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Fuzzy Logic vs. Niched Pareto Multiobjective Genetic Algorithm Optimization: Part
II: A Simplified Born - Mayer Problem
Brian J. Reardon, Los Alamos National Laboratory, Los Alamos, NM 87544


Abstract
A new multiobjective selection procedure for Genetic Algorithms based on the
paradigms of fuzzy logic is discussed and compared to the niched Pareto selection
procedure.  In the example presented here the fuzzy logic procedure optimized the
parameters of a series of functions in a more efficient manner than the niched Pareto
approach.  The main advantage that the fuzzy logic approach has over  the niched
Pareto approach is that its efficiency is completely independent of the number of
objectives being optimized and its efficiency is highest with a comparison set size of 1
whereas the optimal comparison set size for the niched Pareto GA changes with the
number of objectives.  Furthermore, the fuzzy logic approach accounts for the
existence of experimental errors in the values to which a function is being optimized.
The functions explored in this work are the derivitives of a simplified Born-Mayer
function used in molecular dynamic simulations.


1.0 Introduction


1.1 Justification For Work


Numerous problems in materials science require the optimization of nonlinear


(Fraga, 1996), multiparameter (Duggirala, 1994), multiobjective (Ozyurt, 1996)


functions.  In addition, many such materials science optimization problems have


numerous minimums (or maximums) (Morgan, 1996) where all such points need to be


located.  Such problems are typified by atomic structure determination of proteins


(Bush, 1995), of clusters (Zeiri, 1995), of small molecules (Judson, 1993), of alloys


(Sutton, 1994), and of spin glasses (Smith, 1992).  Other problems include, potential


function parameter optimization (Skinner, 1995), x-ray diffraction pattern recognition


(Paszkowicz, 1996), ) curve fitting (Ahonen, 1997; Karr, 1995), and production


scheduling (Swinehart, 1996).  Unfortunately, such problems are not easily tractable to


such methodologies as Newton - Cauchy (Nazareth, 1995) or maximum entropy (Gzyl,


1995) and thus more robust search procedures are needed.
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The requirements of an optimization method that can handle the above


mentioned conditions are that it (i) account for the fact that there may exist an entire


range of feasible solutions and it should determine what that range is, (ii) it must be


capable of multiobjective (or attribute) optimization, (iii) it must be able to conduct


comparisons solely on the final difference between experiment and theory and thus


aim to minimize that difference, and (iv) must obtain reasonable answers in a timely


manner that out performs a simple random or Monte Carlo search.  At present, the only


optimization technique that efficiently attempts to fulfill all of these requirements is the


genetic algorithm (GA) (Goldberg, 1989; Holland, 1975, Reardon, 1997).


1.2 Generic GA description


Generally speaking, one can formulate any optimization problem into a single


standard of measurement - a cost function or a fitness function - that determines the


performance of a decision and then recursively improves the performance by selecting


from the most feasible of alternatives.  For example, the square difference between an


experimental quantity, O, and its theoretical value f(x) could define a fitness function


such as O f x− ( )( )2
, where x represents the independent variable which must be


optimized to minimize O f x− ( )( )2
.  Traditional deterministic optimization techniques


require the use of gradient or higher order statistical analysis of the cost function


(Bazaraa, 1979).  These methods find optimal solutions exponentially fast.


Unfortunately, the solutions are usually locally optimal and insufficient for applied


engineering problems (Anderson, 1986).


Darwinian evolution is an intrinsically robust search and optimization


procedure.  Evolved biota have optimized solutions to complex problems at every level


of organization, from the cell up to the population.  The problems that biota have


solved and continue to improve upon, are typified by chaos, chance, temporality,


nonlinearity, and multidimensionality.  Such problems have proven to be intractable to


deterministic optimization techniques, especially in situations where heuristic solutions


are not available.
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A GA falls into the much broader category of evolutionary algorithms.  These


algorithms attempt to simulate the processes of evolved biota in optimization.  The


essence of such a simulation lies in the expression of a solution to a problem not as a


single value but as a string of fundamental building blocks (genes) that can be


manipulated in much the same way as an extant species will manipulate its gene pool


through selection and mating to produce more optimal offspring for the current


environment.  


