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Abstract 
 

In the past decade genetic algorithms (GAs) have been used in a wide array of applications 
within the water resources field. Although usage of GAs has become widespread, the theoretical work 
from the genetic and evolutionary computation (GEC) field has been largely ignored.  Most 
practitioners have instead treated the GA as a black box, specifying the parameters that control how the 
algorithms navigate the spaces of each application using trial-and-error analysis. Trial-and-error 
analysis is a time-consuming, difficult process resulting in an arbitrary selection of parameters without 
any regard to the fundamental properties of the GA.  The concept of “competent search and 
optimization” as discussed in this work addresses this difficulty by using the available theoretical work 
from the GEC field to set the population size, the selection pressure, account for potential disruptions 
from crossover and mutation, and prevent drift stall.  This paper provides an overview of a three-step 
method for utilizing GEC theory to ensure competent search and avoid common pitfalls in GA 
applications. 
 
Introduction 
 

GAs have the appeal of being a robust, non-derivative based technique capable of discrete and 
continuous optimization for single and multiobjective problems.  This appeal has resulted in a 
significant increase in their use over the past decade to solve a wide array of problems within the water 
resources field.  Although the popularity of this solution technique has increased, little focus has been 
placed on the actual design of the GA to ensure competent search and optimization.  Practitioners often 
cite the difficulty in identifying robust parameter settings that will ensure evolution-based search will 
identify high quality solutions (see Aly and Peralta 1999).  Trial-and-error analysis has been the 
traditional approach within the field of water resources for setting the control parameters for genetic 
algorithms.  Trial-and-error methods inherently treat genetic algorithms as black boxes and ignore the 
theoretical work of the GEC field. 

The approach discussed in this paper treats the GA as a system with discernable properties and 
utilizes valuable theoretical work from the GEC field to discern these properties.  This paper is meant 
to be a illustrative companion to the rigorous GA design methodologies for computationally intensive 
single and multiple objective applications given in Reed et al. (2000) and Reed et al. (2001), 
respectively.  This paper assumes a working knowledge of the GA and its terminology (see Goldberg 
1989 for an introduction). 



 

 

 
Competent Search and Optimization: From Theory to Practice 
 
 Goldberg (1998) defines competent GAs as “…GAs that solve hard problems quickly, reliably, 
and accurately—through a combination of effective (1) design methodology, (2) design theory, and (3) 
design.”  Goldberg (1998) also describes the control map concept for GAs where theoretical 
relationships for population sizing, selection pressure, crossover, and mutation are used to find values 
for the control parameters that identify a performance “sweet spot” where competent search and 
optimization is enabled.  The design theory for the competent GA and the concept of the control map 
for GA performance are largely derived from Goldberg et al. (1992) and Thierens (1995), respectively.  
Although these studies provided a theoretical basis for the design of GAs, practitioners still faced the 
difficulty of using relationships that require the specification of parameters that are not readily 
identifiable in practice such as building block (BB) size and order.  BB’s blocks are highly relevant 
subsets of the binary digits representing designs and are used by the GA to construct optimal solutions. 
   This difficulty was addressed by the GA design methodology presented by Reed et al. (2000) 
for single objective applications, which was extended for multiobjective applications by Reed et al. 
(2001).  The design methodology uses the theoretical framework of Thierens (1995) to develop a 
simple 3-step approach for setting the GA’s parameters that ensures convergence to high quality 
solutions (i.e. the “sweet spot”).  The methodology progresses through the following three steps: (1) 
preliminary problem analysis, in which the problem’s formulation is used to obtain estimates for 
population sizing and the computational complexity of using a GA to solve the application, (2) 
parameter selection, in which theoretical relationships are used to set the probabilities of crossover and 
mutation (as well as for sizing niches if required), and (3) elitism and drift analysis are performed using 
a minimum number of trial runs to ensure that the population size is sufficiently large. The works of 
Thierens (1995) and Reed et al. (2000, 2001) provide a design theory and a design methodology 
satisfying only two of the three requirements for the definition of a competent GA.  The GA 
practitioner is the key to satisfying the definition of the competent GA.  She or he must utilize these 
tools in an effective design for the GA when solving her or his application.  Further discussion on the 
design methodology in Reed et al. (2000, 2001) is given below. 
 
