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Optimization Of Micromechanical Densification Modeling Parameters For Copper


Powder Using A Fuzzy Logic Based Multiobjective Genetic Algorithm


Brian J. Reardon, Los Alamos National Laboratory, MST-6, Los Alamos, NM 87545.


Abstract


A fuzzy logic based multiobjective genetic algorithm (GA) was used to optimize the


micromechanical densification modeling parameters such as that of Ashby’s HIP 6.1


for copper powder.  In addition to optimizing the 16 main parameters, the GA provides


a quantitative measure of the sensitivity of the model to each parameter.  While not a


sensitivity analysis in the strictest sense, and highly stochastic in nature, this method is


reliable and reproducible in optimizing parameters given any size data set and


determining the impact on the model of slight variations in each parameter.


1.0 Introduction


1.1 Powder Processing
Dry powder pressing, be it uniaxial, isostatic, hot or cold has a number of


technological advantages over other processing techniques.  In addition to ease of


fabrication, the use of powders helps to insure a random microstructure which usually


results in isotropic thermo-mechanical properties of the final part.  The three main


advantages of dry pressing when making simple shapes, are speed, near net shaping,


and minimal waste.  Some powders, such as beryllium, require the application of heat
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as well as pressure to achieve full density.  Likewise, complicated shapes require


isostatic pressing.  Thus, there is a growing need for the fast, efficient use of hot


isostatic pressing (HIPing).  Unfortunately, HIPing is neither fast nor inexpensive.  The


expense of HIPing combined with the expense and environmental hazards associated


with many powders precludes the use of the once common practice of recursive die


tooling and HIP schedule modification until a part achieves a near-net shape.


Overcoming these difficulties requires modeling.  


One common approach to solving these problems lies in the micromechanical


modeling method first introduced by Ashby [1972] and further discussed in Artz [1983].


This model assumes a random dense packing of monosized spheres that, when


subjected to heat and pressure, densify according to the mechanisms of plastic


yielding, diffusion, and creep.  The utility of such a model is exemplified in the


generation of HIP densification maps which show the density achieved by a powder


compact under specific conditions along with the corresponding amount of grain


growth and the primary densification mechanism involved.  Numerous authors are


using the micromechanical model as a guide to more efficient HIP processing of


complex shapes [Bingert et al., 1997; Suryanarayanan et al., 1993, 1994].  


Unfortunately, there are a number of limitations to the micromechanical


modeling procedure.  The most obvious is that the quality of the model is limited to the


quality of the input data.  Another important point is that the quality of the model is


influenced more by one parameter than another and it is important to know ahead of


time which parameters are most influential as it will be these that are the greatest


source of error.  Thirdly, the consolidation properties of a powder used in published
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densification work may be considerably different than those of the powder with which a


researcher is working.  These differences arise from differences in surface chemistries,


formation methods (attrition vs. atomization), particle size distributions, and


morphologies.  There has been a significant amount of work into sensitivity analysis of


input parameters for the micromechanical model [Suryanarayanan et al., 1993].


These authors point out that in terms of the densification rate for metals, it is the power


law creep mechanisms that are most influential and thus the most important


parameters are the yield stress, power law creep reference stress,  and power law


creep exponent.  It should be noted, however, that most tuning of the micromechanical


model parameters is done based on experimental densification data alone and not on


grain growth or dominate densification mechanism data, both of which can be


obtained from proper microstructural analysis.  This is an important point to consider


when optimizing parameters since different parameters may fit the densification data


equally well but will result in different dominant densification mechanisms and grain


growth maps.


An improvement in the micromechanical modeling methods would result in a


drastically better understanding of the temperature and pressure schedules needed to


achieve full density while at the same time minimizing grain growth.  This in turn would


save time, materials costs, retooling costs, finishing costs, and environment/worker


exposure.  This paper presents the results of using a fuzzy logic based multiobjective


genetic algorithm to optimize the parameters of copper powder as studied by Wadley


et al. [1991].  The fuzzy logic based multiobjective genetic algorithm methodology was
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presented elsewhere [Reardon, 1997a, 1997b].  A brief description follows in the next


section.