Numerous references are available regarding the formal structure of genetic


algorithms and the theoretical foundation of their success (Fogel, 1994; Goldberg,


1989; Chambers, 1995).  The specific details of the operators used in this GA study


were published previously (Reardon, 1997).


1.3.0 Multiobjective Selection Procedures


The simultaneous optimization of multiple objectives or attributes presents a


real challenge.  Consider a situation in which there are three functions (f1(x,y), f2(x,y),


and f3(x,y)) whose independent variables x and y need to be optimized.  In such a


situation the values of x and y that provide an optimal value of f1 may or may not


correspond to the optimal values of f2 and f3.  Consequently a number of approaches


have been adopted to extract a measure of fitness for the multiobjective system as a


whole.  These methodologies include the least squares approach (Swaragi, 1985), the


vector evaluated GA (Schaffer, 1985; Richardson, 1989), and the niched Pareto GA


(Horn, 1994; Ritzel, 1994; Reardon, 1997).  The pros and cons of each of these


multiobjective optimization selection methods were elucidated previously (Reardon,


1997).  Generally, the main disadvantages can be described as:


1)  Weighting factors have a significant impact on the ability of the GA to


optimize all the functions.  This is especially true the least squares minimization


problems.
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2) Second, the presence of a square, is often necessary to properly define the


fitness function as a minimization problem, however, this results in a loss of


information that could otherwise be used by the GA.  


3) In the vector evaluate GA, bias occurs against middling individuals that


represent an adequate compromise between competing objective functions.


4) In the niched Pareto method, as the number of objectives being optimized


goes up, the likelihood that one randomly selected member dominates another goes


down.  Thus, the likelihood that a member is selected due to actual fitness superiority


rather than simple niche counting is dependent on the number of objectives.  


5) Finally, another important point to consider in many engineering problems is


that optimization of a function towards an experimentally derived value should in


principle account for some degree of error in the experiment.  All of the multi-objective


optimization procedures described above assume that the value one is optimizing


towards is an absolute.  Furthermore, the above procedures do not allow the user to


make adjustments for the fact that some objectives may be known experimentally to a


high degree of accuracy while others will be known to a lower degree.


These drawbacks reveal a need for a revision to the niched Pareto procedure.


The revision proposed in this work involves a rudimentary application of fuzzy logic as


a selection method.


1.4 Fuzzy Logic Selection Methodology


Multiobjective optimization using fuzzy logic (Bandemer, 1995; Sakawa, 1997;


Sanchez, 1997), as presented here, is fundamentally a hybrid of the least squares


selection method and the niched Pareto selection method.  The whole procedure can


be summarized in two steps.  First, a single fitness value that incorporates the values


of all the objectives is calculated using fuzzy rules.  Second, as in the Pareto selection


procedure, two randomly selected members are compared to a comparison set.  If one


member has a fuzzy fitness value that dominates the set and the other does not then
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the dominating member is selected.  Otherwise, continuously updated phenotypic


niching is incorporated.  


The key to the fuzzy logic approach lies in the definition of the fitness function


and its corresponding fuzzy rules:


F
N


f fi
i


N


= ( )
=
∑1


1


' Eq. 1


which is essentially an average over the N objectives in question.  f’ is a fuzzy logic


rule set that scales the objective, fi, according to how far away it is from the


experimentally optimal solution.  A typical fuzzy set  would have the form:


if f O E f f
S


f O E
f O Ei i i i


i i i
i i i≤ −( ) → ( ) =


− −( )








− −( )( )' min


min


Eq. 2a


if O E f O E f fi i i i i i−( ) ≤ ≤ +( ) → ( ) =' 0 Eq. 2b


if f O E f f
S


O E f
f O Ei i i i


i i i
i i i≥ +( ) → ( ) = −


+( ) −








− +( )( )' max


max


Eq. 2c


where Oi is the ith experimental value that the ith function, fi, is being optimized


towards, Ei is the error or accepted uncertainty in Oi, Smin(max) is a scaling parameter for


values below(above) the accepted value, fimin(imax) is the smallest (largest) value of all


the ith objectives in the population. Figure 1 is a graphic representation of the above


functions.


