
5 SPATIAL INTERPOLATON METHODS 

5.1 Introduction 

Chapters 3 and 4 focused on capturing monitoring design tradeoffs using genetic 

algorithms.  This chapter provides guidance to practitioners in choosing a plume interpolation 

method for any groundwater application by explicitly addressing opposing theoretical 

perspectives, ease-of-implementation, and effectiveness.  More specific to the goals of this 

dissertation, Chapter 5 provides guidance in choosing the best estimation technique for 

evaluating the LTM performance criteria examined in Chapter 6. 

5.1.1 Motivation & Scope 

Plume interpolation consists of estimating contaminant concentrations at unsampled 

locations using the available contaminant data surrounding those locations.  The goal of 

groundwater plume interpolation is to provide the best possible picture of the contaminant plume 

given the data limitations associated with sparse monitoring networks with irregular geometries.  

Beyond data limitations, contaminant plume interpolation has proven to be a difficult task 

because contaminant concentration fields are highly heterogeneous, anisotropic, and 

nonstationary phenomena (i.e., their mean and covariance vary widely across a given site).  

Contaminant concentrations commonly vary over several orders of magnitude within relatively 

short distances and in most cases are preferentially sampled in areas of high concentration.  

Preferential sampling and the highly skewed nature of groundwater contamination can combine 

to severely bias interpolation estimates and any subsequent decisions that must be made using 

these estimates (Kitanidis 1997, Goovaerts 1997, and Chilès & Delfiner 1999).  Contaminant 

fate-and-transport simulation, inverse parameter estimation, site-characterization, and long-term 

monitoring (LTM) network design are a few examples of applications within which plume 
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interpolation plays a vital role (see ASCE 1990b, Loaiciga 1992, Reed et al. 2000 for more 

detailed reviews). 

   Historically, there have been two primary approaches to address the problem of 

contaminant plume interpolation.  The first approach uses deterministic methods such as inverse 

distance weighted sums to estimate concentrations within the interpolation domain (Gambolati & 

Volpi 1979, Gotway et al. 1996).  The second approach uses the stochastic framework of 

regionalized variable theory and geostatistics to obtain contaminant plume estimates Matheron 

(1965, 1971). Chilès & Delfiner (1999) define a regionalized variable “…to designate a 

numerical function [c(x)] depending on a continuous space index x, and combining high 

irregularity of detail with spatial correlation”. 

 Of the two interpolation approaches, geostatistics has been the primary focus of previous 

studies within the water resources area (Cooper & Istok 1988a,b,c; ASCE 1990a,b).  

Additionally, there are several recent texts available that provide an array of theoretical 

perspectives on the application of geostatistics to both stationary and nonstationary phenomena 

(Isaaks & Srivastava 1989, Kitanidis 1997, Goovaerts 1997, and Chilès & Delfiner 1999).  

However, there have been very few studies that compare both deterministic and geostatistical 

interpolation methods in the water resources literature (Gambolati & Volpi 1979 and Hughes & 

Lettenmaier 1981).  Given that spatial structure identification in geostatistics applications 

improves markedly as the number of data increases, and that many sites have limited data sets, it 

is important to consider both deterministic and geostatistical interpolation methods. Selecting an 

appropriate method can be a difficult task for the practitioner because of opposing theoretical 

perspectives given in the interpolation literature.  For example, some geostatisticians recommend 

the use of more traditional ordinary kriging (OK) within local neighborhoods (Journel & Rossi 
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1989, Goovaerts 1997) when interpolating nonstationary phenomena (e.g. contaminant 

concentrations), while others recommend more advanced methods such as intrinsic kriging (IK) 

(Chilès & Delfiner 1999).  

The attractive properties of geostatistical approaches, relative to deterministic methods, 

are their ability to: (1) incorporate knowledge of the underlying spatial structure of the 

phenomenon of interest into “unbiased” estimates and (2) provide estimation variances.  

Estimation variances are considered to be measures of the quality of the estimates (thus a 

measure of “local” uncertainty).  As discussed in the next section, several studies have shown 

that estimating nonstationary phenomena such as contaminant concentrations with limited data is 

subject to bias for all forms of kriging.  Moreover, as the level of available data decreases for a 

given site the estimation variances attained using geostatistical approaches significantly degrade 

in their ability to represent the local uncertainty in estimates.  Identifying an optimal method for 

plume interpolation is a particularly difficult task given both conflicting perspectives in the 

literature and the limited availability of comprehensive performance comparisons of 

deterministic and geostatistical methods in the literature. 

Gotway et al. (1996) and Crawford & Hergert (1997) discuss these difficulties in the 

context of mapping nonstationary soil properties for a regularly gridded data set. This series of 

studies presents an empirical comparison of OK within local neighborhoods, kriging with a trend 

(KT) [also termed universal kriging], median polish kriging (a transformation-based kriging 

approach for regularly gridded data), and inverse-distance weighting.  Although these studies did 

not make definitive recommendations as to which interpolation approach was the best, they 

present a careful synopsis of their relative benefits and limitations to help guide the practitioner 

in her or his application.  This chapter extends their comparison of interpolation methods to 
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scatter-point (i.e., non-gridded data) groundwater plume interpolation and provides a comparison 

of the following interpolation approaches: 

• Ordinary Kriging 

• Multigaussian Kriging (MGK) 

• Intrinsic Kriging (ItK) 

• Quantile Kriging (QK) 

•  Nonlinear Least Squares Inverse Distance Weighting (NLS) 

• Inverse Distance Weighting of Power 2 (ID). 

This chapter compares plume interpolation methods as a function of data availability.  

Additionally, it illustrates the consequences of each method’s underlying assumptions.  The 

methods were selected solely for addressing the problem of estimating contaminant 

concentrations at unknown spatial locations at a single snapshot in time and not for spatio-

temporal interpolation.  

5.1.2 Previous Work in the Estimation of Nonstationary Phenomena 

The plume interpolation methods discussed in this chapter are based on the underlying 

premise that the values of contaminant concentrations at any two points become increasingly 

similar as the distance between the points decreases.  Gambolati & Volpi (1979) presented a 

deterministic analysis of the geostatistical estimation method kriging and demonstrated its close 

relationship to inverse distance weighting and least squares methods because of this underlying 

premise. Studies comparing kriging methods and inverse distance-based interpolation schemes 

have generally found that the superiority of kriging is dependent on the number of available data, 

the level of anisotropy of the underlying phenomenon, and the presence of a trend (Gambolati & 

Volpi 1979, Hughes & Lettenmaier 1981, Gotway et al. 1996). These studies compared the 
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performance of inverse-distance methods with only one of the several possible forms of kriging 

and generally concluded that the primary strength of the geostatistical approach is that each 

estimate has a corresponding estimation variance (a measure of estimation error).  

Kriging nonstationary data is a difficult task that has led to extensions of the original 

kriging estimator.  However, there has been considerable debate about the relative merits of these 

extensions.  The earliest forms of kriging, termed simple kriging (SK) and ordinary kriging, are 

based on an assumption of stationarity, first with respect to the mean and also with respect to the 

covariance or spatial increments (intrinsic hypothesis).  The mean is assumed constant either 

throughout the entire domain or within local neighborhoods composing the domain, respectively. 

Chilès & Delfiner (1999) state that Matheron (1969) recognized the limitations of these 

assumptions and formulated the kriging with a trend (KT) approach for nonstationary 

phenomena.  

