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CHAPTER 5
MULTIPLE OBJECTIVE
GROUPING GENETIC
ALGORITHM

New opinions are always suspected, and usually opposed,
without any other reason but because they are not already common.

It is one thing to show a man that he is in error,
and another to put him in possession of truth.

-John Locke, an Essay concerning Human Understanding

Keywords: design, genetic algorithm, multiple objective.

1. Introduction

In most real-world problems, we often want to optimise more than one measure of
performance at once. Generally, the measures are in conflict with each other, and it
can be unsatisfactory to combine them into a single optimisation objective, or reduce
them in some way so that only one of them is optimised. A manufacturer-designer
asked to design a new assembly line in a short time with a given budget and a
specified capacity has to make several major decisions. The trade-off (compromise)
between easiness, social issues, reliability, functionality, cost, etc. constitute a set of
objectives or goals to reach.

The designer, once having committed to a set of design objectives, and a solution
space and methods (tools to search for solutions), has to make a second set of
decisions. There are at least two main aspects in which decisions of the designer play
a key role in the design process and consequently, in its outcome. First of all, the
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designer plays a central role in the specification (the input constraints). Secondly he
interprets results. This asks for decisions involving choices among alternatives as well
as trade-off among the multiple objective. Indeed, it is the designer who makes use
of the objectives during the design process, and hence consciously or unconsciously
interprets them. The designer also decides on the solution space to be explored (and
the operators to explore it). The decisions made at the different design phases have
deep consequences on the outcome of the design process.

Multiple objective optimisation problems in general involve two ‘quasi-inseparable’
difficulties, namely search and multi-criteria decision making. The space to be
searched can be too large to be enumerated, and too complex to be explored by
simple search methods. In addition to search space complexity, the multiple objective
to be achieved may be conflicting, so that difficult trade-off must be made by a
rational decision maker (DM) when he ranks potential solutions.

In general, designers tend (if it is possible) to formulate design problems as
mathematical models with many independent parameters that result in one so-called
fitness function. This fitness function describes the ‘quality’ of the model (or solution)
for that set of parameters. It is supposed to model all kinds of conflicting design
demands. Classical methods tend to aggregate all the objectives in a quite complicated
function. The optimisation is then tried on the obtained function. Multiple objective
optimisation problems (also called multi-criteria optimisation, multiple performance
or vector optimisation) can be defined as the problem of finding a vector of decision
variables which optimises a vector function whose elements represent the objective
functions. These functions form a mathematical description of performance criteria
which are usually in conflict with each other. Hence, the term ‘optimise’ means
finding a solution which would give to the designer values acceptable for all the
involved objective functions.

In a more general setting and especially when we have to design an artifact, we have
to deal with two kinds of user’s preferences. The first kind of preferences concerns the
content of each obtained design. The second kind of preferences deals with a set of
objectives (goals) and arises each time we have to decide about the best solution
among a set of valid solutions–all more or less satisfying the first kind of preferences.
This second problem has to deal more with how the DM judges a set of solutions.
This might involve assigning different utilities (or preferences) to different objectives
and combining them into some figure of merit. The difficulty with the specification
of one compromise decision lies in the assessment of weights of the aggregate utility
function which reflects the parties power, and intensity.

The most general orientation in the search of methods to solve problems consists in
deriving exact mathematical results. However, such exact solutions may not be
always available, or may be too non-general to be of much use. Generally, the
primary orientation is towards deriving concise and precise estimates of quantities of
interest. The accent is put after on approximating solutions to problems. A problem
carries a notion of size and convergence and we are interested in approximations that
become more accurate as the size becomes large. Even if it is difficult to analyse the
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convergence of exact methods on well defined problems, it is quite common to talk
about convergence–which means the way and the time needed to reach a best or a
good solution of a given problem on a given kind of machines…  In contrast, when
dealing with multiple objective problems, talking about convergence seems a rather
difficult task, since there is no common agreement on what the optimum really
means.

In general, due to the design difficulties and the human limits, two designers will
frequently come up with solutions that logically make sense, but are different in some
manner. This difference is due to the way the two designers judge the proposed
solution of their design problem. The difference between two proposed designs
depends on the user’s preferences. Thereafter, the quality of a given solution is
designer-dependent.

The remainder of this chapter is organised into 6 sections. Our point of view on
multiple objective problems is uphold in section 2. In section 3 we briefly review
related work on multiple objective problems. Section 4 describes the grouping
genetic algorithms while section 5 presents its adaptation to multiple objectives
problems. Section 6 is devoted to an academic case study. Finally we draw
conclusions and present some applications of the presented method in section 7.