Defining a multiobjective fitness function in such a way has a number of


practical advantages.  First, experimental uncertainty in the values to which a function


are being optimized can be accounted for since all the calculated values within a


certain range have the same fitness.  Second, values less than or greater than the


optimal value will each have their own distinct fitness and thus the GA will in effect
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have more information with which to optimize.  Third, as will be shown explicitly in this


report, the ability of the GA to select a member will not be influenced by the number of


objectives as is the case in the niched Pareto method.  Fourth, while one could argue


that Smax and Smin are user defined parameters, their net influence on the final


optimization procedure is not as great or as unpredictable as that of the weighting


factors in the sum of least squares approach since it is a relatively simple matter to set


Smax and Smin to the same values for all objectives.  


A fifth idiosyncrasy of this procedure is that the fuzzy fitness is a function of the


least optimal members of a population (fimax, fimin).  Thus, the fitness of a particular


member in one generation will not necessarily be equivalent to its fitness in a


subsequent generation.  The ramifications of such a dynamic defination of fitness will


be not be discussed here but in subsequent papers.


3.0 A Simplified Born - Mayer Function


The Born - Mayer function is a standard function often used to model the atomic


interaction of ionic materials such as NaCl.  It has the form:


Φ = + + −( )( )






=
≠


=
∑∑1


2 11


z z


r
A r dj i


ij
ij i j ij ij


j
j i


N


i


N


exp σ σ Eq. 3


where r is the distance between two atoms i and j, z is the charge of an ion, σ is the


radius, N is the total number of atoms in the system, and the fitting parameters A and d


are the pre-exponential and hardness parameters respectively.  The empirical nature


of this function requires that A, d and often the σ’s be optimized to give the proper


crystal energy, pressure, elastic moduli, and thermal expansion coefficients.  To


complicate matters, most materials are not purely ionic and may require the addition of


empirical terms to account for covalence.  Thus, a routine is needed that can effectively
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optimize the empirical parameters of functions like these as the need for simulations of


new materials comes about.  


A quantitative study of the GA’s ability to optimize such functions will begin with


a simplified version of the above equation:


f r A r d1
1= − + −( )( )− exp σ . Eq. 4


If A=4, σ=0.4 and d=4,  then f1 would have a minimum at r = 1.1489 and the value of f1


and its higher order derivates with respect to r at r = 1.1489 can easily be determined.


By treating f1 and each of its derivatives with respect to r as objectives, a quantitative


study of the GA’s ability to find the appropriate values of A, σ and d can be made as a


function of the number of objectives utilized.  From a pragmatic standpoint, this


example is useful for the determination of the statefuction of a material.  The objective


values and the associated ‘errors,’ which are set arbitrarily, of the nine functions to


which the GA must optimize A, σ, and d are: f1=-0.6703±0.0670, f2=-0.04251±0.00425,


f3=1.8816±0.1000, f4=-9.3580±0.1000, f5=39.217±0.1000, f6=-152.65±1.0000,


f7=546.81±1.0000, f8=-1617.0 ±10.000 and f9=24670.±100.00.