The KT approach models the regionalized variable c(x) as the sum of a smoothly varying 

mean component m(x) termed a trend or drift and a second order stationary residual component 

r(x).  The KT estimator requires specification of a trend function to model m(x) and knowledge 

of the covariance structure of the residual component r(x).  Several studies have subsequently 

criticized the method primarily due to the ”chicken-and-egg” (Armstrong 1984) conundrum 

practitioners face where the exact form of m(x) must be known to accurately model the spatial 

structure of r(x) while the exact form of m(x) cannot be determined without knowing the true 

spatial structure of r(x) ( Volpi & Gambolati 1978, Hughes & Lettenmaier 1981, Russo & Jury 

1987, Journel & Rossi 1989, Crawford & Hergert 1997). These studies show that the common 

practice of specifying m(x) as a second order polynomial can introduce significant bias in both 
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the kriged estimates and their corresponding estimation variances.  For this reason, this method is 

not included in this chapter. 

Recognizing the limitation of the KT approach, Matheron (1973) and Delfiner (1976) 

formulated the intrinsic random function of order k (IRF-k) theory for intrinsic kriging (see 

Chilès & Delfiner 1999, Hughes & Lettenmaier 1981).  IRF-k theory was formulated to model 

nonstationary phenomena where the division of c(x) into m(x) and r(x) has no meaning. The ItK 

approach utilizes the concept of the generalized increment of order k in which a linear 

combination of sampled data is selected that will intrinsically filter a polynomial trend of order k 

without the need for explicitly specifying the trend as in the KT approach (Chilès & Delfiner 

1999). Although IRF-k theory provides a theoretically elegant alternative to the KT approach, its 

application has been limited because determining the spatial structure of the underlying 

phenomena requires significantly more expertise (Delfiner 1976, Kitanidis 1983, Marshall & 

Mardia 1985, Chilès & Delfiner 1999).   

Hughes & Lettenmaier (1981) compared the performance of ItK and traditional least 

squares approaches using hydrologic data and found that the relative superiority of ItK estimates 

is dependent on having a sample size greater than 50.  Additionally, the study showed that for 

small data sets inference of spatial structure is subject to a bias that “…will generally lead the 

investigator to believe his [or her] estimates are more precise than they really are” (Hughes & 

Lettenmaier 1981).  Journel & Rossi (1989) and Goovaerts (1997) recommend using OK within 

neighborhoods rather than KT and ItK when interpolating nonstationary natural phenomena.  

Note that these findings directly contradict the methodological recommendations given by Chilès 

& Delfiner (1999) who recommend the use of ItK in place of OK or KT for nonstationary 

phenomena.   
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In addition to nonstationarity, the distributional dependence of the estimation variance 

has led to additional kriging approaches.  Journel & Rossi (1989) explicitly show that the 

estimation variance is a “model dependent ranking” of sampling configurations and is reflective 

of local accuracy only in cases where the studied phenomenon is multivariate Gaussian (i.e., 

normally distributed). The lognormal transform (i.e.,  y = ln[c(x)]) is one of the most commonly 

applied transformations within water resources applications to try to normalize spatial 

phenomena such as transmissivities or contaminant concentrations (see Cooper & Istok 1988a 

and ASCE 1990a). Several issues require careful consideration when using the lognormal 

transform or log-kriging approach. The method implicitly assumes that the contaminant 

concentrations are multi-variate lognormal. ASCE (1990) state that this assumption cannot be 

verified using real-world data sets (i.e., data are often too sparse to even adequately evaluate the 

bivariate spatial distribution, let alone 3 or 4 point distributions). Deutsch & Journel (1998) warn 

that the back transform requires bias-correction to ensure y is an unbiased estimator of c(x).  

Even with the bias-correction, the back-transform exponential function amplifies estimation 

errors (Deutsch & Journel 1998, ASCE 1990a). These drawbacks have led to a shift towards the 

transformations that are briefly described below.  

Multigaussian kriging uses a normal score transformation of the sample data (i.e., 

mapping highly asymmetrical contaminant samples to a corresponding normal distribution) to 

improve its approximation of the multivariate Gaussian distribution with the intention of making 

estimation variances more reflective of the local accuracy of estimates (Goovaerts 1997). The 

assumptions and limitations of MGK are discussed in more detail in the methods section of this 

chapter. Other extensions of the OK system have used a variety of data transforms to formulate 

nonparametric (or distribution free) kriging systems that quantify local accuracy based on the 
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data’s empirical cumulative distribution function (cdf) (Journel 1983, Journel 1988, Chiueh et 

al. 1997, Journel & Deutsch 1997, Juang et al. 2001). In addition to making the kriging 

approach distribution free, non-parametric kriging methods reduce estimation bias caused by 

highly variable phenomena with severely asymmetrical distributions such as contaminant 

concentrations. This chapter focuses on the rank-order transform (or quantile kriging) proposed 

by Journel & Deutsch (1998) and successively applied to a soil contamination application by 

Juang et al. (2001).  As with MGK, the details of the QK approach are discussed in greater detail 

in the methods section of this chapter.   Although transformation methods can render 

contaminant data to be more amenable to structure identification and kriging, Goovaerts (1997) 

warns that practitioners should carefully consider the effects of transformations before they apply 

them by paying close attention to any potential side effects (e.g. inflation of estimation error) 

incurred in such applications.  The performance of each interpolation method considered in this 

chapter was explored using the three test cases described in the next section. 

5.1.3 Test Cases 

The test case data used in this research are drawn from a 50 million-node flow-and-

transport simulation (for more details see Maxwell et al. 2000).  The simulation provided realistic 

historical data for a steady-state hypothetical perchloroethylene (PCE) plume in a highly 

heterogeneous alluvial aquifer.  The hydrogeology of the test case is based on an actual site 

located at the Lawrence Livermore National Laboratory in Livermore, California, currently 

being managed under the United States’ Comprehensive Environmental Response, 

Compensation and Liability Act (CERCLA) program.  One of the objectives of this chapter is to 

show how each of the interpolation approaches performs as a function of the amount of available 

data.  To satisfy this objective, the test case data from Maxwell et al. (2000) were used to 
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develop the three monitoring networks shown in Figure (5.1).  The smallest network, shown in 

Figure (5.1a), consists of 20 monitoring wells that sample a total of 26 sampling locations within 

1 million cubic meters of contaminated aquifer.  The intermediate network, shown in Figure 

(5.1b), has 29 monitoring wells that sample 58 locations within 6 million cubic meters of 

contaminated aquifer. Finally, the largest network, shown in Figure (5.1c), has 59 wells that 

sample 124 sampling locations within 16 million cubic meters of contaminated aquifer.  

 
  

 PCE Mean
(mg/m3) 

PCE Median
(mg/m3) 

PCE Coefficient 
of 

Variation 
Large Test Case 29 1 11.4 

Intermediate Test Case 164 11 3.6 
Small Test Case 355 9 1.8 

 
Table 5.1 Sample data statistics for each test case 

 

This chapter makes the assumption that as the size and maturity of a contaminant plume 

increases, more monitoring points will be sampled for mapping contaminant concentrations. 

Table (5.1) presents the means, medians, and coefficients of variation computed using the PCE 

sample data attained from the test cases’ monitoring networks. The statistics shown in Table 

(5.1) confirm that the sample data from these monitoring networks are both heavily skewed and 

highly variable. Moreover, Figure (5.1) shows that the scatter-point sampling locations are 

arbitrarily clustered in the body of plume, and preferentially sample the source area of the 

plumes.  These test data sets are designed to be as representative as possible of real-world sites.   

Further, the use of the high resolution simulation data from Maxwell et al. (2000) enables 

comparison of the interpolation methods’ performance at all estimated locations with the true 

values at these locations, while still using a realistic data set. 
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(a) Small Test Case 

 
(b) Medium Test Case 

 
(c) Large Test Case 

 
  

 
 
 
 

Figure 5.1 Test case monitoring networks 
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5.2 Methods 

5.2.1 Geostatistical Methods 

The geostatistical modeling approach requires both structural analysis and specification 

of a variogram model to represent the theoretical spatial structure.  Structural analysis consists of 

analyzing available concentration data to determine the correlational structure.  The analysis uses 

historical contaminant data to discretely approximate the theoretical variogram )(hγ , given in 

equation (5.1), where 10 xxh −=  is a vector of separation distances in each spatial dimension 

between two locations 0x  and 1x .   

