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Abstract


This paper presents a new method to address the
Hybrid Assembly Line Balancing Problem with
multiple objectives. The aim is to assign a set of tasks
to workstations and select the assembly equipment or
resource to perform each of them. The goal is to
minimize the total cost of the line by integrating
design (congestion, machine real cost...) and
operation issues (cycle time, precedence constraints
and availability...). We used a Grouping Genetic
Algorithm to tackle the problem, hybridized with an
Branch & Cut and the multi-criteria decision-aid
method Promethee. We present the optimization
procedure that assigns tasks to workstations and
selects assembly equipment for each workstation.
The essential concepts adopted by the method are
described. The first results of the algorithm are
illustrated by a case study.


Keywords: Hybrid assembly line, multiple
objectives, grouping genetic algorithm, equal piles,
branch & cut, Promethee.


1 Introduction


The objective of modern assembly systems is to
produce high quality and low cost products. One of
the innovations in the history of assembly
manufacturing is the division of the assembly process
into tasks of relatively limited content. Thus the skills
needed to accomplish it can be developed in a short
time. Paced assembly lines are widely used for
medium to high production rate.
A line design often has a complex structure due to
multiple line components, such as tools, material
handling facility and so on. For a single component
number of design alternatives may exist. The
problem can easily become unmanageable if the line
designer has to consider all the possible combinations
of these alternatives. The problem must therefore be
handled with a structural approach. For a given
product and a given manufacturing environment the
design objectives and constraints should be defined.
The problem may be then subdivided into a number
of linked sub-problems. Since the scope of each sub-
problem is limited, a complete analysis becomes


possible. Results of the analysis should help to
reduce the number of alternatives at the sub-problem
level and consequently simplify the overall design
problem.
The main task of the resource planner is to design a
flexible assembly system that will be able to
assemble a product at least cost. For manual
assembly lines the global cost of the line is directly
influenced by the number of workstations. So the
main objective of the classical Line Balancing was to
minimize the number of workstations used in the
line.
We deal with the design of assembly lines where the
operations can be executed either manually, by
robots or by hard automated equipment. These lines
are called Hybrid Assembly Lines (HAL). In this
case, the above reasoning is not valid anymore. In
general, the operating cost and time will depend from
the resource used. Given a list of candidate
equipment available to complete the operations, the
design problem thus becomes to decide which
resource types to select (operating mode) and which
tasks to assign to each resource in order to meet the
production requirements at minimum total system
cost.
The remainder of this paper is structured as follows.
We briefly review work related to ours in section 2.
Section 3 is devoted to the explanation of the
Resource Planning Problem we tackle and section 4
to the description of the algorithm we propose to
solve it. A case study will be presented at section 5.
We draw conclusions at section 6.


2 Related work


Related design problems and issues are characterized
in the literature as the assembly line balancing
problem. Most papers deal with a single objective:
minimize the idle time of  the assembly line. Surveys
on the subject are found in  Baybars (1986).
Graves and Withney (1979) presented one of the first
resource planning approaches based on linear
programming techniques. The method does not deal
with precedence constraints. Pinto et al (1983)
proposed an integer programming formulation
hybridized with the Branch & Bound algorithm.
Holmes (1987) proposed an optimization procedure
to solve a multi-equipment selection problem for
assembly design. The method seeks to assign tasks to