This study will look at the effect of the number of objectives and size of the


comparison set on the efficiency of the niched Pareto and the fuzzy logic selection


methods to find the correct values of A, σ, and d.  The search ranges are arbitrarily set


to 0.1<A<9.0, 0.1<σ<1.0 and 0.1<d<9.0.  Table I lists the parameters used in the


niched Pareto GA and Table II lists the additional parameters used in the fuzzy logic


GA.  
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3.1 Procedure


The procedure involves two steps.  First, the effects of comparison set size and


number of objectives on the number of Pareto selections and niche selections will be


determined for both the niched Pareto selection procedure and the fuzzy logic


procedure.  This determination involves calculating the average number of selection


types in the first generation of 50 independent optimizations.  Based on this data an


optimum comparison set size will be determined and used by the respective selection


procedures to optimize the three variables in question.  The goal of this second step is


to determine if the fuzzy logic procedure can find the optimum variable values in a


more efficient manner than the niched Pareto procedure.


3.2 Results And Discussion


3.3 The Effects Of Comparison Set Size And Number Of Objectives.


Figure 2 shows the average number (over 50 individual optimization runs) of


members of the population Pareto selected (one member is nondominated by the


comparison set while the other member is dominated) vs. comparison set size for the


niched Pareto GA after the first generation.  This graph clearly shows a maximum in


the number of Pareto selections vs. comparison set size that shifts to higher


comparison set sizes with the number of objectives.  Furthermore, the number of


Pareto selections tends to increase as the number of objectives increases.  This trend


is sensible since as the number of objectives increases the likelihood that a


comparison set member can dominate another member from the population


decreases.


Figure 3 shows the number of members selected through niching because both


members were nondominated by the comparison set.  As the size of the comparison


set increases, the likelihood that the set dominates the members increases.  Likewise,
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as the number of objectives increases the likelihood that the comparison set


dominates the members decreases.


Figure 4 shows the number of niche selections due to both members being


dominated by the comparison set.  Again, as the comparison set size increases there


is an increase in the probability that the comparison set will dominate both members


but as the number of objectives increases there is a decrease in the probability that


the comparison set will  dominate both members.  


The competing effects of the comparison set size and the number of objectives


on the selection procedure results in the shifting comparison set maximum in the


number of members Pareto selected.  This presents a genuine limitation to the niched


Pareto selection procedure  since in  most engineering optimizations there is no a


priori knowledge of the optimal comparison set size and it has been shown by others


that the comparison set size can have a dramatic effect on the net optimization


efficiency.  


Figure 5 shows the same type of data as in figures 2, 3 and 4 but for the fuzzy


logic selection procedure.  As Figure 5 indicates, there is no apparent dependence of


the selection procedure on the number of objectives.  Instead, the selection procedure


is only a function of the comparison set size where there is a distinct decrease in the


number of members that are Pareto selected or niche selected due to both members


being nondominated as the comparison set size increases.  


Figure 6 shows the evolution of the population of parameters A, σ, and d as a


function of generation for the 2 objective niched Pareto GA and fuzzy logic GA.  The


niched Pareto GA used a comparison set size of 5 and the fuzzy logic GA used a


comparison set size of 1 which corresponds to the maximums in Pareto selection as


shown in figures 2 and 5.  This data is typical of all 2 objective runs in that the fuzzy


logic GA optimized the parameters to the correct values (4.0, 0.4, 4.0) in a more


efficient manner than the niched Pareto GA.  The fuzzy logic GA optimized the


parameters within 45 generations and found the correct general area within the search


space where the values were most optimal.  The niched Pareto GA did converge in a


few number of generations but towards incorrect areas in the search space.
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Figure 7 shows the evolution of the population of parameters A, σ, and d as a


function of generation for the 4 objective niched Pareto GA and fuzzy logic GA. The


niched Pareto GA used a comparison set size of 5 and the fuzzy logic GA used a


comparison set size of 1.  Both the niched Pareto GA and the fuzzy logic GA optimized


the parameters to the correct general area but the fuzzy logic GA did so in 50


generations as opposed to the 75 generations needed for the niched Pareto GA.