Three Steps on the Road to the Competent GA 
 
 Reed et al. (2000, 2001) provide a 3-step methodology for selecting the proper input parameters 
and ensuring competent search and optimization.  These studies have the intent of stepping beyond the 
black box mystique implicit to trial-and-error error design methods for GAs, which can often lead to 
unsubstantiated generalizations about the algorithm’s effectiveness.  Theoretical relationships allow 
engineering practitioners to gain direct insights into the algorithm’s performance as a function of its 
input parameters while also reducing the number of parameter combinations that must be considered 
relative to trial-and-error methods.  Minimizing the number of parameter combinations that must 
considered is vital in computationally intensive applications where a single trial run can take days.  The 
subsequent sections provide an illustrative overview of the important concepts and considerations 
implicit to each of the 3 design steps. 
 
Initial Considerations. The design methodology assumes that computationally intensive fitness 
functions for water resources applications preclude identifying parameter settings for a distribution of 



 

 

initial random number seeds and instead focuses on finding optimal parameter settings for a single 
random number seed.  Additionally, the method assumes that the practitioner has successfully 
formulated his or her problem such that the GA will converge to a feasible solution (or a feasible 
nondominated set in the case of a multiobjective application). 
 
Step 1: Preliminary Problem Analysis. The first step in designing a competent GA consists of 
performing some basic calculations to determine a range of population sizes and the computational 
complexity of solving the problem as it is currently formulated.  The computational complexity 
associated with solving an application can be estimated by multiplying the population size by the 
number of generations required for the selection scheme being used to converge.  Both population 
sizing and convergence rates are discussed below. 
 Population Sizing.  Reed et al. (2000) and Reed et al. (2001) use population-sizing 
relationships from Harik et al. (1997) and Mahfoud (1995), respectively.  These relationships require 
the practitioner to define how the population size grows as a function of the application’s BB order.  
The size and order of BBs are not readily identified in real-world applications and therefore must be 
conservatively estimated.  Both Reed et al. (2000) and Reed et al. (2001) assume that BBs will have an 
order less than or equal to 5.  This assumption is based on the Schema Theorem, which states that only 
short, low order BBs will survive the operators of selection, crossover, and mutation.   Applying this 
assumption yields a range of five discrete potential population sizes for the practitioner to consider.  An 
important parameter to consider when estimating the range of population sizes in applications where 
constraints are enforced using penalty functions is the standard deviation of the population fitness.   

The fitness standard deviation is directly proportional to the population size required to solve an 
application and should therefore be kept to a minimal value. Penalty weights often control the 
magnitude of the fitness standard deviation, therefore excessive penalties for constraint violations will 
cause population size estimates to be unreasonably large.  It is important for the practitioner to see the 
direct relationship between her or his problem formulation and the ability of the GA to identify optimal 
solutions.  If unreasonably large population size estimates are attained, the practitioner must reduce the 
magnitude of the penalty weights while also ensuring that the GA will seek and converge to feasible 
solutions.  It must be understood that penalty functions severely complicate the decision space of an 
application and will require an iterative approach to problem formulation to ensure that both the fitness 
standard deviation is sufficiently small and feasible solutions are being sought.  Michalewicz & 
Schoenauer (1996) and Hilton & Culver (2000) provide a review and guidance for constraint handling 
methods for evolutionary computation applications.  Proper constraint handling methods can reduce the 
overall computational complexity of solving an application by both reducing the required population 
size and improving the GA’s convergence rate.  Additionally, practitioners may want to consider 
reformulating constrained, single objective problems to be unconstrained, multiobjective applications 
when possible (for a discussion of this topic see Fonseca & Fleming 1998). 

