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Abstract: This work presents a new method to address the Hybrid Assembly Line Design
Problem with multiple objectives. The aim is to assign a set of tasks to stations and select
the resources to perform each of them. The goal is to minimize the total cost of the line by
integrating design (congestion, machine real cost...) and operation issues (cycle time,
precedence constraints, availability...). We used a grouping genetic algorithm to tackle the
problem, hybridized with a branch-and-cut algorithm and the multi-criteria decision-aid
method Promethee II. We present the method that assigns tasks to stations and selects
assembly equipment for each station. We introduce the way to deal with user’s preferences
in design problems. The essential concepts adopted by the method are described. The
application of our algorithm to an industrial case study is presented.
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1. INTRODUCTION


The success of many companies during the recent
years can be attributed to the way they have managed
the design of their systems. The working practices
and tools adopted by companies to improve product
development are known collectively as Concurrent
Engineering (CE) (Delchambre, 1996). Designing a
manufacturing system is a difficult mission that
necessitates many decisions. In broad generalities,
we must select a product, design it, produce it, and
sell it. Numerous decisions must be made at each
step, that affect the time and cost of product
manufacturing. Managing the whole concept is hard
to human beings.


CE is a network of involved organizations through
upstream and downstream linkages. The different
processes and activities produce a value in the form
of services that are added to the whole process.
Design of manufacturing systems involves the design
of products, processes and plant layout before
physical construction. The ‘line layout’ (LL) problem
is known in the literature as logical and physical
layout (Delchambre, 1996). In this work our
emphasis is on the ‘logical layout’ where the aim is
to assign tasks to a set of stations. It is decomposed
in the literature as the Assembly Line Balancing
(ALB) and the Resource Planning (RP) problems.
The balancing, used especially for manual assembly
lines, aims to balance loads of stations. For hybrid
assembly lines the RP helps designers to find an
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assignment of tasks to stations and an assignment of
resources to each task. The main objective is to
minimize the total cost of the line by integrating
design (cost, congestion...) and tasks issues (cycle
time, precedence constraints, availability...).


A line design problem often has a complex structure
due to multiple components, e.g. tooling, operators,
material handling facility, and so on. For a single
component, a number of design alternatives may
exist. The problem can easily become unmanageable
if the designer has to consider all the possible
combinations of these alternatives. Therefore, the
problem must be handled with a structural approach.
For a given product and a given manufacturing
environment, the design objective and constraints
should be defined. Many practical search and
optimization problems are better posed as multiple
objective optimization problems and ask for a
compromise among conflicting objectives. Since it is
difficult to replace designer’s intelligence, experience
and creativity, it is more important to provide him
with a set of assistance tools (computer programs).
These tools just do the tedious part of the job, i.e.
investigate and propose several solutions and make
the necessary evaluations. Based on this information,
the designer tests some alternatives and makes his
decision. Due to their difficulty (industrial problems
are often NP-Hard ones), meta-heuristics methods are
often used to solve this kind of problems. The
resulting solutions are adjusted to create an
acceptable design and the best resulting solution is
implemented. Thus, the design process must be
viewed as an iterative, generate and test process.


This paper is organized as follows. Background to
our work is briefly described in section 2. In
section 3 we present the integrated method to design
assembly lines. Our new approach to tackle the DAL
problem (dealing with user’s preferences) which is
based on the grouping genetic algorithm is described
in section 4. An industrial case study is presented in
section 5. We draw conclusions in section 6.


2. STATE OF THE ART


In related work on design problem solving we often
find many terms for types of design. (Parsaei, 1993)
provides an excellent set of articles, which address a
number of important issues within CE. The various
definitions of design agree, however, that it is
concerned with the mapping of a specified function
onto a structure or description of a structure. Usually,
the designed structure also satisfies performance,
resource, and other pragmatic constraints.