[ ] [ ]2
10

2
10 )()()()()(

2
1 xmxmhxcxcE −+=− γ

                                          (5.1) 

In equation (5.1), )(xc  is a regionalized variable representing concentration that can be 

decomposed into its mean, )(xm , and random, )(xr , components.  Assuming that the random 

component )(xr  is stationary with a zero mean, half the expected value of the squared difference 

between concentrations at locations 0x  and 1x  (i.e., 1/2 [ ]2
10 )()( xcxcE − ) simplifies to yield the 

sum of the theoretical variogram )(hγ  and the squared difference between the mean 

concentrations at these two locations.  The theoretical variogram )(hγ represents the average 

dissimilarity between two concentrations separated by a distance h .  In the OK approach, the 

mean component m(x) is assumed to be constant (or locally stationary), in which case the trend 

(or bias) term, [ , in equation (5.1) is equal to zero and the theoretical variogram 

can be deduced directly from concentration samples.  For nonstationary phenomena, the 

”chicken-and-egg” (Armstrong 1984) conundrum exists because the trend term is nonzero and a 

proper model for the theoretical variogram cannot be directly identified solely using 

]2
10 )()( xmxm −
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concentration data without making an assumption about the functional form of the trend. The 

next four sections of this chapter discuss different forms of the kriging system and describe the 

implicit assumptions that the practitioner must make when using each of the methods to 

interpolate nonstationary contaminant concentrations.  

5.2.1.1 Ordinary Kriging within Local Neighborhoods 

The OK estimator is formulated to provide the Best Linear Unbiased Estimate (or BLUE) 

for contaminant concentration at an unsampled location (for a detailed derivation see Kitanidis 

1997 or Goovaerts 1997).  The OK approach invokes the intrinsic hypothesis, which assumes 

that the mean or trend terms given in equation (5.1) are locally constant but unknown within 

neighborhoods surrounding the current unsampled location (i.e., the trend is modeled using a 

zeroth order polynomial).  Crawford & Hergert (1997) state that, theoretically, locally defined 

neighborhoods of sample points should be used to discretely approximate the theoretical 

variogram [ )(hγ in equation (5.1)].  Journel & Rossi (1989) recommend using either data 

perpendicular to the general trend or local neighborhoods with radii defined to have lengths 

equal to 25 percent of the total length of the interpolated domain for approximating the 

variogram.  The local approximation of the theoretical variogram is not done in practice because 

the limited number of data available in most applications would make discrete or experimental 

variograms unreliable (Crawford & Hergert 1997, Goovaerts 1997).   

The OK approach assumes that the estimation error is normally distributed when 

computing a confidence interval for every estimate.  Recall that the estimation variance is only a 

function of the theoretical model used to represent the variogram and the geometrical 

configuration of the sampling data (i.e., a function of the kriging weights only). Journel & Rossi 

(1989) showed that estimation variance is only directly reflective of true estimation error when 
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the underlying phenomenon is multivariate Gaussian. They also showed that asymmetric data 

distributions can significantly bias estimates of local uncertainty.  The next two sections describe 

transformation-based kriging approaches that preserve the relative ranks and spatial structure of 

contaminant data while addressing estimation inaccuracies caused by highly asymmetric data 

distributions. 

5.2.1.2 Multigaussian Kriging within Local Neighborhoods 

The MGK approach to estimation utilizes the normal score transform of the sample data 

and models the contaminant concentrations as a multivariate Gaussian random function, )(xT  

(for details on the transform see Goovaerts 1997). The normal score (NSCORE) transform maps 

the asymmetrical discrete sample distribution to a N(0,1) normal distribution. Deutsch & Journel 

(1998) provide several programs that will perform all of the required steps for the transformation 

in the GSLIB software library.  In the MGK approach, estimation is performed using OK on the 

transformed data, again assuming a zeroth order polynomial trend.  The NSCORE estimates can 

then be back-transformed into concentration-space by using the same mapping discussed above.  

The multivariate Gaussian assumption should be carefully validated using the methods 

described by Goovaerts (1997) because it has direct consequences on the estimation process.  

This transformation assumes extreme values have reduced correlation in space (relative to 

median values).  In plume interpolation, often the extreme concentrations are pivotal in properly 

assessing risks and uncertainty for site management decisions.  Assuming a reduced correlation 

structure for these extreme values can significantly affect risk and uncertainty calculations and 

lead to serious misrepresentations of the site conditions if the Gaussian assumption is 

inappropriate. 
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5.2.1.3 Quantile Kriging within Local Neighborhoods 

The distributional dependence of OK and MGK, as well as their sensitivity to highly 

skewed data, led to the development of non-parametric or distribution-free kriging approaches 

using indicator (Journel 1983) or rank-order (Journel & Deutsch 1997) transformations of the 

data.  Indicator kriging uses a binary transformation of sample data where the data value is set to 

either 1 or zero depending on whether it is greater than or equal to a user-specified threshold 

value.  The indicator approach requires nq threshold indicator transforms, each of which requires 

its own variogram and kriging system.  Goovaerts (1997) states that at least five thresholds are 

required (i.e., nq = 5) to quantify the local uncertainty of indicator kriging estimates. Correctly 

quantifying variograms for extreme concentration thresholds is generally not possible in plume 

interpolation applications due to data limitations (see Chilès & Delfiner 1999).  Moreover, 

solving the OK system of equations for each of the thresholds for every point in the interpolation 

domain represents a severe computational limitation of the method.  

These limitations motivated the development of quantile kriging (Journel & Deutsch 

1997), which transforms concentrations into standardized ranks (or quantiles) using equation 

(5.2) and computes estimates in quantile space using OK (see Journel & Deutsch 1997 and 

Juang et al. 2001). 

1
)(

+
=

N
isampleofrankxc                                                       (5.2) 

The transform consists of ranking the concentration data in ascending order and dividing these 

ranks by one plus the total number of sample data N (for cases with multiple zero measures see 

the frequency analysis discussion in Appendix D).  Figure (5.2) graphically illustrates quantile or 

standardized ranks transform. The ith sample is assigned the probability that )(xc  is less than or 

equal to its concentration value [F(c) in Figure (5.2)]. Note that quantiles [i.e., the probabilities 

 84



from the empirical cdf F(c)] are known to be uniformly distributed; this fact can be used in 

conjunction with the estimation variances to estimate the local uncertainty at unsampled 

locations in the interpolation domain. The empirical cdf of the sample data is also used to back 

transform estimates from quantile space to concentration space (for details see Juang et al. 

2001).  

 Empirical Cumulative Distribution Function F(c) 

0

0.5

1

{ }icccF ≤= Pr)(

   

Figure 5.2 Illustration of rank-order transformation used in quantile kriging 
 

 This kriging approach has the following limitations: (1) it assumes that the

sample) cdf attained from available data is reflective of the true distribution of 

throughout the interpolation domain and (2) the approach probabilistical

deterministic quantile space.  As with any probabilistic statistic, the quality of the

as a representation of the true concentration distribution in space varies as a f

number of data (i.e., given infinite samples the empirical cdf should in theory app

concentration cdf). Note that regardless of its theoretical underpinnings, the prim

evaluating geostatistical approaches such as quantile kriging is how well they wo
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This is in line with Gambolati & Volpi (1979), who show that the geostatistical approach can be 

viewed as a deterministic interpolation scheme.  