2. Multiple objective optimisation

In single objective optimisation problems, the feasible set is totally ordered according
to the objective function f. For two solutions s1 and s2 one have either f(s1) >  f(s2) or
f(s1) ≤ f(s2). In contrast, multiple objective problems (MOP) present a set of optimal
solutions which are quite difficult to order. The solutions once evaluated produce a
vector whose components represent a trade-off in the decision search space. A DM
then implicitly chooses an acceptable solution by selecting one of these vectors.

The concept of Pareto optimum was formulated by Vilfredo Pareto in 1896 and
constitutes by itself the origin of research in multiple objective optimisation (Pareto,
1988). A solution S1 is Pareto optimal if there exists no feasible vector S2 which
would decrease some criterion without causing a simultaneous increase in at least one
criterion.

In most design problems there are always restrictions imposed by the particular
characteristics of the environment or resources available. These restrictions must be
satisfied in order to consider that a certain solution is acceptable. In general, all these
restrictions are called constraints, which describe dependencies among decision
variables and parameters involved in the problem. These constraints are frequently
expressed in form of mathematical inequalities.

Most real-world engineering design problems are multiple objective by nature, since
they normally present several (possibly conflicting) objectives that must (if possible) be
satisfied at the same time. The word ‘optimum’ has several interpretations within this
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context, and it is up to the designer to decide which solution fits better to his/her
application (design goals). Currently, there are many (more than 10) mathematical
multiple objective optimisation techniques, differing by the way they understand the
term ‘optimum’.

In the case of multiple objective problems, instead of a single ‘optimal’ solution the
competing goals give rise to a set of compromise solutions. In the absence of preference
information, none of the corresponding trade-off can be said to be better than the
others. On the other hand, the search space can be too large and too complex to
solve the problem by exact methods. Thus, efficient optimisation methods such as the
genetic algorithms are required.

As discussed above, since we are missing the notion of optimum1 it is quite misleading
to talk about fitness. Indeed, the fitness or the quality of a given solution is difficult
to evaluate–it depends on the values attributed to the different objectives of the
given solution. It is more safe to talk about ranking of solutions rather than fitness.
Talking about ranking gives rise to decision making problem which is quite popular
among deciders community and quite less among the optimisation community until
few years.

Search and decisions are not independent tasks. Making some choices before search can
reduce the size of the search space, while search before decision making can eliminate a
vast number of desired solutions and focus decision making on a few alternatives. The
third approach is situated in the middle of the two cited approaches, it is an integration
of a search and decision. The type and the degree of the integration define the strength
of the exploration and the exploitation.

The two classic (pragmatic) strategies that were applied with the traditional separation
of search and multi-criteria decision-making can be described as follows.

- First, make multi-criteria decision to aggregate objectives, then apply a search method to
optimise the resulting figure of merit. The different objectives are combined to form a
scalar objective function, usually through a linear combination (weighted sum) of
the attributes. The weights estimate the importance of each objective. This
approach is very simple and easy to implement. The weighting coefficients
represent the relative importance of the objectives. This means that the problem
is transformed into a scalar optimisation one. The approach is well suited to
proportional non competing objectives (an improvement of an objective leads to
an improvement or indifference of the others). Indeed, if there exists a solution
that simultaneously succeeds in minimising (or maximising) each of the different
objectives, this approach can be reasonably satisfactory. Because, optimise an
objective will also optimise the others. Unfortunately, this is generally not the
case of real-world problems. The main drawback of this approach is the fact that
it may use the sum of values of two totally different objectives (for instance it

                                               
1 The word ‘optimise’ means finding such a solution which would give the values of all the objective
functions acceptable to the DM.
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could sum the cost value with the reliability value), which makes no sense. The
second problem with this approach is precisely how to determine such weights
when there is not enough information about the problem.

- Conduct the search using the different objectives at the same level of importance. In the more
general case, the objectives compete, in the sense that an improvement of a given
objective will in some cases lead to a degradation of others. In this case, the
approach of forming a weighted sum is less attractive, because the choice of
weights will determine the trade-off between the various component objectives
that optima of the combined function will exhibit. This is particularly
unsatisfactory in cases where the various objectives are non-commensurate, in
the sense that trade-off between them are either arbitrary or meaningless. An
example of this is cost an reliability. The aim is to increase the reliability and to
decrease the cost. Increasing one objective (as instance cost) increases the other
one (reliability), which is not the global aim. In the case of such multiple
objective problems, a more satisfactory approach is to search not for a single
solution but for that set of solutions that represent the ‘best possible tradeoffs’.
This leads to a set of alternative solutions and the search phase is followed by
making multi-criteria decision to choose among the reduced set. This approach
yields the Pareto frontier. Referring to Figure 5.1, O is unique among A, B, C,
and D: its corresponding decision vector O=(o1, o2) is not dominated by any other
decision vector. That means, O is optimal in the sense that it cannot by improved
in any objective without causing a degradation in at least another. Such solutions
are denoted as Pareto optimal (non-inferior). The Pareto optimisation aims to
provide the DM with a representative set of solutions from the Pareto optimal
front, so that he can see the actual tradeoffs that have to be made in choosing a
solution. The search phase is then followed by making multi-criteria decision to
choose among the reduced set. This approach is generally considered to
represent a ‘best practice’. The problem is the number of solutions the DM has
to choose among them. The human cannot easily decide among more than few
solutions.
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Figure 5.1. Pareto optimality (1) and the dominance relations in objective space (2).