The problem at hand is taken from the third tutorial of Ashby’s HIP 6.0


Background Reading [Ashby, 1990] with a few modifications.  The main modification


being that in this optimization the micromechanical densification rate equations as well


as the grain growth rate equations are solved numerically as a function of time.  This


results in considerably less accumulation of error than in the numerical solution as a


funciton of density used by Ashby and Artz in the calculation of densification maps.


Since the solving of the equations occurs in two fundamentally different ways between


the present study and Ashby’s HIP6.1 (Ashby, 1987), the optimized parameters from


this work will not necessarily appear to be most optimal when inserted into HIP 6.1.


1.2 Nonlinear curve fitting
Generally speaking, one can formulate any optimization problem into a single


standard of measurement - a cost function or a fitness function - that determines the


performance of a decision and then recursively improves the performance by selecting


from the most feasible of alternatives.  A typical scenario in nonlinear parameter


optimization would involve minimizing the least squares difference between all the


data points of a calculated and experimental densification curve (density v.


temperature or density v. pressure).  In other words, to minimize the quantity:


Φ = −( )
=
∑1 2


1N Ei Ci
i


N


ρ ρ , Eq.  1.
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where N is the number of data points, ρEi is an experimental data point, and ρCi the


calculated densification point.  Traditional deterministic optimization techniques


require the use of gradient or higher order statistical analysis of Φ:


∂
∂


ρ ρ ∂ρ
∂


Φ
a N aEi Ci


Ci


i


N


= −( ) =
=
∑2


0
1


Eq. 2.


for each variable, a, being optimized.


Such an approach can only handle the optimization of one densification curve


at a time and typically does not properly account for the uncertainty that is inevitably


present in the experimental data.  To complicate matters, complete densification


curves are not always readily available.  Instead, individual density points at various


temperatures and pressures are usually the most common form of densification data.


The fuzzy logic based multiobjective genetic algorithm (GA), as described in


previous papers [Reardon, 1997a; 1997b], is ideally suited to overcoming these


deficiencies.  First, the GA treats each individual data point as a separate objective to


which the model parameters must be optimized and thus there is no need for smooth


experimental densification curves.  Second, there is no limit to the number of


objectives or parameters that can be operated on at one time.  Third, the use of fuzzy


rule sets to determine the most optimal of parameters allows for one to incorporate


experimental error.
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1.3 The Genetic Algorithm


Darwinian evolution is an intrinsically robust search and optimization


procedure.  Evolved biota have optimized solutions to complex problems at every level


of organization, from the cell up to the population.  The problems that biota have


solved and continue to improve upon, are typified by chaos, chance, temporality,


nonlinearity, and multidimensionality.  Such problems have proven to be intractable to


deterministic optimization techniques, especially in situations where heuristic solutions


are not available.


A GA falls into the much broader category of evolutionary algorithms.  These


algorithms attempt to simulate the processes of evolved biota in optimization.  The


essence of such a simulation lies in the expression of a solution to a problem not as a


single value but as a string of fundamental building blocks (genes) that can be


manipulated in much the same way as an extant species will manipulate its gene pool


through selection and mating to produce more optimal offspring for the current


environment.  For example, consider x1, which is a member of a population of feasible


solutions to a problem but not necessarily the optimal solution.  The real value of x1 is


expressed as a string of binary digits, e.g.: 101101110.  This binary string is mapped to


a real value of x1 such that the string 11111111 corresponds to xmax and 00000000


corresponds to xmin.  xmax and xmin define the upper and lower bounds respectively of


the range of x that is being searched.  The real value of x1 is commonly referred to as a


phenotype.  If a function requires the optimization of more than one variable, f(x,y),


then the total string for a specific member is formed by placing the binary digits
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defining x and y back to back in one string.  For example if  x1=001100 and y1 =


110001 then the string for member #1 would be: 001100110001.  