Quantile kriging and MGK are both extensions of the OK approach, which assumes that 

the trend term in equation (5.1) is modeled as a zeroth order polynomial.  The next section 

discusses both the KT and ItK approaches, which generalize the kriging system to consider 

higher order polynomial trends.   

5.2.1.4 Intrinsic Kriging 

The ItK approach was motivated by perceived theoretical shortcomings in both the OK 

and kriging with a trend (KT) systems.   The KT and ItK approaches are closely linked, making 

it necessary to set the stage for the ItK description with a brief discussion of the KT method and 

its shortcomings.  This is particularly relevant since KT is still actively applied in practice.  The 

KT approach models concentrations as a regionalized variable, )(xc that is composed of the sum 

of a smoothly varying mean (trend) component )(xm and a second order stationary residual 

)(xr .  The KT estimator for contaminant concentration requires the specification of a linear 

combination of known polynomial functions of spatial coordinates to model the trend component 

of the concentration [for a detailed derivation see Goovaerts 1997]. Given the assumed trend 

function, the residual of the concentration data and the trend are calculated and structural 

analysis of the residual is used to derive a residual covariance function )(hKr . Inference of the 

residual covariance or variogram is difficult because the concentration data are not directly 

reflective of the residual function.  Goovaerts (1997) recommends extending the 

recommendations of Journel & Rossi (1989) for the OK system to the KT approach by using 

either data perpendicular to the general trend or local neighborhoods with radii defined to have 

lengths equal to 25 percent of the total length of the interpolated domain. Again, this approach is 

 86



not feasible for most real-world contaminant data sets due to data limitations. The OK system is 

a special case of the KT system where the trend is assumed to be a zeroth order polynomial and is 

set equal to 1.  Goovaerts (1997) shows that the only difference between the OK and KT systems 

results from the practitioner’s arbitrary decision to explicitly model the local trend as either a 

constant or a higher order polynomial. 

The KT and variations of OK discussed above all require the practitioner to accept the 

dichotomy of the regionalized variable representing contaminant concentrations into a smoothly 

varying mean component and a stochastic fluctuation.  Several studies have shown that this 

assumption is often an arbitrary choice that can significantly bias both estimates and their 

respective estimation variances (Volpi & Gambolati 1978, Hughes & Lettenmaier 1981, Russo & 

Jury 1987, Journel & Rossi 1989, Crawford & Hergert 1997).  Intrinsic random function of 

order k (IRF-k) theory avoids the above dichotomy by not requiring the explicit specification of 

a model for the mean trend.  Instead, the ItK approach defines allowable linear combinations of 

the sample data, termed generalized increments, that are implicitly capable of filtering trends 

from the data, facilitating a more direct measure of the underlying spatial structure of 

contaminant concentrations.  The approaches discussed in previous sections model spatial 

structure using pairs of sample data to deduce the variogram shown in equation (5.1). 

Alternatively, IRF-k theory defines generalized increments of order k to be ( k ) point 

increments that are capable of filtering polynomial trends of degree less than or equal to k 

(Chilès & Delfiner 1999). Generalized increments, as the name implies, generalize the inference 

of spatial structure from a 2-point to a (

1+

1+k ) point measure of spatial correlation termed the 

generalized covariance )(hG . 
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In the ItK approach, concentration is modeled as an IRF-k where the generalized 

increments of )(xc  are assumed to be a stationary random function with a zero mean and a 

covariance equal to )(hG . It has been shown that the ItK system is identical to the KT system 

except for the substitution of the generalized covariance function )(hG for the 2-point residual 

covariance function )(hKr  (for details see Chilès & Delfiner 1999).  The ItK method was 

formulated to avoid the estimation biases caused by the explicit specification of a functional 

trend model.  Although the IRF-k approach elegantly unifies geostatistical theory, ItK requires 

significant expertise to implement relative to the more traditional approaches discussed above.  

Also, given the common occurrence of limited data sets with irregular sample network 

geometries for plume characterization, inference of a model for the theoretical generalized 

covariance function is a difficult process that again introduces bias into estimates and their 

corresponding estimation variances (see Hughes & Lettenmaier 1981 and Goovaerts 1997).   

With scatter-point data, the traditional graphical approaches used to identify variograms 

cannot be used for ItK and instead identification of the appropriate generalized covariance model 

requires the use of “black-box” automated fitting procedures (see Delfiner 1976, Kitanidis 1983, 

Marshall & Mardia 1985, Chilès & Delfiner 1999).  In this chapter, the Delfiner (1976) method 

was implemented using the Geovariances ISATIS version 3.4.0 advanced geostatistical software 

package. Chilès & Delfiner (1999) state that this approach “…has the advantage of being 

completely general, since it does not require the data points to be evenly distributed nor the 

underlying random function [i.e., contaminant concentrations] to be Gaussian”. The method 

consists of the following tasks: (1) fitting a polynomial of degree less than or equal to k and (2) 

identifying the generalized covariance model with the best cross-validation scores. Cross-

validation is performed by removing a “known” data point and estimating its values using the 
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remaining sample data.  Residuals can then be computed as the difference between the data 

point’s true value and its estimate (for more details see the discussion of equation (5.4) in the 

next section).  Readers interested in the details of this fitting algorithm should see both Delfiner 

(1976) and Chilès & Delfiner (1999).    

5.2.2 Deterministic Methods 

Traditional inverse-distance weighting and least squares approaches have been compared 

to the kriging methods described above.  The deterministic methods do not incorporate the 

underlying spatial structure of the phenomenon of interest and have generally been shown to be 

more sensitive to asymmetrical data distributions and bias-based estimation error (Gambolati & 

Volpi 1979, Hughes & Lettenmaier 1981, Gotway et al. 1996).  These studies have also found 

that the relative superiority of kriging approaches is largely a function of the number of available 

data because, below a certain threshold, spatial structure (i.e., the spatial covariance) cannot be 

determined.   

This chapter considers an array of plume interpolation methods that will enable the 

practitioner to define the most appropriate estimation technique given the data limitations of his 

or her site.  Deterministic estimation techniques can be used for LTM design applications for 

smaller sites with limited data sets.  Reed et al. (2000) also found that the inverse distance 

weighting techniques are excellent screening tools, which can be used to justify the added cost 

and analyses required for geostatistical approaches to LTM design.  The next two sections 

present the deterministic interpolation methods considered in this chapter. 

5.2.2.1 Nonlinear Least Squares Inverse Distance 

The nonlinear least squares (NLS) method studied in this research is a variant of the 

scheme used by Barry & Sposito (1990) in their analysis of tracer plumes at the Borden site 
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located in Ontario, Canada. The Barry & Sposito (1990) interpolation method shown in equation 

(5.3) was selected because it requires minimal modeling assumptions and it has been 

successfully applied to three-dimensional historical contaminant data.  
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In equation (5.3), the jth concentration estimate )( jest xc  at location jx is computed as a weighted 

sum of the available sample data.  Each weight ),( kj xxw  is computed as an inverse function of 

the distance between the jth unsampled location and kth sample raised to the power P.  The alpha 

parameters in equation (5.3) scale the relative importance of each spatial dimension in the 

distance calculations. Equation (5.4) presents the cross-validation based parameter estimation 

method that was used to fit the α parameters and distance exponent P shown in equation (5.3) to 

the contaminant data of each test case (Barry & Sposito 1990). 
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 The cross-validation method minimizes the sum of the squared residuals S between each 

of the actual PCE concentrations )( kxc  and their interpolated estimates based on the (nsamp – 1) 

remaining data c( ix ).  Equation (5.4) was solved using the Levenberg-Marquardt nonlinear least 

squares solution method (Moré 1977). 

5.2.2.2 Inverse Distance Power-2 

The primary strength of inverse distance-based interpolation is its numerical simplicity. 