Real-world problems are, in general, multi-criteria
ones. That is, the problems involve multiple often
conflicting objectives to be met. In assembly line
design problems, designers deal with objectives like
line efficiency, line imbalance, cost, reliability,


buffers, stations space (Chow, 1990). Several
applications of the evolutionary algorithms in the
field of multiple objective optimization problems
(MOP) have been reported in the literature. Numbers
of authors use the popular weighted-sum approach.
In the late eighties, Goldberg published his method
called non-dominated sorting, and search techniques
started to use the concept of Pareto (non-dominant)
optimality through selection and ranking methods
(Goldberg, 1989). (Schaffer, 1985) was probably the
first to recognize the possibility of exploiting
evolutionary algorithms to treat multiple objective
problems. Since then, numerous approaches to solve
MOP have appeared in the literature. For a good
introduction to and historical overview of relevant
MOP concepts, the authors suggest to read the work
done by (Fonseca, 1995) and by (Veldhuizen, 1999).


More and more DAL works deal with several
objectives: minimize the idle time and the cost of the
assembly line. A good survey on the subject can be
found in (Baybars, 1986) and (Scholl, 1999).
(Malakooti, 1994) uses multi-criteria decision
making for ALB problems where objectives are the
number of stations, cycle time, buffer size. He uses
an additive utility function based on decision maker’s
preferences (weights). (Holmes, 1987) proposed an
enumerative optimization procedure to solve a multi-
equipment selection problem for DAL. The method
seeks to assign tasks to stations and selects assembly
equipment for each of them. (Lee, 1991) proposed an
iterative method based on integer programming,
depth-first branch-and-bound and queuing network
analysis. The method minimizes the cost of work-in-
process, machine investment and maintenance, and
material handling. The proposed method allows
dealing with assembly systems with single machine
or identical parallel machines on each station.
(Falkenauer, 1997) proposed a Resource Planning
tool based on a Grouping Genetic Algorithm and a
branch-and-bound algorithm to balance assembly
lines at cheap cost. (McMullen, 1998) presented a
simulated annealing method to address the assembly
line balancing with multiple objectives. Different
weights are attributed to objectives to lay stress on
the favorite criteria.


3. THE MULTI-OBJECTIVE GROUPING
GENETIC ALGORITHM


The genetic algorithms (Holland, 1975) are inspired
from the evolution of species in Nature. They have
been proved a successful optimization method for
three main reasons (Goldberg, 1989):


−  their flexibility to conjugate themselves with
specific heuristics adapted to the given problem;


−  the power of their genetic operations on the
chromosomes to perform a global search rather
than a local one in the solution space;
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−  their ability to be adapted to many kind of
constraints, linear or not, and any kind of cost
functions, continuous, discrete, single criterion
or multiple objectives.


3.1. The Grouping Genetic Algorithm


The Grouping Genetic Algorithm (GGA) differs
from the classical GA (Holland, 1975), (Goldberg,
1989) in two ways. Firstly, a specific encoding
scheme is used so that the relevant structures of
grouping problems become genes in chromosomes.
Secondly, special genetic operators are used to suit
the new encoding scheme. Both of the aspects avoid
the weakness of the standard GAs applied to
grouping problems (Falkenauer, 1998).


3.2. Fitness and Multiple Objectives Problems


In classical genetic algorithms, the individual's
fitness is computed according to a cost function that
leads to a scalar fitness value. When dealing with
multiple objective problems, the aggregation of the
several criteria into a unique value is often used. This
leads to rather artificial cost functions and to a
difficult tuning of the weight the designer wishes to
associate to each criterion.


Selection of a solution from a set of possible ones on
the basis of several criteria can be considered as a
difficult and intriguing problem. The authors used the
multi-criteria decision-aid method Promethee II to
deal with such problems (see section 4).


