorithms attempt to simulate the processes of evolved biota in optimization.  The


essence of such a simulation lies in the expression of a solution to a problem not as a


single value but as a string of fundamental building blocks (genes) that can be


manipulated in much the same way as an extant species will manipulate its gene pool
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through selection and mating to produce more optimal offspring for the current


environment.  For example, consider x1, which is a member of a population of feasible


solutions to a problem but not necessarily the optimal solution.  The real value of x1 is


expressed as a string of binary digits, e.g.: 101101110, that is L digits long.  Each digit


or bit is called an allele.  This binary string is mapped to a real value of x1 such that the


string 11111111 corresponds to xmax and 00000000 corresponds to xmin.  xmax and xmin


define the upper and lower bounds respectively of the range of x that is being


searched.  The real value of x1 is commonly referred to as a phenotype, whereas the


binary string that defines x1 is referred to as a chromosome and the genetic information


contained in the chromosome is defined as a genotype.  If a function requires the


optimization of more than one variable, f(x,y), then the total chromosome for a specific


member is formed by placing the binary digits defining x and y back to back in one


string.  For example if  x1=001100 and y1 = 110001 then the chromosome for member


#1 would be: 001100110001.  


Manipulation of these strings occurs in much the same way as extant species


manipulate chromosomes.  First, competition among members of the population


determines who is most fit or optimal.  Second, the most optimal members are allowed


to reproduce.  Reproduction involves slicing the chromosomes of two members of the


populations and then exchanging the segments:


X


X
1


2


10100011


11110111


:


:
   →   


˜


˜


:


:


X


X


1


2


10100111


11110011


X̃1 and X̃2  are the resulting progeny and will be placed in the next generation.  The


actual crossover site is selected randomly with some probability, pc.  Third, mutation


occurs, which in a positively entropic system ensures genetic diversity in the


subsequent generation.  Mutation involves flipping the value of a randomly selected


allele with some probability, pm.  The new population that evolves from the selection,


crossover, and mutation operators is defined as a generation.  This cycle is repeated


for a number of generations as specified by the user.  
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Numerous references are available regarding the formal structure of genetic


algorithms and the theoretical foundation of their success (Fogel, 1994; Goldberg,


1989; Chambers, 1995).


1.3.0 Multiobjective Selection Procedures


1.3.1 Summation Of Least Squares


The simultaneous optimization of multiple objectives or attributes presents a


real challenge.  Consider a situation in which there are three functions (f1(x,y), f2(x,y),


and f3(x,y)) whose independent variables x and y need to be optimized.  In such a


situation the values of x and y that provide an optimal value of f1 may or may not


correspond to the optimal values of f2 and f3.  Consequently a number of approaches


have been adopted to extract a measure of fitness for the multiobjective system as a


whole.


The first and easiest approach is to define and optimize a single function that


incorporates each of the objectives (Swaragi, 1985).  Such a function would look like:


F A O f x yi i i
i


N


= − ( )( )
=


=


∑ ,
2


1


3


Eq. 1.


where fi is one of the objective functions, Oi is the value to which fi is being optimized


towards, and Ai is a weighting factor used to ensure that one objective does not


dominate the total fitness, F.


This approach has a number of draw backs.  First, the weighting factors, Ai,


have a significant impact on the ability of the GA to optimize all the functions.  Second,


the presence of the square is necessary to properly define the fitness function as a


minimization problem, however, this results in a loss of information that could


otherwise be used by the GA.  


1.3.2 Vector Evaluated GA


Another approach to multiobjective optimization was Schaffer’s vector


evaluated genetic algorithm (Schaffer, 1985; Richardson, 1989).  This approach
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involved evolving subpopulations along each of the objectives in question by allowing


selection to occur independently for each criterion while allowing mating to occur


between subpopulations.  This approach has a limitation, however, in that there is a


significant bias against middling individuals.  In other words, individuals that were


most optimum for one particular objective were prefered over individuals that


represented a genuine trade off between objectives.  


1.3.3 Niched Pareto GA


The next approach most commonly used today is the niched Pareto genetic


algorithm.  The methodology and efficiency of such a method has been elucidated


elsewhere (Horn, 1994; Ritzel, 1994) but a brief introduction will be presented here.