workstations and selects assembly equipment for
each of them. An interactive and iterative method is
presented in Nevins et al. (1989), based on technical
and economical considerations which lead to the
cheapest technically feasible assembly line. Its
weakness is that the assembly sequence is fixed
before the application of the method. This could be
too restrictive and lead the system to miss the most
cost-effective solutions. Lee et al. (1991) proposed
an iterative method based on integer programming,
depth-first branch and bound and queuing network
analysis. The method minimizes several objectives:
the cost of work-in-process inventory, machine
investment and maintenance, and material handling.
The proposed method allows to deal with assembly
systems with single machine or identical parallel
machines on each workstation. Falkenauer (1997)
proposed a Resource Planning tool based on a
Grouping Genetic Algorithm and a Branch & Bound
algorithm to balance assembly line at cheap cost.
McMullen (1998) presented a simulated annealing
method to address the assembly line balancing with
multiple objectives. Different weights are attributed
to objectives to lay stress on the favorite criteria.
Several applications of the evolutionary algorithms in
the field of multi objective optimization problems
have been reported in the literature. To deal with
these problems, a lot of mathematical programming
techniques have been developed. Number of authors
use the popular weighted-sum approach. In the late
eighties, Goldberg (1989) published his method
called non-dominated sorting, and search techniques
started to use the concept of Pareto (non dominant)
optimality through selection and ranking methods.
Because evolutionary algorithms (EA) require scalar
fitness information on which to work, the objectives
are often artificially combined or aggregated into a
scalar function according to some understanding of
the problem. Schaffer (1985) was probably the first
to recognize the possibility of exploiting
Evolutionary Algorithms to treat multi objective
problems. His approach was to use an extension of
the simple genetic algorithm (called Vector
Evaluated Genetic Algorithm ‘VEGA’), and that
differed from the standard one in the way the
selection was performed. At each generation a
number of sub-populations were generated by
performing proportional selection according to each
objective function in turn. Hajela and Lin (1992)
included the weights of each objective in the
chromosome, and promoted their diversity in the
population through fitness sharing. The goal was to
be able to simultaneously generate a family of Pareto
optimal designs corresponding to different weighting
coefficients in a single run of the GA. Besides using
sharing, they used a vector evaluated approach based
on ‘VEGA’ to achieve their goal.
Fonseca (1995) proposed a method called multi
objective ranking. The rank of a individual
corresponds to the number of chromosomes in the


current population by which it is dominated. All non-
dominated individuals are assigned rank 1, while
dominated ones are penalized according to the
population density of the corresponding region of the
trade-off surface (the surface produced from the
solutions evaluated during the run). The population is
sorted according to the multi objective rank.
In the next section we introduce our method to treat
the Resource Planning for Assembly Line problem.
We will introduce a Multi-Objectives Grouping
Genetic Algorithm (MO-GGA), based on the Equal
Piles approach. The concern is the quality of the
resulting line in terms of balancing  and cost.


3 Hybrid assembly line optimization


In formal terms we defined the Hybrid Assembly
Line Problem as the following decision problem. Let
G = (T, P) be a directed non-cyclic graph, the nodes
of T representing the tasks and the arrows of P the
precedence constraints between the tasks. Each node
Ti is characterized by a set of couples {Li,j , Ci,j} (Li,j
is a possible duration of the task and Ci,j the cost of
the corresponding resource used). Let N (number of
workstations), CT (cycle time), and C (cost) be three
constants. We define the cost of a subset of T as the
sum of Ci,j of the operations belonging to this subset.
Is it possible to find a partition of N subsets of the set
of operations and for each of them select a couple
(Li,j, Ci,j) so that the sum of Li,js in a partition is less
or equal to CT, and the sum of all subsets costs less
or equal than C, and so that there exists an ordering
of the subsets in such a way that whenever two nodes
in distinct subsets are joined by an arrow in G, the
arrow goes from a higher ordered (earlier one) to a
lower ordered (later one) ?
HALP is a variation of the Simple Assembly Line
Balancing (SALB). The only difference is the way to
treat the problem, the aim here is to minimize the
cost of the assembly line. As far as an available
algorithm for the HALP is concerned, we are not
aware of any polynomial approximation similar to
those known for the Bin Packing Problem (BPP). In
the remainder of this paper we will not make the
difference between this problem and its optimization
NP-hard pendent.
Line performance is determined by other parameters
than its cost, such as idle time on stations,
workstation availability which depends on its
reliability, space required by the layout, congestion,
and so on.
Our Resource Planning (RP) problem is defined as
follows. Given a set of tasks, and for each task a set
of possible resources each characterized by its price,
reliability, surface penalty and speed in terms of the
resulting duration of the task; given a cycle time and
possible precedence constraints, we try to find:
−  the resources to be allocated to each task among


the possible ones for that task,







−  an assignment of the tasks to workstations along
the line;


so that:
−  no workstation requires more time than the cycle


time to perform all the tasks assigned to it using
the resources allocated to each of the tasks,


−  no precedence constraints are violated,
−  the following objectives are met:


−  total price of resources allocated to tasks is
as less as possible,


−  a maximal reliability of the line is attained,
−  the surface occupied by the equipment


avoids congestion problems.