Manipulation of these strings occurs in much the same way as extant species


manipulate chromosomes.  First, competition among members of the population


determines who is most fit or optimal.  Second, the most optimal members are allowed


to reproduce.  Reproduction involves slicing the chromosomes of two members of the


populations and then exchanging the segments:


X


X
1


2


10100011


11110111


:


:
   →   


˜


˜


:


:


X


X


1


2


10100111


11110011


X̃1 and X̃2  are the resulting progeny and will be placed in the next generation.  The


actual crossover site is selected randomly with some probability, pc.  Third, mutation


occurs, which in a positively entropic system ensures genetic diversity in the


subsequent generation.  Mutation involves flipping the value of a randomly selected bit


with some probability, pm.  The new population that evolves from the selection,


crossover, and mutation operators is defined as a generation.  This cycle is repeated


for a number of generations as specified by the user.  


Multiobjective optimization using fuzzy logic can be summarized in two steps.


First, a single fitness value that incorporates the values of all the objectives is


calculated using fuzzy rule sets.  Second, two randomly selected members are


compared to a comparison set.  If one member has a fuzzy fitness value that
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dominates the set and the other does not then the dominating member is selected.


Otherwise, continuously updated phenotypic niching is incorporated.  


The key to the fuzzy logic approach lies in the definition of the fitness function


and its corresponding fuzzy rules:


F
N


f fi
i


N


= ( )
=
∑1


1


' Eq. 3


which is essentially an average over the N objectives in question.  f’ is a fuzzy logic


rule set that scales the objective, fi, according to how far away it is from the


experimentally optimal solution.  A typical fuzzy set  would have the form:


if f O E f f
S


f O E
f O Ei i i i


i i i
i i i≤ −( ) → ( ) =


− −( )








− −( )( )' min


min


Eq. 4a


if O E f O E f fi i i i i i−( ) ≤ ≤ +( ) → ( ) =' 0 Eq. 4b


if f O E f f
S


O E f
f O Ei i i i


i i i
i i i≥ +( ) → ( ) = −


+( ) −








− +( )( )' max


max


Eq. 4c


where Oi is the ith experimental value that the ith function, fi, is being optimized


towards, Ei is the error or accepted uncertainty in Oi, Smin(max) is a scaling parameter for


values below (above) the accepted value, fimin(imax) is the smallest (largest) value of all


the ith objectives in the population.
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1.4 Defining the upper and lower bounds of the search space


The efficiency of all optimization techniques is greatly enhanced when


reasonable limits are placed on the search space.  The fuzzy logic based GA is no


exception and to that end, the Ashby’s HIP Users Manual [Ashby, 1990b] and


references therein provides limits for all of the parameters to be optimized.  


1.5 Densification curve sensitivity to parameter values


The stochastic nature and large population size of a fuzzy logic based


multiobjective GA provides a distribution of feasible answers to a problem.  Thus,


parameters that are not very important (i.e.: do not have a significant impact on the


objective values will have a broad, almost random, distribution and parameters that do


significantly impact the objective values will have a narrow distribution.


Thus, the final optimized population provided by a GA provides insight to the


sensitivity of the parameters on the models.  Formal sensitivity analysis has been


conducted previously [Suryanarayanan et al., 1993, 1994].  This work reveals that in


many metals, such as that of copper powder, the yield stress and the parameters of the


power law creep mechanism are the most influential factors in the densification model.