The Pareto front is defined as the boundary along which all members of a


population lie in a non-dominated environment.  This means that, although members


may have different attribute values, there is no member who is clearly better fit in all


attributes.  This environment, or frontier, represents the best of all possible tradeoffs


between multiple attributes.  Thus, the goal in a niched Pareto GA is to allow an entire


population to evolve towards a non-dominated Pareto optimal frontier.  Such an


approach has practical use when one considers that a unique solution to a problem


may not be attainable.


Traditional GAs (Goldberg, 1989) use binary tournament selection in which two


members of a population are selected at random and compared.  The better fit of the


two members (the dominating member) is then saved for reproduction.  Pareto


domination tournaments differ slightly from binary tournament selection.  Here,


selection is accomplished by choosing 2 individuals (candidates), i = 1,2, at random


from the current population.  In addition, a set of j individuals is chosen, also at


random, from the current population.  This is the comparison set.  Assuming the goal is


to minimize the absolute difference between experimental and calculated attributes,


the ith member is considered dominated by the comparison set if for any single j and
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for all k attributes O f O fk ki k kj−( ) ≥ −( )( )2 2
 is true and for the same j and at least one k


attribute O f O fk ki k kj−( ) > −( )( )2 2
 is true.


After the comparison, there are three possible situations: one candidate is


dominated by the comparison set and the other is not, or neither is dominated, or both


are dominated.  In the first case, the non-dominated candidate is selected for


reproduction. In the second and third case there is no clear winner and selection is


conducted via simultaneous continuously updated phenotypic niche counting.  The


individual with the lower niche count in the partly filled next generation is selected for


reproduction, since its genetic material is least represented in the gene pool.


Phenotypic niche counting is conducted by determining the distance, dij
Ph ,


separating members i and j in variable space.  This separation distance is calculated


through:


d
x x


x xij
Ph ik jk


k kk


V


=
−
−







=


∑
max min


2


1


, Eq. 2.


where the summation over k refers to the V variables that constitute a single member


of a population.  xkmax and xkmin are the maximum and minimum allowed values of the


variable space being searched.  If dij
Ph  is less than  some scaling factor, σ, then the


interaction is counted in the crowding factor:


C
d


i
Ph ij


Ph


j


= −∑1
σ


. Eq. 3.


Note that the distances are normalized in the definition above.  This normalization


ensures that a single variable being optimized over a small search range does not


dominate the crowding factor.  In the Pareto tournament selection, the least crowded


member will be selected for reproduction, since its genetic material is least


represented in the gene pool.
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This approach to multiobjective optimization has proven useful in a number of


practical applications.  However, it also has some drawbacks.  The first drawback lies


again in the defining the fitness of each attribute as the square value of the difference


between the experimental value and the calculated value.  This results in a net loss of


information that could otherwise be useful to the GA in the optimization process.  


The second drawback lies in the Pareto selection method itself.  Namely, one


can intuitively see that as the number of objectives being optimized goes up, the


likelihood that one randomly selected member dominates another goes down.  Thus,


the likelihood that a member is selected due to actual fitness superiority rather than


simple niche counting is dependent on the number of objectives.  


An increase in the prominence of niching over Pareto selection leads to a third


problem in the selection procedure.  Namely, the influence of the scaling factor.  If the


selection procedure depends primarily on niching then the scaling factor will force the


population to occupy sites in the variable space that are separated by a distance that


is a function of the scaling factor.  The evolution of such a population is thus not so


much optimal in fitness as it is most uniformly distributed throughout the  search space.


Another important point to consider in many engineering problems is that


optimization of a function towards an experimentally derived value should in principle


account for some degree of error in the experiment.  All of the multi-objective


optimization procedures described above assume that the value one is optimizing


towards is an absolute.  Furthermore, the above procedures do not allow the user to


make adjustments for the fact that some objectives may be known experimentally to a


high degree of accuracy while others will be known to a lower degree.


These drawbacks reveal a need for a revision to the niched Pareto procedure.


The revision proposed in this work involves a rudimentary application of fuzzy logic as


a selection method.


1.4 Fuzzy Logic Selection Methodology


A quick browse through the literature will show that fuzzy sets and fuzzy logic


have achieved an important role in day-to-day engineering.  The strength of fuzzy logic
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lies in its ability to define decision rules based on vaguely defined concepts rather


than crisply expressed mathematical constructs (Bandemer, 1995).  The use of fuzzy


logic in conjuction with genetic algorithms is not new (Taring, 1997; Sanchez, 1997).