4 The algorithm


The algorithm we propose is a Grouping Genetic
Algorithm (GGA). It is subdivided into two levels.
The first one distributes the tasks among the
workstations, the second one handles the selection of
workstation equipment.


4.1 Input data


Our hybrid assembly line algorithm needs the
following input as illustrated on Figure 1:
−  the desired number of workstations,
−  the desired cycle time,
−  the durations for each operation,
−  the precedence constraints between operations,
−  the user’s mode preferences for each operation


(manual, automated and robotized),
−  an equipment database which yields the features


of the different resources (cost, reliability,
operating time). The cost of a resource is
calculated over the expected lifetime of the line.
It can be any of the following:
−  purchase price plus exploitation costs,
−  cost of manpower, etc.,
−  a combination of manpower cost and


equipment cost.


GGA
HAL


Workstations &
Resources


DB Equipment


+ Cost
+ Process Time
+ Reliability
+ Congestion


+ Cycle Time
+ Number of Workstations
+ Precedence Graph
+ Mode Preferences


Figure 1: Data flow for hybrid assembly lines.


4.2 The Overall Method


The line balance efficiency is impacted by the
number of workstations in the line and the idle time.
Normally, the fewer the number of stations in the line
and the less the idle time, the more efficient the line.
One of our aims is to minimize the whole cost of the
line. Given the fact that faster resources are more
expensive (and cheaper resources are slower), the
cheapest line can present fast and slow equipment


together and can feature a small or a high number of
workstations. Thus we have to decide which task will
be performed on which workstation but we also must
select the resource allocated to each of them. There is
an important link between the two stages. We
propose the following algorithm to generate possible
solutions of the problem.


Individual Construction Algorithm (ICA):
1) assign tasks to the workstations (using the


operating time corresponding to the fastest
equipment) according to an Equal Piles strategy
(see section 4.3.2),


2) generate all possible resource combinations for
each station thanks to a Branch & Cut algorithm,


3) select the best equipment combination for each
station using the decision-aid method
Promethee;


This algorithm will be applied each time we have to
construct or complete the construction (during
crossover for example) of an individual in the GGA.
The GGA steps are the following:
1) Create a population of individuals using the


Individual Construction Algorithm
2) Use the decision-aid method Promethee to order


individuals in the population;
3) Recombine (mate) best individuals (parents) to


produce children (with use of the ICA);
4) Mutate children (with use of the ICA);
5) Use Promethee to order the new population;
6) Replace the worst individuals of the population


by the new children;
7) If a satisfactory solution has been found stop.


Else go to 3).


4.3 Distributing tasks among workstations


4.3.1 The Grouping Genetic Algorithm (GGA)
The Grouping Genetic Algorithm (GGA) Falkenauer
(1998) differs from the classical GA Holland (1975),
Goldberg (1989) in two ways. Firstly, a specific
encoding scheme is used so that the relevant
structures of grouping problems became genes in
chromosomes. Secondly, special genetic operators
are used to suit the new encoding scheme. Both of
the aspects avoid the weakness of the standard GAs
applied to grouping problems Falkenauer (1998).


4.3.2 Equal Piles Algorithm
In order to assign operations to workstations, we use
our EPAL (Equal Piles in Assembly Lines) heuristic
Rekiek (1999). The hard constraint is the fixed
number of workstations (piles). At the stage of
operations assignment to workstations, we use a
minimum cycle time min_ct. This min_ct is the ratio
between the sum of minimum process times of the
operations and the desired number of workstations.
The approach to solve the problem is based on the
so-called ‘boundary-stones’. The main steps of this
randomized heuristic can be summarized as follows:







1) the operations are ordered according to their
number of predecessors and successors;


2) boundary stones (or workstation seeds) are
chosen using the sequence obtained at step 1;


3) operations are grouped into as many clusters as
stations;


4) a heuristic assigns operations to workstations,
using the different clusters;


5) a multiple and simple wheel heuristic are used to
equalize workstation loads by moving operations
along the line or exchanging operations between
workstations.