3.3. Construction Heuristic: The Equal Piles Method


In this work, design of assembly lines is our concern.
A solution to a given instance of the problem is a set
of grouped tasks in a set of stations. In order to
assign tasks to stations, we use an EPAL (equal piles
for assembly lines) heuristic. The hard constraint is
the fixed number of stations (piles). The approach is
based on the so-called ‘boundary-stones’. The main
steps of this randomized heuristic can be summarized
as follows:
1) the tasks are ordered according to their number of


predecessors and successors;
2) boundary stones (or station seeds) are chosen


using the results obtained at step 1;
3) tasks are grouped into as many clusters as


stations;
4) a heuristic assigns tasks to stations, using the


different clusters;
5) heuristics are used to equalize station loads by


moving tasks along the line or exchanging tasks
between stations.


More detail on the ‘Equal Piles for Assembly Lines’
method can be found in (Rekiek, 1999a).


4. HOW AND WHERE DOES THE USER
INTERVENE?


In a more general setting and especially when we
have to design an artifact, one has to deal with user’s
preferences. Two kinds of preferences can be found
in design problems. Preferences said to be on the
contents of the obtained design, and preferences
among a set of solutions. The first kind of
preferences may be hard (they cannot be violated) or
soft (the solution to the problem has to be as close as
possible to the designer’s desire, but it is not a sine
qua non condition). In contrast, the second
preference deals with a set of objectives (goals) and
arises each time we have to decide about the best
solution among a set of valid ones, all of them more-
or-less satisfying the first kind of preferences. This
second problem has more to deal with how the
decision-maker judges a set of solutions. This might
involve assigning different utilities (or preferences)
to different objectives and combining them into some
figure of merit. The difficulty with the specification
of one compromise decision lies in the assessment of
weights of the aggregate utility function that reflects
the parties’ power, intensity.


Applying GA to multi-objective problems addresses
two difficult problems: (1) searching large and
complex spaces and (2) deciding among multiple
objectives. Little work has been done on the
combined problem of searching large spaces to meet
multiple objectives. Recently, many studies have
implemented Pareto-based GA search to sample the
entire Pareto-optimal set of non-dominated solutions
(Fonseca, 1995). Only few researchers have
suggested ways of integrating multi-criteria decision
making and the GA search. The GA iteratively
samples the tradeoff surface (Pareto solutions) while
the multi-criteria decision making successively
narrows the search.


Two pragmatic and classic strategies were applied
with the traditional separation of search and multi-
criteria decisions:
−  first, make multi-criteria decisions to aggregate


objectives, then apply GAs search to optimize the
resulting figure of merit,


−  conduct the GA search using different
aggregations of the objectives in order to obtain a
range of alternative solutions and then make a
multi-criteria decision to choose among the
reduced set.


The first method consists of adding all the objective
values together using different weighting coefficients
for each one of them. The weighting coefficients
represent the relative importance of the objectives.
This means that our multiple objectives optimization
problem is transformed into a scalar optimization
problem. The ‘weighting objectives’ method was the
first technique developed for the generation of non-
inferior solutions for multiple objective optimization.
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The main drawback of this approach is the fact that it
can use the sum of values of two totally different
objectives (in our example it could sum the
imbalance value with the reliability value), which
makes no sense.


The second approach yields the Pareto frontier – a
pareto surface in case two objectives. The idea of
pareto optimization is to provide the DM with a
representative set of solutions from (or near to) the
pareto optimal front, so that he can see the actual
trade-offs that have to be made in choosing a
solution, rather than asking these to be fixed through
assignment of weights beforehand. Such non-
aggregated decision making is generally considered
to represent ‘best practice’. The problem is the
number of solutions the DM has to choose among
them. The human cannot easily decide among more
than a few solution, and the pareto frontier most of
the time is composed by many non-dominated ones.