Equation (5.3) describes the inverse distance power-2 approach (ID) when the alpha fitting 

 90



parameters are set equal to 1 and the distance exponent P is set equal to 2. Additionally, equation 

(5.3) shows that ID is simply a matrix multiplication of the inverse distance weights ),( kj xxw  

by the vector of N sampled concentrations.  Traditional inverse-distance estimation within local 

neighborhoods was tested in this chapter because it is commonly used in practice. Inclusion of 

this method enabled a comprehensive empirical performance analysis of interpolation methods 

ranging from advanced geostatistical estimators (i.e., the ItK approach) to one of the simplest 

interpolation methods used in practice.   

5.2.3 Defining Estimation Neighborhoods 

All of the methods considered in this chapter except for ItK and NLS require the 

specification of a neighborhood within which the sample data used to estimate concentration 

values are selected.  Specification of an estimation neighborhood is particularly important for 

scatter-point contaminant data due to the ubiquity of preferential sampling at contaminated sites. 

Specifically, preferential sampling of areas of high concentration can lead to a bias that causes 

severe overestimation at unknown locations.  In this chapter, each estimator used ellipsoid 

neighborhoods where, for each case, the axes were defined to be equal to one half of plume 

lengths along its transverse and longitudinal axes as recommended by Cooper & Istok (1988a) 

and Goovaerts (1997).   

To reduce clustering effects, each of the ellipsoid neighborhoods were subdivided into 

octants within which a minimum of 1 and a maximum of 3 of the nearest sampled concentrations 

are selected to be used in estimation as recommended by Chilès & Delfiner (1999).  This means 

that a maximum of 24 points were used to estimate concentrations at unknown locations.  If there 

are no sample data within the estimation neighborhood surrounding an unknown location, then 

no estimate is computed for that location. The definition of the estimation neighborhood requires 
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that a balance be struck between the accuracy of estimates and the computational demands 

required to attain those estimates.  For kriging systems, the computational complexity grows as a 

cubic function of the number of data used for estimation (e.g. doubling the number of data 

included in the neighborhood results in an 8-fold increase in the computational time required to 

solve the problem).  Inverse distance approaches have the advantage that their computational 

complexity grows as a quadratic function of the number of data used in estimation.  Each test 

case had a unique estimation neighborhood.  To enable fair comparisons among the estimation 

methods, the same estimation neighborhood was used for all methods applied to a given test 

case. 

5.2.4 Performance Measures 

The performance of the interpolation methods was assessed using the following measures 

of their estimation errors: estimation error residual, standardized estimation error, confidence 

intervals, and root-mean-square error (RMSE).  Each measure is summarized separately below. 

5.2.4.1 Estimation Error Residual 

The estimation error residual is shown in equation (5.5), which directly measures the 

difference between true and estimated concentration values.  In this work estimation error 

residuals can be exactly calculated from the true simulation data.  In practice, the evaluation of 

error residuals is approximated by using re-estimation scores, such as with cross-validation.     

)()()( xCxcxE esttruersd −=                                                       (5.5) 

The kriging methods and NLS both seek to minimize these residuals to produce minimum error 

estimates of contaminant concentrations.   
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5.2.4.2 Standardized Estimation Error 

In addition to computing minimum error estimates, kriging methods also produce 

estimation variances that can be used to measure the “local uncertainty” of the estimates. The 

term “local uncertainty” is taken from Goovaerts (1997) because uncertainty estimates are 

computed considering only a single point in the interpolation domain. Estimation variances are 

used to standardize error residuals by dividing the errors computed at each location x [shown in 

equation (5.5)] by the square root of its corresponding estimation variance, as shown in equation 

(5.6).  Equation (5.6) was used to assess the cross-validation performance of each kriging 

method except QK by classifying estimates as being robust when their standardized estimation 

error falls within the interval [-2, 2], which is equivalent to a 95th percentile confidence interval 

for the normal distribution. 
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5.2.4.3 Confidence Intervals 

A robust estimate can be defined as one in which its true value falls within the 95th 

percentile confidence interval surrounding its estimate, which can be computed using equation 

(5.7).  

)(2)( xxcest σ±                                                                  (5.7) 

This uncertainty calculation makes the following assumptions: (1) that the estimation errors are 

normally distributed at location x and (2) that )(xestc and )(xσ  represent the distribution mean 

and standard deviation and are independent.  Goovaerts (1997) argues that these assumptions are 

“stringent” and rarely satisfied in practice due to highly asymmetrical sample distributions and 

spatially correlated estimation errors.  Normality assumptions are avoided in the QK approach 
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because standardized ranks are known to be uniformly distributed allowing confidence intervals 

to be computed  using equation (5.8) [see Juang et al. 2001]. 

)(3)( xxcest σ±                                                                 (5.8) 

5.2.4.4 Root-Mean-Square Error 

Finally, the root-mean-square error (RMSE), shown in equation (5.9), is the last 

performance measure that was used to rank the relative performance of the estimation methods.   
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RMSE represents the average error computed for nest estimates. 

5.3 Results & Discussion 

The next sections compare the relative performances of the interpolation schemes as the 

number of available sample data decreases.  The geostatistical approaches required both 

structural analysis and cross-validation to specify models of the spatial “structure” or correlation 

of the contamination data.  Each test case required the specification of 4 variogram models, one 

for each of the kriging approaches (yielding a total of 12 models among the 3 test cases), which 

were then cross-validated using analyses of the histograms of standard errors,  plots of estimates 

versus their true values, and measures of estimate robustness (for detailed  presentation of these 

results see Appendices B and C). Additionally, NLS minimizes cross-validation squared 

residuals to specify the fitting parameters of equation (5.3).  Table (5.2) gives the NLS fitting 

parameters’ values for each test case.  

 (α1,  α2, α3) P 
Large Test Case (1.8, 0.1, 0.4) 30 

Intermediate Test Case (306, 304, 305) 0.5 
Small Test Case (36, 60, 0.5) 1.2 

 
Table 5.2 Nonlinear least squares fitting parameter values 
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 In addition to cross-validation scores, this chapter evaluates the accuracy of estimated 

PCE concentrations relative to their true values using the simulation data from Maxwell et al. 

(2000).  For each test case, the interpolation schemes are ranked based on their RMSE values as 

well as a detailed analysis of the spatial distribution of estimation errors using three-dimensional 

cross sections along the vertical and horizontal axes of the each plume.  These cross-sectional 

views provide the most comprehensive means of visualizing the spatial distribution of estimation 

errors. Finally, the discussion of each test case concludes with an analysis of how well the local 

uncertainty estimates attained from the kriging approaches predict areas of high estimation error.    

5.3.1 Large Test Case 

The large test case represents a heavily sampled, mature PCE plume that extends over 1-

km in the primary direction of groundwater flow within a highly heterogeneous alluvial aquifer.  

In this test case, 124 sample locations were available from 59 multi-level monitoring wells for 

the structural analysis required for each kriging system.  Variogram models for the OK, MGK, 

and QK schemes were deduced using the standard trial-and-error approach of graphically fitting 

candidate models to experimental variograms followed by cross-validation to determine the 

models’ performances.   

The estimates from these kriging approaches were significantly improved when 

geometric anisotropies where incorporated into their variogram models (for detailed discussions 

of anisotropic variogram modeling see Chilès & Delfiner 1999 or Goovaerts 1997). These 

anisotropic models indicate that the PCE has shorter correlation ranges in the y- and z-directions 

(or in the transverse directions of the plume) relative to the x-direction (or along the longitudinal 

axis of the plume).  Moreover, the vertical correlation range was shorter relative to both of the 

ranges specified in x- and y-directions as expected in an alluvial aquifer.  For ItK, the second 
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order polynomial trend function (1+z+z2) and an isotropic generalized covariance model were 

specified by black-box fitting (Delfiner 1976). Due to both computational limits and improved 

cross-validation performance, ItK estimates were computed using local neighborhoods. The next 

section overviews the cross-validation results for the kriging approaches and NLS. 