4.3.3 Mode Preferences
The heuristics must deal with the mode preferences
of operations (manual, robotized, or automated),
yielding grouping constraints. The SAM software
Pellichero (1999) proposes one or several possible
modes for feeding, handling and insertion of each
element (part or subassemblies) of the product. The
resulting constraints impeach manual operations to
be grouped with robotized or automated ones. Note
that if several modes are allowed for an operation,
the mode will be fixed by the GGA to yield the best
logical layout.


4.4 Selecting the equipment


4.4.1 The Branch and Cut Algorithm
As its name implies, the Branch & Cut method
consists in two fundamental procedures: branching
and cutting. The search procedure may be
represented as a tree, the root symbolizing the whole
problem. Branching is used to divide a large problem
into two or more sub-problems usually mutually
exclusive. A branch is associated to each sub-
problem. These can be partitioned in a similar way,
yielding new branches and so on. Cutting permits to
stops partitioning of non valid sub-problems. The
associated branches are not further developed. The
examination of the search tree associated to the
partitioning process stops if it represents only one
solution, or if it can be shown that the node does not
contain an optimal solution.
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Figure 2: Tree generated by the B&C Algorithm.


We used a Branch & Cut algorithm to assign
equipment to operations. Initially, the tree contains
only one node, the first task (level 0). The branching
is done by developing a set of possible resources for


the given task. Each node corresponds to an
equipment and each level to one task. On the graphic
presented at Figure 2 each couple (a, b) corresponds
to equipment index, and the sum of operating times
in that branch at this level. For example, the couple
(5,11) means that by selecting equipment 5 to realize
operation 2, the total operating time on the station is
11. At each level, all possible equipment for the
given operation are generated but we only develop
further the valid branches respecting the constraints
of the problem (cycle time). For example, selection
of equipment 2 for operation 1 and equipment 6 for
operation 2 yields an operating time of 18. So this
branch will not be further developed. Once all the
levels (valid branch) have been developed, only valid
solutions (the sum of process time of operations for
the selected equipment must not exceed the cycle
time) are kept. If there is no possible solution (the
sum of operating times of the fastest equipment
exceeds the cycle time), the fastest equipment will be
selected. This may happen if the desired cycle time is
incompatible with the fixed number of stations (this
constraint will never be violated).
Due to the difficulty of comparison of solutions two
by two, we settled for a multi-criteria decision-aid
method Promethee Brans (1994). The different
solutions found by the B & C algorithm serve as
input data for the Promethee algorithm to choose the
best equipment taking into account the different
criteria. Afterwards, resources are assigned to each
task of the given workstation.


4.4.2 Promethee
Selection of a solution from a set of possible ones on
the basis of several criteria can be considered as a
difficult and intriguing problem. Selecting equipment
is a process with a number of uncertainties. One of
our main concerns during the definition of the
structure of this algorithm was to keep all valid
selections during the search steps (assignments
respecting all the constraints even if they seem not
very good). We considered it important to allow
selections to stay in the search until all the
knowledge about the target installation was complete,
even if they seemed at first glance.
A complete description of the theory related to the
Promethee method is out of the scope of this paper.
For more details about it, the reader is invited to refer
to Pellichero (1999). It is however important to know
that it computes a “net flow” (φ) associated to each
solution. This flow gives us a ranking, called the
Promethee II complete ranking, between the different
solutions of the problem. Here are the rules defining
this ranking:
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It means that solution a is preferred to solution b if
and only if φ(a) > φ(b), and that solution a and b are
indifferent if and only if φ(a) = φ(b).







It is also important to know that a weight is
associated to each criterion. These weights are
involved in the computation of the φ number and
represent the relative influence of one criterion with
respect to the other ones.


