
1 INTRODUCTION 

The National Research Council (NRC) has estimated that 300,000 to 400,000 sites in the 

United States have contaminated groundwater (1997). The estimated cost of remediating these 

sites ranges from $480 billion to $1 trillion, or an average cost of $8,000 per household in the 

United States (NRC 1993, 1997).  Early legislative efforts leading to the Resource Conservation 

and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, 

and Liability Act (CERCLA) focused on restoring these resources to their natural states.  Cost 

and technology limitations have since resulted in a shift in the design paradigm for groundwater 

remediation from resource recovery to long-term risk management.  

Risk-based Corrective Action (RBCA) is a direct result of this shifting emphasis   

[American Society for Testing and Materials (ASTM) 1995].    RBCA uses a tiered approach to 

remediation, where the cost and level of remediation efforts are controlled by the human health 

and ecological risks posed by the contaminated resources.  The increasing use of RBCA is 

expected to result in more contaminants being left in place that will require long-term monitoring 

[NRC, 1999].  Long-term monitoring (LTM) is particularly important for monitored natural 

attenuation, in which contaminants are mitigated by the natural processes of dilution, dispersion, 

and degradation.  LTM at many sites can require decades of expensive sampling at tens or even 

hundreds of existing monitoring wells, resulting in hundreds of thousands or millions of dollars 

for sampling and data management per year.  

Developing efficient and effective LTM sampling plans can be difficult when numerous 

options exist. In any given monitoring period, the number of possible sampling plans is 2n, where 

n is the product of the number of wells and the number of possible constituents to be measured. 

A site with 10 wells where up to 3 constituents can be measured (n = 30) requires the decision 
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makers to identify a sampling plan among the more than one billion that exist while also trying 

to balance cost and other performance objectives for each sampling scheme.   

1.1 Objectives and Scope 

In developing long-term monitoring plans, regulators and stakeholders must negotiate 

monitoring objectives and decision parameters while accounting for technical, social, and 

regulatory considerations.  The primary objective of this research is to develop a highly 

adaptable multiobjective LTM design methodology that aids this negotiation process by enabling 

decision makers to discover, understand, and balance tradeoffs among a variety of performance 

objectives.  Three steps are required in the proposed methodology: 

• Step 1: Selection and understanding of performance criteria 

• Step 2: Selection of a plume interpolation method 

• Step 3: Quantify design tradeoffs using multiobjective genetic algorithms (GAs). 

The subsequent chapters of this dissertation address the specific challenges practitioners face 

when completing steps 1 thru 3 of the LTM design methodology.   

1.2 Summary of Research 

  This thesis is the first monitoring research (see Chapter 2) that successfully addresses the 

two most challenging problems that face monitoring network designers: (1) selecting monitoring 

objectives and (2) balancing these objectives.  These challenges were addressed using the 3-step 

problem decomposition discussed above in Section 1.1.  Problem decomposition guided the 

selection and development of tools that were used in a multiobjective optimization framework. 

The optimization framework serves as an interface between the monitoring system being 

designed and the human decision process.  The optimization framework requires effective plume 
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interpolation for evaluating LTM designs and the efficient use of multiobjective GAs for 

quantifying LTM objective tradeoffs.   

Chapter 5 of this thesis is the first groundwater plume interpolation research to directly 

illustrate how preferential sampling and the highly skewed nature of groundwater contamination 

can combine to severely bias performance rankings of interpolation methods. Quantile kriging 

was the most robust of 6 groundwater plume interpolation methods, showing the least bias from 

both preferential sampling and the variability of contaminant data. The findings of Chapter 5 

warrant further studies into the applicability of quantile kriging to data sets from other fields 

ranging from mining to life sciences where nonstationary interpolation also plays a vital role.  

Chapters 3 and 4 develop the first design methodologies for using evolution-based strategies to 

efficiently solve a new class of high order multiobjective applications (i.e., applications with 

more than 2 objectives).  These methodologies are then used in Chapter 6 to solve the first 

application of evolutionary multiobjective optimization algorithms to a real-world problem with 

4 objectives.  The optimization framework developed in this chapter combines quantile kriging 

with high order multiobjective optimization to select, understand, and balance LTM performance 

criteria en route to a final negotiated design.   

This thesis demonstrates that combining higher order Pareto optimization with 

visualization can allow designers in any field to assess the mathematical models used to 

represent their objectives, discover how their objectives are affecting designs, and negotiate a 

final design that balances their conflicting design preferences. The methods developed in this 

thesis are powerful tools for enhancing the design of LTM systems. Sections 1.2.1 thru 1.2.5 

summarize each of the individual chapters of this thesis in more detail below. 
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1.2.1 Chapter 2:  Literature Review 

Chapter 2 summarizes the extensive previous work in groundwater monitoring network 

design. Previous studies have primarily focused on two problems: (1) the use of geostatistics to 

augment or design monitoring networks for site characterization (for a review, see ASCE Task 

Committee on Geostatistical Techniques 1990b) and (2) the use of optimization and numerical 

simulation for screening monitoring plans for plume detection at landfills and hazardous waste 

sites (for a review, see Loaiciga et al. 1992). Recently, a third problem has emerged that seeks to 

reduce spatial and temporal redundancies in pre-existing well networks for sites undergoing long 

term monitoring.  The LTM design methodology proposed in this dissertation combines elements 

of the geostatistical characterization approaches with spatial redundancy analysis to balance 

sampling costs, uncertainty, the quality of plume maps, and the accuracy of contaminant mass 

estimates (see Chapter 6 for more details). 