Inspection of the equations being optimized shows that as the number of objectives


increases the d parameter becomes more influential.  Thus, the d parameter is


typically optimized in a quicker fashion and the A and σ parameters become more


difficult to optimize.


Figure 8 shows the evolution of the population of parameters A, σ, and d as a


function of generation for the 9 objective niched Pareto GA and fuzzy logic GA.  Again


the fuzzy logic GA is performing more efficiently than the niched Pareto GA.  The fuzzy


logic GA optimizes the d parameter within 40 generations as opposed to the 50


generations of the niched Pareto GA.  The niched Pareto GA could not optimize


towards the optimal σ value but the fuzzy logic GA could.  Both GAs had trouble


optimizing the A parameter but this should not be surprising since the A parameter


does not have a large influence on the final values of the 9 objective functions.


The apparent efficiency of the fuzzy logic GA over the niched Pareto GA can


most likely be attributed to three inherent idiosyncrasies of the fuzzy logic method.


First is the use of real differences between the experimental and calculated values as


opposed to the absolute or squared differences used in the niched Pareto GA.  


Second is the use of error bars in the fuzzy logic optimization which effectively


broadens the optimal area in search space.  Of course, if the error bars are too large


then niching becomes the dominate selection methodology and real optimization does


not occur.


The third aspect that potentially offered greater efficiency was the rescaling of


fitness using Smax and Smin and the maximum and minimum objective values.
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3.4 Conclusions


Multiobjective optimization is a challenging aspect of modern day engineering


and the use of evolutionary techniques such as the niched Pareto GA have greatly


facilitated many optimization problems.  However, there remains room for


improvement.  One limitation addressed in this report was the fact that the efficiency of


the niched Pareto GA is greatly effected by the number of objectives.  Overcoming this


limitation resulted in the use of fuzzy logic to help define a new measure of fitness.  As


shown here, the efficiency of the fuzzy logic selection criteria is not influenced by the


number of objectives and tends to be more efficient at optimizing the parameters of the


functions in question.  


Additionally, the fuzzy logic GA has two distinct advantages that make it ideal for


multiobjective engineering problems.  First, it allows for the use of error bars when


optimizing a function towards an experimentally derived value.  This point is important


when considering that every engineering problem has built into it some degree of


error.  The second point is that the fuzzy logic GA does not require the use of squares


or absolute values in the difference between the experimental and calculated values.


Thus, using this procedure, the GA now has the ability to determine whether a value is


too high or too low and to use that information to enhance the efficiency of


optimization.


Tables


Table I.  Parameters used in the niched Pareto GA


pc 0.9
pm 0.01
Populations size ` 200
comparison set sizes 1, 10 , 20
Niching scale 0.01
range of A 0.1  to 9.0
range of σ 0.1 to 1.0
range of d 0.1 to 9.0
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chromosome length 14bits/variable * 3 variables = 42 bits
generations 200


Table II. Additional parameters used for the fuzzy logic selection criteria:


Fuzzy scaling: Smin,Smax 1.0,1.0
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Figure 1) The fuzzy logic fitness as a function of one of the objective values of the ith


member of a population.
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Figure 2) Number Pareto selected vs. comparison set size for the niched Pareto GA
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Figure 3) Number niche selected due to each member nondominated by the


comparison set vs. comparison set size for the niched Pareto GA
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Figure 4) Number niche selected due to each member dominated by the comparison


set vs. comparison set size for the niched Pareto GA
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niche selections for the fuzzy logic selection procedure.
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Figure 6) The evolution of the population of parameters A, σ, and d as a function of


generation for the 2 objective niched Pareto GA and fuzzy logic GA.
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Figure 7) The evolution of the population of parameters A, σ, and d as a function of


generation for the 4 objective niched Pareto GA and fuzzy logic GA.
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Figure 8) The evolution of the population of parameters A, σ, and d as a function of


generation for the 9 objective niched Pareto GA and fuzzy logic GA.
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