Thus, if the fuzzy logic based GA operates as expected, the optimized population will


show these parameters to have a narrow distribution and the other parameters to have


a much broader or random distribution.  
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2.0 Procedure


The first step in fuzzy logic based GA optimization, is to determine the


parameter range to be searched.  Table I lists the range for each parameter.  Before


initiating the optimization routine, the upper and lower bounds are tested in Ashby’s


HIP 6.1 model and compared to the experimental data to ensure that the test bounds


contain the optimal solution.  Figure 1 shows the results of the upper and lower limits


in a typical density v. pressure and density v. temperature plot with Wadley et al.’s


[1991] data.


The second step is defining the objectives to be optimized.  In this work, the


goal is to minimize the difference between the calculated densification values and the


six data points of Wadley et al.’s [1991] work within a specified experimental error.


The actual experimental error was not available in the original paper and thus it had to


be approximated.  Table II lists the objective conditions of Wadley et al’s [1991] six


data points along with experimental error estimated by the present author.  Note that


the GA will only calculate the densification data for these points and not the entire


densification map.  The density is calculated as a function of time, temperature and


pressure.  For all six data points, the temperature and pressure are ramped up from


ambient conditions to the values in Table II over a period of 15000 seconds after which


the temperature and pressure are held constant for the remainder of the experimental


time frame.  This procedure was followed to ensure a minimum accumulation of error


in the densification rate equations.  


The third step is to define parameters of the GA itself.  Table III lists the


parameters of the GA used in this optimization.  
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3.0 Results and Discussion


The stochastic nature of a GA optimization requires multiple runs to ensure


reproducibility.  Thus, for this work, the GA was run four times and each time similar


results were obtained.  Figures 2a and 2b show the fitness averaged over the entire


population and the associated standard deviation of the averages for two of the six


objective functions.  All of the objective functions behaved in a similar fashion in that


their absolute values were minimized and the standard deviation decreased with


generation number indicating convergence.


The model parameters being optimized also behaved in a similar manner from


run to run.  Figure 3a and 3b shows the evolution of two of the16 parameters.  While


the power law creep reference stress is clearly converging to a specific value, as


indicated by the standard deviation, the surface energy is not.  This behavior is to be


expected as the densification model is known to be more sensitive to some


parameters, such as the power law creep reference stress, than to others.  


Once the optimization is complete, a member of the population can be selected


based on its ability to minimize the objective functions to be used in the


micromechanical model.  Table IV lists a few member’s parameter values and the


associated objective values produced after the 20th generation.  A mulitobjective


optimization technique such as this finds a distribution of feasible solutions to a


problem.  Thus, with the exception of an occasional member who is clearly not optimal


due to a random mutation, all of the remaining members are optimal.  In other words,


though the members may have different parameter values, they all solve the problem
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as defined and thus no one member is better fit than any of the others.  This fact is well


shown in Table IV where many different parameter values result in acceptable


objective values.  Figure 4 shows how the five members in Table IV provide similar


relative densities after 30000s but the path taken by each one is different.  This fact


would indicate that more experimental information on the densification path is needed


to properly optimize the parameters.


As indicated in Figures 3a-b, the parameters are optimized in an equally


efficient manor.  Table V lists the average parameter value and associated standard


deviations after 25 generations.  When the standard deviations are normalized with


respect to the parameter search space range and the inverse of the normalization is


taken one obtains a measure of how sensitive the model is to the parameter in


question.  Thus, from Table V, one can assume that the yield stress, the power law


creep reference stress and the activation energy for boundary diffusion are the most


important factors in accurately modeling the densification maps.  This result is in broad


agreement with Suryanarayanan et al. [1993, 1994].


The work emphasizes an important point when optimizing a large number of


parameters (16) with a small number of objectives (6).  The point being that there


exists a large range of feasible solutions to the problem.  Therefore, in order for


accurate optimizaiton to take place such that parameter values are determined that


give the model predictive cababilities a larger objective data set at more temperatures,


pressures, and times is required.  Furthermore, a more accurate description of the heat


and pressure cycles along with realistic assessments of the experimental uncertainties


need to be available for accurate optimization to take place.