Convergence Rates. Convergence rate relationships for other available selection schemes can 
be referenced in Thierens et al. (1994, 1998). The convergence rate of a GA is dependent on the 
selection scheme used to propagate highly fit individuals.  In single objective applications, tournament 
selection has been the preferred selection scheme because Goldberg and Deb (1991) showed that the 
method is robust and less prone to premature convergence. In multiobjective applications, stochastic 
remainder selection is most frequently used for rapid convergence rates because fitness sharing 
maintains population diversity and prevents premature convergence (Fonseca & Fleming 1995, Coello 
1999, Van Veldhuizen 1999).  Tournament selection and stochastic remainder selection are assumed in 



 

 

Reed et al. (2000) and Reed et al. (2001), respectively, when estimating convergence rates.  It is 
important when designing GAs to ensure that the algorithm converges.   Failure to converge in timely 
manner can reflect excessive penalties in the problem formulation or insufficient selection pressure, 
which in either case will result in the sub-optimal performance for the GA.  Selection pressure 
represents the GA’s ability to ensure that only highly fit individuals are allowed to pass their traits to 
latter generations. 

 
Step 2: Parameter Selection. Step 1 provides a range of population sizes and an estimate of run 
length.  The remaining input parameters are specified in this step.  For single objective applications, 
Reed et al. (2000) present a relationship from Thierens (1995) for an upper boundary on the probability 
of crossover Pc.  The upper bound relationship provides a disruption boundary for crossover that varies 
as a function of selection pressure and allows the user to reduce the potential disruptive effects of the 
recombination operator.  The boundary stipulates that the practitioner must increase tournament sizes 
beyond the traditional binary tournament if values of Pc above 0.5 are used.  For multiobjective 
applications, Reed et al. (2001) present a range of crossover probabilities that have been successful in 
multiobjective applications (0.6 to 0.9) and associated population-sizing relationships from Mahfoud 
(1995) that directly account for the potential disruptive effects of crossover.   
 Goldberg (1998) discusses the relationship between selection and crossover in terms of a race 
between innovation and convergence.  Selection exerts a takeover force on the GA that causes the 
algorithm to converge to a single solution (or set of solutions in multiobjective applications).  
Crossover exerts an opposing innovative force that enables the GA to explore new regions of the 
decision space as new designs emerge from recombination.  The race requires that the time scale for 
innovation must be shorter than the time scale of convergence in order to prevent premature 
convergence.  Reed et al. (2000,2001) recommend setting the value of Pc as high as possible while still 
satisfying the disruption performance boundary given by Thierens (1995) for single objective 
applications and maintaining feasible population size estimates for multiobjective applications. 
 The above relationships assume that the mutation operator is minimally disruptive.  This 
assumption is enforced in Reed et al. (2000, 2001) by setting the probability of mutation Pm equal to 
the inverse of the population size as recommended by DeJong (1975).  Multiobjective applications 
require the additional specification of the parameters controlling fitness sharing. Reed et al. (2001) give 
the relationships for setting these parameters from Deb & Goldberg (1989).  Step 3 further explores the 
role of selection pressure and uses a limited number of trial runs to select an optimal population size 
from the range computed in step 1. 
 
Step 3: Elitism & Drift Analysis. Domino convergence occurs when different subsections of the 
binary strings composing a population converge at variable rates as a function of their relevance to the 
final solution (see Thierens et al. 1998). The common occurrence of domino convergence in real-world 
applications requires further analysis of the role of selection in the performance and design of the GA.  
When some portions of the binary strings (or decision variables) are more important to the final 
solution than others, genetic drift can occur.  Genetic drift stall occurs when the portions of the binary 
string representing decision variables that have a reduced “salience” to the final solution do not 
experience sufficient selection pressure and converge to non-optimal values under the random 
fluctuations associated with crossover and mutation (Thierens et al. 1998). 