1.2.2 Chapter 3: Optimization in Pareto Space 

Chapter 3 provides practitioners with a design methodology for the Nondominated Sorted 

Genetic Algorithm (NSGA).  This portion of the research represents an extension of the simple 

GA design methodology presented by Reed et al. (2000b) to computationally intensive, 

multiobjective water resources applications.  The NSGA design methodology is demonstrated 

using an LTM application, in which the tradeoffs between sampling costs and local concentration 

estimation errors in an existing groundwater monitoring network were quantified. This chapter 

shows that with proper design and parameterization, the NSGA is able to accurately quantify 2 

dimensional tradeoffs. 
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1.2.3 Chapter 4: Simplifying Optimization in Pareto Space 

  Chapter 4 extends the design methodology presented in Chapter 3 to the Nondominated 

Sorted Genetic Algorithm-II (NSGA-II).  NSGA-II is a second generation evolutionary 

multiobjective (EMO) genetic algorithm that significantly improves upon the original NSGA.  

NSGA-II improves upon the NSGA [see Deb et al. 2000] by (1) invoking a more efficient 

nondomination sorting algorithm, (2) eliminating the sharing parameter, and (3) adding an 

implicitly elitist selection method that greatly aids in capturing high order Pareto surfaces.  

Chapter 4 builds on the NSGA design methodology of Chapter 3 and Lobo (2000) to introduce a 

multi-population approach that automates parameter specification for the NSGA-II and 

significantly reduces the computational costs associated with solving LTM applications.  The 

methodology successfully solved the same LTM application as was solved in Chapter 3 using 80 

percent fewer function evaluations (i.e., sampling design evaluations). The combined efficiency 

of the NSGA-II and design methodology presented in this chapter allows for more challenging 

higher order Pareto optimization problems (i.e., problems with more than 2 objectives) to be 

solved [see Chapter 6].   

1.2.4 Chapter 5: Spatial Interpolation Methods for Plume Data 

Plume interpolation consists of estimating contaminant concentrations at unsampled 

locations using the available contaminant data surrounding those locations.  The goal of 

groundwater plume interpolation is to maximize the accuracy in estimating the spatial 

distribution of the contaminant plume given the data limitations associated with sparse 

monitoring networks with irregular geometries.  Beyond data limitations, contaminant plume 

interpolation is a difficult task because contaminant concentration fields are highly 

heterogeneous, anisotropic, and nonstationary phenomena. This chapter provides a 
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comprehensive performance analysis of 6 interpolation methods for scatter-point concentration 

data, ranging in complexity from intrinsic kriging based on intrinsic random function theory to a 

traditional implementation of inverse-distance weighting.  High resolution simulation data of 

perchloroethylene (PCE) contamination in a highly heterogeneous alluvial aquifer were used to 

generate 3 test cases, which show how each interpolation method performs as a function of the 

amount of available sample data.  Overall, the variability of PCE samples and preferential 

sampling in the source area controlled how well each of the interpolation schemes performed. 

Quantile kriging was the most robust of the interpolation methods, showing the least bias from 

both of these factors.  Additionally, the method’s non-parametric uncertainty estimates 

successfully predicted zones of high estimation error for each test case.  This chapter provides 

guidance to practitioners balancing opposing theoretical perspectives, ease-of-implementation, 

and effectiveness when choosing a plume interpolation method.   

1.2.5 Chapter 6: Balancing Performance Criteria  

This chapter integrates the tools developed in the previous two chapters into a 

multiobjective optimization framework that can serve as an interface between the physical 

system being designed and the human decision process. This chapter demonstrates the use of 

high order Pareto optimization (i.e., optimizing a system for more than 2 objectives) in a highly 

adaptable optimization methodology.  The methodology is implemented on an LTM application 

that combines quantile kriging [see Chapter 5] and the NSGA-II [see Chapter 4] to successfully 

balance four objectives: (1) minimizing sampling costs, (2) maximizing the quality of 

interpolated plume maps, (3) maximizing the relative accuracy of contaminant mass estimates, 

and (4) minimizing local estimation uncertainty. Optimizing the LTM application with respect to 

these objectives reduced the decision space of the problem from a total of 500 million designs to 
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the set of 1156 designs identified on the Pareto surface. Visualization of a total of 8 designs 

aided in understanding and balancing the application’s objectives en route to a single 

compromise solution. This study shows that high order Pareto optimization holds significant 

potential as a tool that can be used in the balanced design of water resources systems. 
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