13


Figures 2 and 3 are examples of a common phenomenon in GA’s called genetic


drift.  Figure 3 seems to indicate that the parameter values are converging long after


the objective values have converged.  This is caused by a number of factors.  In a


system such as this, with a low mutation rate and a small niche cutoff radius, once the


objective values have converged there is no other major selection criteria upon which


the GA can base its choices for who is most fit.  Thus, faced with a population of


equally fit members, selection becomes random and gradually drifts towards one of


many optimal values.  In this work, while the 50th generation is composed of a few


distinct individuals that are highly optimal, it is the earlier generations (20-30) that


contain the greatest diversity of equally optimal solutions to the problem.


4.0 Conclusions


A fuzzy logic based multiobjective genetic algorithm, as presented in earlier


papers, was used to optimize the micromechanical model parameters of copper


powder based on the densification data of Wadley et al. [1991].  This procedure


determined the optimal values of the16 main parameters as well as the relative impact


each parameter has on the final densification model.  In addition to showing that the


fuzzy logic GA is capable of finding multiple solutions to a multi-objective, multi-


variable problem, this work has also shown the importance of having a large objective


data set on hand along with a realistic assesment of experimental error and process


schedules.
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6.0 Tables


Table I.  Search range for each parameter in the micromechanical model being
optimized by the Fuzzy Logic based GA. (PLC: Power Law Creep)


Parameter Units Lower Bound Upper Bound


surface energy J/m2 1.0000 2.0000


yield stress MPa 15.000 200.00


Temperature Dependence of Yield 0.10000 0.90000


PLC Exponent 4.7000 4.9000


PLC Reference Stress MPa 15.000 200.00


PLC Activation Energy kJ/mol 150.00 250.00


Low T. to High T. Creep Transition K 580.00 620.10


C for Low T. Creep 0.50000 0.71000


Pre-exponent for Volume Diffusion m2/s 5.0000e-05 7.0000e-05


Activation Energy for Volume Diffusion kJ/mol 150.00 250.00


Pre-exponent for Boundary Diffusion m2/s 4.0000e-15 6.0000e-15


Activation Energy for Boundary Diffusion kJ/mol 75.000 125.00


Pre-exponent for Surface Diffusion m2/s 5.0000e-10 7.0000e-10


Activation Energy for Surface Diffusion kJ/mol 175.00 225.00


Pre-exponent for Boundary Mobility m2/s 4.0000e-15 6.0000e-15


Activation Energy for Boundary Mobility kJ/mol 100.00 200.00


Table II.  The experimental values of copper powder consolidation from Wadley et al.
used in the optimization.


Time (s) Temperature (K) Pressure (MPa) Relative Density Est. Error


30000 823.0 25.0 0.970 0.0005
30000 823.0 50.0 0.999 0.0005
30000 823.0 75.0 1.000 0.0005
30000 723.0 50.0 0.953 0.0005
30000 773.0 50.0 0.990 0.0005
30000 823.0 50.0 0.999 0.0005
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Table III.  The GA parameters used in the optimization.


Binary string length for each variable 14
Number of generations per optimization 50
Population size 300
Mutation Probability 0.1%
Crossover Probability 90%
Comparison set Size 1


Table IV.  Five example member’s parameter values and the associated objective
values produced after the 20th generation of the optimization.