However, the vast majority of papers on the subject deal with the use of Genetic


Algorithms to help evolve optimal fuzzy sets.  Surprisingly, little work has been done


on using fuzzy logic as a selection method within a multiobjective genetic algorithm.


The innovative work that has been done (Sakawa, 1997) overlooks a few of the


distinct advantages that fuzzy logic offers a multiobjective genetic algorithm.  These


advantages will be focused on here and in subsequent reports.


Multiobjective optimization using fuzzy logic, as presented here, is


fundamentally a hybrid of the least squares selection method and the niched Pareto


selection method.  The whole procedure can be summarized in two steps.  First, a


single fitness value that incorporates the values of all the objectives is calculated using


fuzzy rules.  Second, as in the Pareto selection procedure, two randomly selected


members are compared to a comparison set.  If one member has a fuzzy fitness value


that dominates the set and the other does not then the dominating member is selected.


Otherwise, continuously updated phenotypic niching is incorporated.  


The key to the fuzzy logic approach lies in the definition of the fitness function


and its corresponding fuzzy rules:


F
N


f fi
i


N


= ( )
=
∑1


1


' Eq. 4


which is essentially an average over the N objectives in question.  f’ is a fuzzy logic


rule set that scales the objective, fi, according to how far away it is from the


experimentally optimal solution.  A typical fuzzy set  would have the form:


if f O E f f
S


f O E
f O Ei i i i


i i i
i i i≤ −( ) → ( ) =


− −( )








− −( )( )' min


min


Eq. 5a
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if O E f O E f fi i i i i i−( ) ≤ ≤ +( ) → ( ) =' 0 Eq. 5b


if f O E f f
S


O E f
f O Ei i i i


i i i
i i i≥ +( ) → ( ) = −


+( ) −








− +( )( )' max


max


Eq. 5c


where Oi is the ith experimental value that the ith function, fi, is being optimized


towards, Ei is the error or accepted uncertainty in Oi, Smin(max) is a scaling parameter for


values below (above) the accepted value, fimin(imax) is the smallest (largest) value of all


the ith objectives in the population.  Figure 1 is a graphic representation of the above


functions.


Defining a multiobjective fitness function in such a way has a number of


practical advantages.  First, experimental uncertainty in the values to which a function


is being optimized can be accounted for since all the calculated values within a certain


range have the same fitness.  Second, values less than or greater than the optimal


value will each have their own distinct fitness and thus the GA will in effect have more


information with which to optimize.  Third, as will be shown explicitly in a subsequent


report, the ability of the GA to select a member will not be influenced by the number of


objectives as is the case in the niched Pareto method.  Fourth, while one could argue


that Smax and Smin are user defined parameters, their net influence on the final


optimization procedure is not as great or as unpredictable as that of the weighting


factors in the sum of least squares approach since it is a relatively simple matter to set


Smax and Smin to the same values for all objectives.  


A fifth idiosyncrasy of this procedure is that the fuzzy fitness is a function of the


least optimal members of a population (fimax, fimin).  Thus, the fitness of a particular


member in one generation will not necessarily be equivalent to its fitness in a


subsequent generation.  The ramifications of such a dynamic definition of fitness will


be not be discussed here but in subsequent papers.
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2.0 Sample Problem: Schaffer’s F2


A standard functional test of the ability of a GA to handle multiobjective


optimization is Schaffer’s F2 function which involves the simultaneous minimization of


f12(x) = x2 and f22(x) = (x-2)2.  This problem was addressed by Schaffer (Schaffer,


1985) using his vector evaluated GA and by Horn et al. (Horn, 1994) using the niched


Pareto GA.   Horn et al.’s work clearly showed the ability of the niched Pareto GA to


find the optimal range of x, 0<x<2 and to maintain an even distribution of the


population throughout that range for a large number of generations.  The application of


the fuzzy fitness function to an optimization problem such as this involves an added


dimensionally since the degree to which the two functions will be minimized must also


be specified.  