Even if it is difficult to analyze the convergence of
exact methods on well-defined problems, it is quite
common to talk about it. Convergence then means
the time needed to reach a best solution of a given
problem on a given kind of machines. In contrast,
while dealing with multiple objectives problems – it
seems a rather difficult task to talk about
convergence, since there is no common agreement on
what the optimum really is. Indeed, to speak about an
optimal solution one needs to define a neighbor
solution and its distance from the optimum. The
question is how to define the closeness of two points
(solutions) in the case of multiple objective problem
search space. Our approach is situated in the middle
of the two cited approaches, a merge of a search and
multi-criteria decisions is used. Indeed, in order to
come out of the multiple objectives problem stated
by the cost function, we use the multi-criteria
decision-aid method called Promethee II. For more
detail about it, the reader is invited to refer to (Brans,
1994). It is however important to know that it
computes a ‘net flow’ (φ) associated to each solution.
This flow gives us a ranking, called the Promethee II
complete ranking, between the different solutions in
the population. The weights (associated with each
criterion) are involved in the computation of the φ
number and represent the relative influence of each
criterion. Thus, the solutions are not compared
according to a cost function yielding an absolute
fitness of the individuals as in a classical GA, but are
compared to each other thanks to flows, depending
on the current population. In order to avoid a drift
towards locally optimal solutions, elitism is used, i.e.
the best-ever solution takes part in the evaluation of
the φ  flows.


The choice of one solution over the others requires
problem knowledge. It is the DM’s task to adjust the
weights to help the algorithm to find good solutions.
Optimizing a combination of the objectives has the
advantage of producing a single solution, requiring


no further interaction with the DM. If the solution
proposed by the GGA cannot be accepted, because of
inappropriate setting of the weights, new runs may be
required to adjust them until a suitable solution is
found. For given user’s preferences and a given
design problem we run the following multiple
objective GGA:


Generate an initial population with the ICA3;
Order individuals using Promethee II;
repeat
    Select parents;
    Recombine best parents from the population;
    Mutate children;
    Reconstruct individuals using the ICA;
    Use Promethee II to order the new population;
    Replace some or all of the population by children;
until a satisfactory solution has been found.


5. APPLICATION OF THE METHOD


GGA
HAL


Workstations &
Resources


DB Equipment


+ Cost
+ Process Time
+ Reliability
+ Congestion


+ Cycle Time
+ Number of Workstations
+ Precedence Graph
+ Mode Preferences


Fig. 1. Data flow for the hybrid assembly lines
grouping genetic algorithm.


The presented design approach was applied to the
resource planning of hybrid assembly lines. We used
the following input as illustrated on Fig. 1:
−  the desired number of stations,
−  the desired cycle time,
−  the durations for each task,
−  the precedence constraints between tasks,
−  the user’s mode preferences for each task


(manual, automated and robotized),
−  an equipment database which yields the features


of the different resources (cost, reliability, process
time). The cost of a resource is calculated over
the expected lifetime of the line. It can be any of
the following:


−  purchase price plus exploitation costs,
−  cost of manpower, etc.,
−  combination of operator and equipment


cost.
We here present the criteria of comparison used
during the selection of equipment:
−  imbalance: the differences between the workloads


on each station must be minimized.
−  cost: the total price of the resources allocated to


the stations must be minimized,
−  availability: must be maximized on each station.


                                                       
3 Individual (problem solution) Construction Algorithm, which is
problem dependent.
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One of our goals is to minimize the whole cost of the
line. Given the fact that faster resources are generally
more expensive, the cheapest line can present fast
and slow equipment together and can feature a small
or a high number of stations. Thus we have to decide
which task will be performed on which station but we
also must select the resource allocated to each of
them. There is an important link between the two
stages. We propose the following Individuals
Construction Algorithm (for the GGA) to generate
possible solutions of the problem (Rekiek, 1999b):


1) Assign tasks to the stations (using the operating
time corresponding to the fastest equipment)
according to the Equal Piles strategy (see
section 3.3).