Sample 1 Sample 2 Sample 3 Sample 4 Sample 5


surface energy 1.9690 1.5500 1.5500 1.0190 1.2380


yield stress 27.620 146.20 64.400 23.680 25.110


T. Dep. of Yield 0.66320 0.26560 0.46720 0.27460 0.52700


PLC Exponent 4.8680 4.7170 4.7170 4.8380 4.7590


PLC Ref. Stress 53.300 25.670 25.670 45.290 42.860


PLC Act, Engy 245.30 151.10 151.10 196.30 216.10


Low T. - High T. 580.40 585.90 585.90 611.30 603.10


C for Low T. Creep 0.65590 0.51410 0.51410 0.65300 0.62020


Pre-exp. V. Diff. 5.3650e-5 5.8310e-5 5.8310e-5 5.9620e-5 5.181e-5


Act. Engy V. Diff. 230.40 210.50 210.50 227.20 179.80


Pre-exp. B. Diff. 4.781e-15 5.732e-15 5.732e-15 4.524e-15 4.346e-15


Act. Engy B. Diff. 80.040 82.970 82.970 78.480 79.810


Pre-exp. S. Diff. 5.057e-10 6.598e-10 6.163e-10 5.057e-10 6.891e-10


Act. Engy S. Diff. 211.60 203.70 208.30 199.60 213.10


Pre-exp. B. Mob. 4.201e-15 5.055e-15 5.051e-15 4.97e-15 4.188e-15


Act. Engy B. Mob. 123.70 186.40 199.70 147.90 193.80


Objective 1 2.885e-5 -2.953e-3 -2.953e-3 4.426e-3 3.29e-05


Objective 2 3.636e-5 2.954e-4 2.954e-4 -8.863e-5 2317e-4


Objective 3 -1.013e-6 -1.550e-5 -1.550e-5 0.0 0.0


Objective 4 4.789e-4 9.326e-4 9.326e-4 6.097e-3 2.687e-3


Objective 5 -7.014e-3 -1.039e-3 -1.039e-3 -4.072e-3 -4.755e-3


Objective 6 3.636e-5 2.954e-4 2.954e-4 -8.863e-5 2.317e-4
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Table V.  The average parameter value and associated standard deviations after 25
generations along with the resulting degree of sensitivity the objective has to each
parameter..


Parameter x σx
x xmax min


x


−( )
σ


surface energy 1.2930 0.23840 4.1946


yield stress 35.710 22.580 8.1931


T. Dependence of Yield 0.44520 0.21520 3.7175


PLC Exponent 4.8280 0.048650 4.1110


PLC Reference Stress 50.910 17.980 10.289


PLC Activation Energy 211.00 16.520 6.0533


Low T. to High T. Trans. 606.50 7.6000 5.2763


C for Low T. Creep 0.60040 0.044170 4.7544


Pre-exp. for V. Diff. 5.9870e-05 4.1480e-06 4.8216


Act. Engy for V. Diff. 212.80 24.950 4.0080


Pre-exp. for B. Diff. 4.4900e-15 3.7040e-16 5.3996


Act. Engy for B. Diff. 79.080 0.68550 72.939


Pre-exp. S. Diff. 6.2160e-10 5.4850e-11 3.6463


Act. Engy S. Diff. 193.00 16.440 3.0414


Pre-exp. B. Mob. 4.9370e-15 5.7590e-16 3.4728


Act. Engy B. Mob. 146.20 31.230 3.2020
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7.0 Figures
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Figure 1.  The results of the upper and lower boundary limits in a typical density v.
pressure and density v. temperature plot with Wadley et al.’s data.
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Figures 2a-b.  The fitness averaged over the entire population and the associated
standard deviation for two of the six objective functions.
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Figure 3a-b.  The evolution of the PLC reference stress and the surface energy
averaged over the entire population with the associated standard deviations.  The PLC
stress converges indicating that it is an important parameter where as the surface
energy does not, indicating that it is not as significant.
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Figure 4.  The Relative density v. sintering time for the 5 samples listed in Table IV.
This calculation involved a ramping of the temperature and pressure from 0.1MPa and
293K at t=0 to 50MPa and 723K at t=15000.  After 15000, the temperature and
pressure were held constant.  Note that while the final relative density is similar for the
samples, the path taken as a funciton of time is different.  The apparent discontinuites
are due to the smoothing operators between stage 1 and stage 2 densification.  As
shown here, the smoothing operators work better for some parameter sets than for
others.
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