2.1 Procedure


The procedure will involve two steps in which Horn et al.’s results will first be


approximately reproduced.  The second step will involve the implementation of the


fuzzy logic selection criteria.  The parameters of the optimization used in the niched


Pareto approach are identical to that of Horn et al.’s with the exception of a more tightly


defined niche scaling parameter (Table I).  Table II lists the additional fuzzy fitness


parameters needed.  The ‘accepted error’ in the minimum values will be varied to


quantify the effect of this parameter on the final population distribution.  Setting the


accepted error to 4.0 for each function effectively forces the fuzzy fitness GA to find the


same range of x as the niched Pareto GA.  
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3.0 Results And Discussion


3.1 The Niched Pareto Selection Criterion


Figure 2 shows the variation in the type of selection used by the niched Pareto


GA as a function of generation number.  While the number of Pareto selected


members does flucuate with generation there seems to be an average range of Pareto


selections that remains constant.  This, by default, means that the average number of


niche selected members is also a relative constant with generation.  However, if we


break the total niching into niche selection due to both members being non-dominated


and both members dominated by the comparison set we see that initially there is a


significant difference.  Namely, for the first few generations there are very few


situations in which both members dominate the comparison set and a large number


where they are dominated by the comparison set.  After approximately 15 generations


the system equilibrates.  


Since the  number of niche selections is fundamentally constant the number of


randomly selected individuals is also relatively constant.  The number of randomly


selected members is actually considerably higher than that observed by Horn et al.


This is because of the use of a smaller scaling parameter in the niche counting


scheme.  The smaller scaling parameter results in a larger number of niche counts of


zero which accounts for 99% of all the randomly selected instances.  It is important to


note that even with this relatively high degree of randomness incorporated into the


optimization the results still closely match that of Horn et al.’s (figures 3a-b).


Figures 3a shows the population distribution at generation 0 and 200.  Figure


3b shows the phenotype distribution as a function of generation number upto


generation 50.  Note the even distribution of the population in the optimal phenotype


range even upto 200 generations (figure 3a) and a large percentage of random


selections.  Also note from figure 3b that the population as a whole actually reaches


equilibrium quickly (within 15 generations).
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3.2 The Fuzzy Logic Selection Criterion


Figure 4 is the same as figure 2 except that the fuzzy selection criteria was used


instead of the niched Pareto selection criteria.  The error in the objective values is 4.0


so figure 4 is directly comparable to figure 2.  The difference in the selection process is


remarkable.  Compared to the Pareto method there are few selections due to fitness


and most members are in fact selected in the niche process involving members who


both dominate the comparison set.  Very few members are niche selected due to being


dominated by the comparison set, whose size is 4.  Even with these differences the


system reaches equilibrium, as seen in figures 5a-b, in a shorter number of


generations.


The behavior of the selection criteria (Pareto vs. niched) does not change


significantly when the estimated error changes.  As is expected, however, the optimal


range for x does change significantly.  Figures 6 and 7 show the Ei=2.0 and Ei=6.0


data respectively after 200 generations.  The Ei=2.0 data has a considerably narrower


range than the Ei=4.0 populations where as the Ei=6 is slightly wider.  It is important to


point out that even with this effective change in optimal area, the fuzzy logic selection


criteria was able to optimize the population to an equilibrium in a shorter number of


generations than the niched Pareto GA.


4.0 Conclusions


This work shows that the fuzzy logic selection criteria and the niched Pareto


selection criteria are comparable in efficiency at optimizing a multiobjective problem.


While the fuzzy logic approach seems to optimize more quickly, the niched Pareto


approach does maintain a more even distribution of the population in the optimal


frontier.  The main advantage demonstrated here, however, of the fuzzy approach over


the niched Pareto GA is that one can assume an ‘error’ in the values of the functions


that one is optimizing towards and thus one has greater control over the range in


phenotypic space that the population evolves towards.
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Tables


Table I.   The parameters of the niched Pareto optimization of f(x) = x2 and f(x) = (x-2)2


pc 0.9


pm 0.01


Populations size 30


comparison set size 4


Niching scale 0.01


range of x -6.0 to 6.0


chromosome length 14


generations 200


Table II.   The additional parameters needed in the fuzzy fitness optimization of f(x) = x2


and f(x) = (x-2)2


the experimental minimums 0.0


errors in experimental minimums 2.0, 4.0, 6.0


Fuzzy scaling: Smin,Smax 1.0,1.0
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Figure 1)  The fuzzy logic fitness as a function of one of the objective values of the ith


member of a population.
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Figure 3a)  Distribution of population at generation 0 and 200 using niched Pareto GA.
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Figure 3b)  Phenotypic distribution vs. generation number of niched Pareto GA.
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Figure 4)  Selection type vs. generation number using the fuzzy logic based genetic


algorithm with an excepted error of Ei=4.0.
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