4.4.3 The Performance of the Solutions
In typical multi-objective optimization problems,
there exists a set of solutions that are superior to
other ones in the search space when all objectives are
considered, but are inferior to the other solutions in
the search space according to one or more objectives.
These solutions are known as Pareto-optimal
solutions or non-dominated solutions. The rest of the
solutions are known as dominated ones. Since none
of the solutions in the non-dominated set is
absolutely better than any other, any of them is an
acceptable one. The choice of one solution over the
other requires problem knowledge. We told that a
weight was associated to each criterion. It is the
designer’s task to adjust them to help the algorithm to
find solution he considers being good ones.
Optimizing a combination of the objectives has the
advantage of producing a single solution, requiring
no further interaction with the decision maker. If this
“optimal” solution cannot be accepted, due to
inappropriate setting of the coefficients of the
combining function (the weights of the criterions),
new runs of the optimizer may be required to adjust
them until a suitable solution is found.
We here present the criteria of comparison used
during the selection of equipment.:
−  process time: workstations should not require


more than a cycle time to perform all the tasks,
−  cost : the total price of the resources allocated to


the workstations must be minimized,
−  reliability: must be maximized on each


workstation,
−  congestion: is proportional to the space occupied


by the workstation, and must be reduced.
The same multi-criteria decision-aid method
Promethee will be used to compare the potential
solutions the genetic algorithms proposes. Note that
the solutions are not compared thanks to a cost
function yielding the fitness of the individuals. They
are compared to each other thanks to flows in
Promethee, depending on the current population. The
value of these flows is context related and has no
absolute meaning. So it becomes impossible to fix a
stop criterion for the GGA. The optimization is
stopped at user’s request, or if no better solution has
been found for a given number of generations.


5 Case study


The case study we propose is adapted from one of the
problems proposed in the Line Balancing Benchmark
suite1 of Scholl (1995). The benchmark presented
                                                       
1 The benchmark suite can be accessed via the Web at
http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/alb/index.htm


here is called ‘Buxey’. It considers 29 tasks with
precedence constraints illustrated at figure 3. We
proposed three possible equipment (and operating
times) for each operation. We considered that all
equipment had the same reliability (99 %) and same
congestion factor (1).
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Figure 3 : Precedence graph of the problem.


We tested our algorithm for several numbers of
stations (N) and several desired cycle times (C). The
results of the GGA are presented at Table 1. We
showed the total cost of the line (arbitrary units), and
the loads of the stations (ratio between the sum of
operating times and the cycle time). Note that the
station load is superior to 1 in some cases, meaning
that the desired cycle time cannot be held for the
selected number of stations. As can be seen, the line
will generally be less expensive as the cycle time
constraint is relaxed (cycle time augments). But this
is not always the case. For example, for seven
stations, the cost raises as the cycle time augments.
This is because the cost is not the only criterion taken
into account. The line is better balanced for higher
cycle times, for slight differences of the station cost.
So the given solutions for cycle time fixed to 39 or
40 are considered to be better ones than those
obtained by distributing the tasks and equipment the
same way as for cycle time equal to 38 (which is less
expensive).


N,C Cost Stations loads
6, 44 3340 1.00, 1.00, 1.05, 1.07, 1.05, 1.00
6, 45 3340 1.00, 1.00, 1.00, 1.00, 1.00, 1.00
6, 46 3280 1.00, 1.00, 1.00, 1.00, 1.00, 1.00
7, 38 3230 1.00, 1.05, 1.03, 0.97, 1.05, 1.08,


1.00
7, 39 3240 1.00, 1.03, 1.03, 1.00, 1.03, 1.00,


1.00
7, 40 3270 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,


1.00
8, 34 3280 1.00, 1.00, 1.03, 1.00, 1.03, 1.00,


1.00, 1.00
8, 35 3240 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,


1.00, 1.00
8, 36 3030 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,


1.00, 1.00


Table 1: Results of the HAL balancing algorithm.







6 Conclusion and Further Work


In this paper, we presented a new method to treat the
Resource Planning for Assembly Lines Problem. The
method is based on a Grouping Genetic Algorithm
(GGA), the multi-criteria decision-aid method and
the Branch and Cut method. We developed a new
approach to tackle multi-objective problems using
the genetic algorithm. The aim is to select equipment
to carry out the assembly operations. This method is
integrated in the software package SELEQ
(SELection of EQuipment), which is a user-friendly
tool to design assembly lines at low cost. Special user
preferences are taken into account by the proposed
method. In the future, further research will be
undertaken on multi-products resource planner for
hybrid assembly lines.
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