5.3.1.1 Cross-Validation 

Figure (5.3) shows the RMSE values attained from cross-validation for 120 of the 124 

available sample data points.  Four PCE concentrations, each of which exceeded 1000-mg/m3 

and were located in the source area of the plume are not included because these extremes 

severely impeded structural analysis for both OK and ItK.  The calculation of the experimental 

variogram is very sensitive to extreme concentration values and in this case no spatial structure 

could be identified when these values where kept in the data set.  The sensitivity of both 

variogram calculations and the kriging estimators to highly variable, strongly skewed 

concentration data is a motivating factor for the use of MGK and QK. 
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Figure 5.3 RMSE values from cross-validation for the large test case (mg/m3) 
 

 The cross-validation results for MGK and QK presented in Figure (5.3) exclude the 4 

largest samples to allow these methods to be compared to OK and ItK.  However, these samples 
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were included in both the structural analysis and cross-validation used to specify their variogram 

models.  Figure (5.3) shows that there is only a slight difference between the RMSE values for 

all of the kriging methods.  These cross-validation scores must be considered cautiously. 

Although OK and ItK have slightly smaller RMSE values, these methods could not utilize the 

full data set in their cross-validation estimates, in particular the maximum concentration values 

that can be important in plume interpolation.  Moreover, 80-percent of the monitoring wells in 

this test case sample multiple locations in space, a majority of which fall within 10-meters of 

each other.  The close proximity of these sampling locations to one another greatly reduced the 

mean distance between unknown and known locations in the cross-validation calculations. The 

magnitudes of cross-validation RMSE scores are directly proportional to the mean distance 

between known and unknown locations and in this case are underestimated.  

The RMSE values in Figure (5.3) clearly show that NLS has the highest expected error of 

the five methods discussed in this section.  Again, caution must be exercised before drawing the 

conclusion that NLS is the worst of the methods.  Kriging is a low-pass filter that by means of 

statistical expectation (or averaging) tends to “filter” extreme values from its estimates.  Note 

that the distance exponent P shown in Table (5.2) for the large test case is equal to 30, which 

causes NLS to behave essentially as a nearest neighbor estimator.  This yielded a high degree of 

variability in the NLS estimates.  The actual quality of NLS estimates are a function of how well 

the 124 concentration samples represent the true site conditions, which will be captured by the 

estimation accuracy analysis below.   

The four kriging approaches were also assessed in terms of the robustness of their 

estimates (i.e., the percentage of the estimates with standardized errors falling in the interval [-2, 

2]).  Conservatively, over ninety-eight percent of the MGK and QK estimates were robust.  Only  
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90-percent of the OK and ItK estimates were classified as being robust due to their sensitivity to 

extremes, even without the 4 highest PCE samples.  

Overall, cross-validation scores failed to identify which interpolation method is superior.  

This failure resulted due to clustered, multi-level monitoring points that preferentially sample 

zones of high concentration causing the cross-validation RMSE to be significantly 

underestimated, especially for the interpolation methods that are sensitive to extreme PCE 

concentrations. 

5.3.1.2 Estimation Accuracy 

The accuracy of interpolation estimates were tested relative to their true values for every 

point in the interpolation domains. Table (5.3) gives the grid dimensions of the interpolation 

domains.  

 
 (xmin, ymin, zmin) (∆x,  ∆y, ∆z) (nx, ny, nz) 

Large Test Case (20m, 450m, 60m) (20m, 24m, 4.8m) (59, 12, 9) 
Intermediate Test Case (20m, 474m, 61.2m) (20m, 24m, 4.8m) (39, 8, 8) 

Small Test Case (20m, 486m, 75.6m) (10m, 12m, 4.8m) (38, 11, 5) 
 
Table 5.3 Interpolation grid specifications for each test case 

 
 

Figure (5.4) gives the RMSE over the 6732 grid points in the large case domain for each 

interpolation method. The figure clearly shows the relative performances of the 6 interpolation 

methods considered in this chapter.  The cross-validation RMSE values shown in Figure (5.3) 

predicted that the 4 kriging approaches should perform equally well, whereas Figure (5.4) shows 

that ItK and OK clearly fail to estimate PCE concentrations as accurately as QK and MGK. QK 

performed the best, with an absolute average error for PCE estimates of 8-mg/m3.   
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Figure 5.4 RMSE values from interpolation for the large test case (mg/m3) 
 

Figure (5.5) shows how the estimation errors are distributed throughout the interpolation domain 

for each of the interpolation methods shown in the order from the most to the least accurate 

approach.  Figure (5.5a) shows that almost all of the QK estimates fell within 10-mg/m± 3 of 

their true values.  The figure shows that the zone of highest error occurs in the midsection of the 

plume centered at about 600-m in the x-direction.  There are two primary factors contributing to 

the errors in this portion of the plume: (1) there is a reduced number of sample data available in 

this portion of the plume and (2) a group of monitoring wells clustered in this portion of the 

plume had PCE concentrations greater than 50-mg/m3 but were not representative of the 

concentrations in this portion of the plume.   Overall, the QK approach was fairly robust given 

the relatively poor spatial coverage of the monitoring wells in the midsection of the plume and 

preferential sampling of high concentrations throughout the plume. 
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Figure 5.5
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 Spatial distributions of estimation errors for the large test case (mg/m3) 
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Figure (5.5b) shows that NLS actually outperforms QK in estimating the boundaries of the 

plume.  The method’s increased RMSE relative to QK resulted from an increased sensitivity to 

the poor spatial coverage and preferential sampling of high concentrations in the midsection of 

the plume.  Figures (5.5a) and (5.5b) show NLS’s sensitivity to these factors, clearly illustrating 

increased estimation errors in the midsection of the plume, many of which exceed ± 20-mg/m3.  

 The spatial distribution of errors for MGK illustrated in Figure (5.5c) shows increased 

estimation errors in the midsection of the plume relative to both NLS and QK.  Far more 

troubling, the figure shows that the MGK approach fails to produce accurate estimates in the 

source area of the plume.  The extreme values within the plume’s source area were considered 

during both structural analysis and cross-validation for MGK.  However, the high estimation 

errors shown in Figure (5.5c) within the source area of plume occur because MGK implicitly 

assumes that (1) the data are symmetrically distributed and (2) they display a destructurization 

effect, which means that the extreme values are not highly correlated in space. The first 

assumption fails because of the tremendous variability of the PCE concentration data; even after 

transformation the data set remained skewed and asymmetrically distributed.  The second 

assumption fails because both tails of the data cdf (i.e., the zero concentrations and the source 

area concentrations) are highly correlated in certain regions of the plume.  Using the available 

software in the GSLIB library of Deutsch and Journel (1997), the PCE concentration data sets 

from all 3 test cases failed to match the theoretically expected behavior of a Multi-Gaussian 

phenomenon.  These results are particularly important given the common use of normal and 

lognormal transforms within the groundwater community.  

 Figure (5.4) shows that the three remaining interpolation schemes had significantly 

higher RMSE values relative to QK, MGK, and NLS.  The 4 extreme PCE samples located 
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within the source zone severely impeded the ability of OK, ID, and ItK to accurately estimate 

PCE concentrations within this zone of the plume.  This is rather unsettling given that the RMSE 

values for OK and ItK from cross-validation do not accurately reflect the true performance of 

these methods.  Figures (5.5d) – (5.5f) show the distributions of errors in the plume for each 

method. Figure (5.4) shows that ItK had the highest expected error of the six interpolation 

methods. Figure (5.5f) shows that the increased RMSE for ItK results from the method’s failure 

to accurately estimate PCE concentrations in the source area and midsection of the plume. 