2) Generate all possible resource combinations for
each station thanks to a branch-and-cut algorithm.
The process time on a station should not exceed
the cycle time, except if it is impossible to respect
it, even when the fastest resources are selected to
perform the tasks attributed to the station.


3) Select the best equipment combination for each
station using the Promethee II method.


The different solutions found by the B&C algorithm
serve as input data for the Promethee algorithm to
choose the best equipment taking into account the
different criteria. Afterwards, resources are assigned
to each task of the given station. More details on the
method can be found in (Rekiek, 1999b).


We settled for the given cost function:


)Congestiony,ReliabilitImbalance,Cost,Promethee(
functionCost =


where Promethee(x1,x2,… ) means the multi-criteria
decision-aid method among the objectives x1,x2…
The imbalance M between the stations is defined as
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where FillWSi is the operating time of Workstation i
and Tc is the cycle time.


The industrial case study we have chosen is a car
alternator, which assembly line was implemented by
FABRICOM some years ago. The cycle time is Tc =15
(arbitrary units, actually seconds).
Table 1 presents the data of this case study. The kind
of operation (manual, automated, robotized) may be a
user preference, but was here proposed using the
approach presented in (Pellichero, 1997). This
operating mode has an influence on the possible
groupings, because manual operations will not be
performed on the same station as robotized or
automated ones. For each operation, a set of possible
resources was determined; using the method
described by (Pellichero, 1999). An indicative
operating time is presented in Table 1. Of course the


real operating time will be determined by the
resource affected to a task. The predecessors of each
operation are reported in the Preds column.


We applied the GGA for several user’s preferences
regarding the cost function. Fig. 2 presents the
imbalance, the total cost of the line and the lower
bound of the line availability according to the
optimization strategy. Four cases were studied: a
multi-criteria optimization, where all criteria are
given the same importance, and three single criterion
optimizations (respectively minimize the imbalance,
minimize the cost, and maximize the availability).
The results show that the proposed method respects
the user’s preferences regarding the optimization
objective.


Op Kind Time Preds Op Kind Preds Time


1 M 8 4 25 D 18 4
2 M 4 1 26 D 16 15
3 M 8 3 27 D 44 9
4 M 3 –– 28 M 45 15
5 M 3 3 29 D 28 7
6 M 3 10 30 D 28 8
7 M 3 –– 31 M 27 6
8 M 3 –– 32 M 31 5
9 M 3 –– 33 D 32 7


10 D 15 5,7,8,9 34 D 31 4
11 D 0 10 35 D 34 15
12 D 0 10 36 D 35 3
13 R 7 11,12 37 D 22 3
14 R 7 13 38 D 31 14
15 D 3 14 39 M 36,38,


46,47,48
3


16 D 9 15 40 M 39 10
17 R 16 7 41 D 26,37,40 14
18 M 6 4 42 M 41 15
19 M 17 8 43 M 42 15
20 D 19 8 44 M 29,30 3
21 D 20 5 45 D 23,24 14
22 M 21 5 46 D 35 4
23 M 17 5 47 D 35 4
24 M 17 9 48 D 35 4


Table 1: Operating mode, indicative operating time,
and associated prececessors for each operation.


6. CONCLUSIONS AND FURTHER WORK


In this paper, we presented a new method to treat the
resource planning for assembly lines problem. The
method is based on a multiple objective grouping
genetic algorithm (MOGGA), the branch-and-cut
method the multi-criteria decision-aid method. The
aim is to select equipment to carry out the assembly
tasks. The accent is put on how to deal with the
user’s preferences in design problems. We show how
the method can deal with the preferences, simply by
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adjusting the weight of the different objectives. We
thus introduce a new paradigm to deal with multiple
objectives using evolutionary computation methods.


In the future, further research will be undertaken on
multi-products resource planner for hybrid assembly
lines.
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Fig. 2. Values of the several criteria according to the
optimization strategy. For the global optimization
each criterion is given the same importance.
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