 

 

 It is very important for a practitioner to properly set the appropriate selection pressure for his or 
her application to avoid drift stall.  Figure 1 gives an example plot of an improperly designed GA 
experiencing drift stall. 
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Figure 1. Illustration of genetic drift stall 

 
Drift stall can be readily identified when the fitness of the best individual (for a single objective) or a 
scoring metric representing the quality of a nondominated front (for multiple objectives) fails to 
monotonically increase over the duration of a run.  The GA’s performance as a function of time (or 
generation) can be measured using either online performance analysis or offline performance analysis.  
Online performance analysis tracks the current best solution (or the quality of the nondominated front) 
in a single generation without considering previous generations.  Alternatively, offline performance 
analysis keeps track of the best individual (or the collection of nondominated individuals) from all 
generations preceding and including the current generation.  Both performance measures are equally 
valid and can be used based on the practitioner’s preference.  It should be noted that online 
performance analysis is the more stringent measure. 
 Plots of GAs experiencing drift should not be used to criticize the solution method in empiric 
performance comparisons with other methods unless the practitioner presents proof that the algorithm 
has been carefully designed for competency and explicitly states which performance measure she or he 
is using. Generalizations on algorithmic performance are not valid when the GA is treated as a black 
box and an arbitrary selection of input parameters are used.  In many cases, drift stall reflects the 
practitioner’s failure to properly set the selection pressure through increasing the tournament size, the 
population size, or through some form of elitism (Reed et al. 2000, 2001). 
 Elitism. Elitist operators provide a means of reducing genetic drift by ensuring that the best 
individual(s) are identified and allowed to pass their traits to latter generations.  Elitism serves to 
rescale the system such that low “salience” portions of the binary strings in the population are no 



 

 

longer lost due to deficient selection pressure (Thierens et al. 1998). This concept is straightforward in 
single objective optimization, where a single individual with the current best objective function value 
is inserted into the next generation. In multiobjective applications some fraction of the solutions along 
the current nondominated front must be passed on to the next generation (see Reed et al. 2001, Zitzler 
& Thiele 1999, Parks & Miller 1998, Bäck 1996, and Ishibuchi & Murata 1996 for a description of 
alternative multiobjective elitist strategies).  Elitism has been shown to improve the performance and 
convergence of the GA in both single and multiple objective applications (Thierens et al.  1998, Zitzler 
et al. 2000, Reed et al. 2001).  
 Population sizing using trial runs.  The final step in designing a GA requires that a single 
population size be selected from the five population sizes computed in step 1 of the design 
methodology.  Reed et al. (2000, 2001) recommend a rule-of-thumb where a minimum number of 
successive runs are performed for increasing population sizes, starting with the smallest population 
size, until the GA’s performance does not appreciably increase.  The trial runs for increasing population 
sizes serve two purposes.  First, the method increases population sizes until any potential performance 
problems from random seed selection are no longer an issue. This ensures that robust parameter 
settings are identified for any specified random seed. The second benefit of successively increasing the 
population size is the reduction in the potential for drift stall.  Thierens et al. (1998) showed that the 
time scale for genetic drift to occur is a function of population size.  Detailed performance analysis of 
the design methodology can be referenced in Reed et al. (2000) and Reed et al. (2001). 
 
Conclusions 
 

The competent GA requires consideration of the theoretical relationships describing the 
algorithm’s fundamental properties in a design methodology that is accessible to real-world 
practitioners.  This paper summarizes such a methodology, which is given in detail in Reed et al. (2000, 
2001) for the simple GA and multiobjective GA, respectively. The most important component in the 
definition of the competent GA is the role of the practitioner. To ensure good performance, practitioners 
must use competent design principles in their applications.  The competent GA is more concept than 
computer algorithm in that capricious boundaries are not set to define the exact form of selection, 
crossover, and mutation that practitioner must use.  The competent GA conceptual approach avoids 
black box trial-and-error analysis and instead makes the practitioner aware of the tradeoffs, limitations, 
and properties of the selecto-recombinative operators specific to his or her application.  Competency 
enables valuable empirical comparison of GEC methods that are designed for optimal or near optimal 
performance with other search and optimization techniques.  The utilization of current and future 
theoretical relationships from the GEC field will reduce unsupported generalizations both positive and 
negative on the effectiveness of evolution-based solution techniques in water resources applications. 
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