Although ItK is elegantly formulated for working with nonstationary phenomena, it was heavily 

biased in the present case by extreme concentration values; this result concurs with Hughes & 

Lettenmaier (1981).  Both deterministic interpolation schemes (NLS and ID) perform nearly as 

well or better than OK.  Given the ease with which these methods can be implemented, they have 

significant potential for use as screening tools (see Reed et al. 2000 for an example in monitoring 

design), although they have the drawback of not providing any measure of estimate uncertainty. 

5.3.1.3 Local Uncertainty Analysis 

Table (5.4) summarizes how well the kriging approaches were able to capture the true 

PCE concentrations within the 95th confidence intervals computed using the estimation variance 

for each estimate as shown in equations (5.7) and (5.8).   

 
 QK MGK OK ItK 

Large Test Case 99 95 92 92 
Intermediate Test Case 100 100 66 76 

Small Test Case 100 100 100 89 
 
Table 5.4 Percentage of true data falling in 95th confidence interval 

 
 

For the 6372 points in the large test case’s interpolation domain, all of the kriging methods were 

able to capture greater than 90-percent of the true data values within the estimated 95th percentile 
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confidence intervals.  OK and ItK fell slightly below the expected value of 95 percent while QK 

exceeded this value by capturing 99-percent of the true data in its uncertainty estimates, 

suggesting that the uncertainty estimates for QK were conservative. 

In addition to the results of Table (5.4), Figure (5.12a) shows the spatial distribution of 

predicted uncertainty computed for QK for the large test case.  The figure plots the interquantile 

ranges, which are equal to the difference between the upper and lower bound estimates for the 

95th percentile confidence intervals at every point in the 3 interpolation domains considered in 

this chapter.  The larger the distance between these values, the more uncertainty that is 

associated with an estimate.  QK was used because the method was the least affected by extreme 

concentrations in both structural analysis and estimation. Moreover, QK uncertainty estimates 

have the advantage of being non-parametric. The purpose of the plots is to verify if zones of high 

predicted uncertainty correspond with zones of high estimation error.  This comparison is 

important for applications such as site characterization or long-term monitoring where local 

uncertainty estimates are used to make regulatory or managerial decisions.  Comparison of 

Figures (5.12a) and (5.5a) shows that the area of highest predicted uncertainty is centered at x = 

600m [Figure (5.12a)] and corresponds well with the area of highest actual estimation errors 

[Figure (5.5a)].  The absolute estimation errors were highly correlated with the predicted 

estimation errors from kriging (i.e., the kriging estimation variances) for the 6372 grid points in 

the large case domain as evidenced by a rank correlation coefficient equal to 0.98 for the two 

quantities. The numerical values of kriging estimation variances did not predict the “actual” error 

values (see Goovaerts 1997, Journel & Rossi 1989), but they did successfully rank which areas 

of the plume have the highest expected error (i.e., areas with fewer sampling locations had both 

increased kriging estimation variances and actual estimation errors).  In this test case, QK was 
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able to both successfully capture the true PCE concentrations and spatially predict the zone of 

highest estimation errors. 

5.3.2 Medium Test Case 

The medium test case shown in Figure (5.1b) consists of a total of 58 sample locations 

within a network of 29 multi-level monitoring wells. Reducing the data set size from 124 to 58 

significantly impaired structural analysis.  Anisotropy could no longer be identified for any of 

the kriging methods.  Isotropic variogram models where specified for OK, MGK, and QK.  The 

black-box fitting procedure used for ItK was unable to identify any correlation structure in the 

dataset and, as a result, was specified as a pure nugget variogram model.  The fitting procedure 

failed to identify a model with structure due to an increase in the number of extreme PCE 

samples and a decrease in the overall number of data available for estimation. 
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Figure 5.6 RMSE values from cross-validation for the medium test case (mg/m3) 
 

5.3.2.1 Cross-Validation 

The cross-validation RMSE values shown in Figure (5.6) are significantly higher than 

those shown in Figure (5.3) for the large test case.   Three factors contributed to the increased 
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cross-validation errors for this test case: (1) the reduction in the spatial coverage and total 

number of the sample data, (2) the sample data set is more heavily skewed toward high PCE 

concentrations, and (3) the proportion of monitoring wells that sample multiple locations along 

their vertical axis decreased from 80-percent for the large case to 66-percent for this case, which 

causes the average distance between known and unknown locations to increase.  OK and ItK 

were again severely affected by high PCE concentrations and required the exclusion of 7 samples 

with values ranging from 500-mg/m3 to 6000-mg/m3.  To facilitate performance comparisons 

with the 3 remaining interpolation methods, only the cross-validation residuals for 51 of the 58 

available sample data points were used to compute the RMSE values shown in Figure (5.6).  QK 

is clearly the superior interpolation scheme because the structural analysis performed for this 

approach did not require the exclusion of high PCE concentrations.  Interestingly, the relative 

rankings of the 5 schemes changed significantly between large and medium test cases.  

Particularly, the RMSE scores for MGK and ItK increased significantly because both methods 

drastically overestimated concentrations for samples with no PCE that are in close proximity to 

high concentration samples in the source area of the plume. The next section shows that cross-

validation again failed to properly rank the relative performances of the interpolation schemes. 

5.3.2.2 Estimation Accuracy 

Figure (5.7) presents the absolute errors for each of the six interpolation methods 

averaged over the 2496 points in the interpolation domain [see Table (5.3)]. Comparing the 

medium case RMSE values from cross-validation and interpolation, it is evident that cross-

validation is again underestimating the expected errors for all of the interpolation methods.  As 

was observed for the large test case, clustered sampling locations in areas of high concentration 

are biasing cross-validation residual calculations.  This is particularly true for NLS, OK, and ItK, 
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all of which were heavily biased by extreme PCE concentrations. QK and MGK performed 

better than the remaining methods because their data transformations reduce the influence of the 

extreme PCE values on variogram identification and spatial overestimation.  

386 379 342 339

69 52

RM
SE

ID OK NLS ItK MGK QK  

Figure 5.7 RMSE values from interpolation for the medium test case (mg/m3) 
 

Figures (5.8a)-(5.8f) show the spatial distributions of errors for each of the interpolation 

schemes. These figures clearly show that QK has the best distribution of error, with a majority of 

the errors falling below -mg/m25± 3.  MGK again fails to accurately estimate concentrations 

within the source area of plume due to the inappropriateness of the Multi-Gaussian assumption.  

Figures (5.8c) – (5.8f) show that the distributions of error for ItK, NLS, OK, and ID are all very 

similar.  The methods all failed to produce accurate estimates in the source area of the plume and 

severely overestimate PCE concentrations in the area centered at x = 500m located near the 

bottom of the interpolation domain.  This bias towards overestimation for ItK and OK also 

degraded the quality of their local uncertainty estimates as will be shown in the next section.   
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5.3.2.3 Local Uncertainty Analysis 

Table (5.4) shows that for this case, ItK and OK local uncertainty estimates were severely 

affected by estimation bias, capturing only 76- and 66-percent of the true data, respectively.  

Both methods underestimated the true extent of the uncertainty of their estimates.  Goovaerts 

(1997) states that highly asymmetric data sets can significantly degrade local uncertainty 

estimates for kriging methods that require the assumption that estimation errors are normally 

distributed and spatially independent.  The estimation errors for OK and ItK shown in Figures 

(5.8c) and (5.8e) were highly asymmetrical and correlated in space.  Given that ItK and OK both 

failed to capture the true data with their local uncertainty estimates, these methods have no clear 

advantage over ID and NLS for this test case.  

MGK and QK both produced conservative uncertainty estimates and captured all of the 

true data in their 95th percentile confidence intervals. Moreover, a comparison of Figures (5.12b) 

and (5.8a) again shows a close correspondence between areas projected to be highly uncertain 

and zones of high estimation error for QK with a rank correlation coefficient equal to 0.97. 

5.3.3 Small Test Case 

The small test case represents a sparsely sampled PCE plume extending approximately 

400-m in the primary direction of groundwater flow, with a total of 20 multi-level monitoring 

wells sampling 26 locations. The high variability of the PCE concentrations and extremely 

limited size of the small test case data set combined to make identification of spatial structure 

impossible for OK, QK, and MGK. Pure nugget variogram models were specified for each of 

these methods.  The black-box fitting procedure used for structural analysis in ItK was able to 

specify an isotropic general covariance model because this method did not use estimation 

neighborhoods (i.e., all 26 sample data were used in all of the fitting procedure’s computations). 
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ItK could not use estimation neighborhoods for this test case because there were too few data in 

each neighborhood to fit a trend function.  The limited size and heavily skewed nature of the 

small test case data set helped to identify which of the schemes were the most robust in facing 

these challenges. 
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Figure 5.9 RMSE values from cross-validation for the small test case (mg/m3) 
 

5.3.3.1 Cross-Validation 

Figure (5.9) shows that all of the interpolation methods had significantly higher cross-

validation RMSE values for the small test case relative to the previous cases.  The increased 

RMSE scores for this case resulted because the size and spatial coverage of this data set 

decreased while the proportion of extreme PCE samples increased relative to the large and 

medium test cases. Additionally, only 30-percent of monitoring wells for this test case sample 

multiple locations in space, which greatly increases the average distance between unknown and 

known locations in cross-validation calculations relative to the previous two test cases.  Recall 

that as this average distance increases, RMSE increases.   
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The relative ranking of the interpolation schemes given in Figure (5.9) agrees with 

previous studies that conclude that kriging methods have no significant advantage relative to 

NLS and ID for data sets with less than 50 samples (Hughes & Lettenmaier 1981, Gotway et al. 

1996).  Interestingly, ItK produced more accurate cross-validation estimates, but the method’s 

estimates were less robust (i.e., its local uncertainty estimates failed to capture the true PCE 

concentrations) relative to MGK and QK.  Recall Hughes & Lettenmaier (1981) found that ItK 

suffers from a bias that causes estimation variances to be smaller then they should be for reduced 

data sets. However caution must be exercised when assigning performance rankings using cross-

validation, because the next section again shows that the cross-validation scores for this test case 

do not reflect the true performances of the interpolation schemes. 

683

580 580 559
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288
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SE

ItK NLS ID OK QK MGK  

Figure 5.10 RMSE values from interpolation for the small test case (mg/m3) 
 

5.3.3.2 Estimation Accuracy 

Figure (5.10) presents the RMSE values computed relative to the true concentrations for 

the 2090 points in the small case interpolation domain.  Comparison of the interpolation RMSE 

scores in Figure (5.10) with the cross-validation scores in Figure (5.9) shows that unlike the 

 110



previous cases, cross-validation actually overestimates the expected errors for all of the 

interpolation methods.  The primary factor causing this shift from underestimation to 

overestimation lies in the reduction of the percentage of multi-level monitoring wells from 80-

percent for the large case to 30-percent for the small case. Reducing the number of multi-level 

wells greatly increased the average distance between known and unknown locations in cross-

validation computations, which resulted in a bias toward overestimating estimation error.   

Figure (5.10) shows that MGK and QK were actually the best performing methods, in 

contrast to the worst performing methods as predicted in cross-validation [see Figure (5.9)].  

Figure (5.11) provides a more detailed understanding of the relative performances of these 

methods, showing the spatial distributions of their estimation errors.  Unlike the previous two 

test cases, QK had a higher RMSE value relative to MGK because the method overestimated 

zero concentrations near high concentrations in the source area of the plume as can be seen in 

Figure (5.11b).  QK’s performance was degraded because over 40-percent of the PCE sample 

data used to compute the empirical cdf had values exceeding 500-mg/m3.  Despite this fact, 

Figures (5.11a) and (5.11b) show that QK was less prone to overestimation than MGK in the 

leading edge of the plume.  Finally, Figures (5.10) and (5.11) show there was a minimal 

difference in the performance of OK, ID, and NLS.  Given ID’s ease of implementation, it would 

be the preferred estimation method for practitioners who do not require uncertainty estimates. 

5.3.3.3 Local Uncertainty Analysis 

Table (5.4) shows that OK, QK, and MGK all captured 100-percent of the true data in the 

uncertainty estimates for the small test case.  All of these methods produced very conservative 

uncertainty estimates because of their pure nugget variogram models (i.e., assumption of no 

spatial correlation), when spatial correlation is actually present in the spatial distribution of the  
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(a) Large Case Uncertainty: 

 

(b) Medium Case Uncertainty: 

 

(c) Small Case Uncertainty: 

 

 

Figure 5.12 Spatial distributions of local uncertainty for QK (mg/m3) 
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plume but is not quantifiable from the sample data.  ItK was only able to capture 89-percent of 

the true data due to its susceptibility to under predicting estimates’ uncertainties for small data 

sets.  Figure (5.12c) is particularly interesting because even for a small data set where PCE 

concentrations are assumed spatially uncorrelated, the predicted zones of highest uncertainty are 

still correlated with the actual estimation errors shown in Figure (5.11b) with a rank correlation 

coefficient between the two quantities equal to 0.97. 

5.4 Conclusions 

This chapter provides a detailed description of the motivations and assumptions underlying 

each of 6 interpolation methods and an analysis of their performance for plume interpolation. 

Results from the 3 test cases show how robust the interpolation methods are as the number of 

sample data decreases and illustrate the difficulties practitioners face when interpolating 

contaminant concentrations at highly heterogeneous sites.  The use of simulation data allowed 

this chapter to examine the spatial distributions of estimation accuracy and uncertainty 

predictions. An important result from this chapter is that performance ratings from cross-

validation are misleading and should be used cautiously.  Specifically, the chapter shows that 

clusters of monitoring wells used to preferentially sample zones of high concentration heavily 

bias cross-validation scores. 

Although QK and MGK were the methods least affected by preferential sampling of high 

PCE concentrations, MGK’s normality assumptions were inappropriate for all of the heavily 

skewed concentration data sets as evidenced by the method’s failure to accurately estimate 

source area concentrations for all three test cases.  The only significant advantage OK and ItK 

had over ID and NLS was their ability to produce uncertainty estimates.  ItK had two primary 

drawbacks relative to the other kriging methods: (1) traditional graphical methods for structural 
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analysis could not be used for scatter-point concentration data and (2) it underestimated the 

uncertainty of its estimates in sparsely sampled areas of the contaminant plume.  Both ItK and 

OK were heavily biased by preferential sampling and extreme concentrations.  For all of the data 

sets, the reduced computational complexity and ease-of-implementation of NLS and ID make 

these methods useful as screening tools to determine if the expense of a geostatistical study is 

warranted for a data set.  When selecting between these two methods, it is important to consider 

that NLS was only able to outperform ID when more than 50 sample data were available. 

Overall, the variability of PCE samples and preferential sampling controlled how well each of 

the interpolation schemes performed. QK was the most robust of the interpolation methods, 

showing the least bias from both of these factors and has the additional advantage of being non-

parametric.  Moreover, the method’s non-parametric uncertainty estimates successfully predicted 

zones of high estimation error for each test case. Quantile kriging was the most robust of 6 

groundwater plume interpolation methods, showing the least bias from both preferential 

sampling and the variability of contaminant data. These findings warrant further studies into the 

applicability of quantile kriging to data sets from other fields ranging from mining to life 

sciences, where nonstationary interpolation also plays a vital role.   
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