Our novel approach is to integrate the decision and the search and permits to deal
with user’s preferences. In the absence of preference information, none of the
corresponding tradeoffs of the Pareto-frontier can be said to be better than the other
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ones. Thus, decision (using preferences) and search are merged and interact mutually.
More details about the method can be found in section 5. Evolutionary methods,
particularly GAs, possess several characteristics that are desirable for MOPs and
make them preferable to classical optimisation methods. GAs have been viewed to
be, since their early days, well suited for MOPs. Indeed, various evolutionary
approaches to MOPs have been proposed since 1985 (Deb, 1999). Some expert
systems were developed, intending to help the user to find the most appropriate
multiple objective optimisation technique according to the characteristics of the
problem to be solved and the available computer resources. In the next section, the
background to our work and particularly to the evolutionary methods is described.

3. State of the art

Many authors indicate that the notion of genetic search in a MOP dating back to the
late 60s. Rosenberg’s (Rosenberg, 1967) study contained a suggestion that would
have led to multi-criteria optimisation if he had carried it out as presented. In general,
the GAs require scalar fitness information to work, which means that when
approaching MOPs, one needs to transform the problem at hand into a single
objective problem. One problem is that it is not always possible to derive a global
criterion based on the formulation of the problem. In the absence of information,
objectives tend to be given equivalent importance, and when we have some
understanding of the problem, we can combine them according to the information
available, probably assigning more importance to some objectives. Optimising a
combination of objectives has the advantage of producing a single compromise
solution, requiring no further interaction with the decision maker.

While covering the existing literature it seems that the main difference among the
cited methods is the way solutions are ranked. There exist three ranking methods: the
aggregating approaches, the non-Pareto approaches and the Pareto approaches. Three
other derivations are the local search approaches, methods dealing with preferences and
methods dealing with constrained search spaces.

3.2. Use of aggregating functions

Several attempts such as aggregation are reported in the literature. Different techniques
have been made to combine the objective function in different ways.

Weighted sum approach
Historically, multiple objective have been combined to form a scalar objective
function (Fonseca, 1995). The weights express the importance of each objective.
Generally, a simple linear combination of objectives is used. The problem with this
approach is precisely how to determine such weights when there is not enough
information about the problem. Indeed, the method is very subjective, and may
neglect the importance of some objectives, and it is often hard to find weights which
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can accurately reflect the real situation. In general, the obtained ‘optimal’ point is a
function of the coefficients used to combine the objectives.

Reduction to a single objective
Another way to deal with MOPs is to optimise with regard to one objective, the
other objectives remaining constants (constrained to a single value) (Ritzel, 1994).
Then, through a process of running the method numerous times with different
values of the constrained objectives, a tradeoff surface can be constructed. The main
drawback of this approach is that it is time-consuming, and the coding of the
objective functions may be difficult or even impossible for certain problems. The
method cannot deal with designer’s preferences, since the optimisation is run each
time for a single objective without any preference.

Goal attainment
In this method, a vector of weights relating the relative under- or over-attainment of the
desired goals must be elicited from the DM in addition to the goal vector (Wilson,
1993). The DM has to assign targets or goals that he wishes to achieve for each
objective. These values are incorporated into the problem as additional constraints.
The objective function then try to minimise the absolute deviations from the targets
to the objectives. By varying the weights, it can generate the set of non-dominated
solutions. In the case of under-attainment of desired goals, a smaller weighting
coefficient is associated with a more important objective. For over-attainment of
desired goals, a smaller coefficient is associated with a less important objective.

Use of penalty functions
This method is based on both ‘constraints satisfaction’ method and ‘weighting
objectives’ method. Once more, the assignment of penalty values is not always a trivial
task. This method normally produces only the min-max optimum, but not the Pareto
optimum or the Pareto front. The basic idea is to ‘punish’ the fitness value of a
solution whenever the produced solution violates some constraints. Theoretically, the
penalty decreases when the value of the penalty function coefficient is increased and
convergence is achieved by increasing the penalty function coefficient to infinity.
However, a large value for the penalty function coefficient causes bad conditioning in
the optimisation process and results in numerical instability or slow convergence.
Furthermore, since the value of the penalty function coefficient is unknown, much
experimentation is required to find an appropriate value. The penalty functions are
generally problem dependent, and therefore difficult to establish.

3.3. Non-Pareto approaches

To overcome difficulties as well as the limitations involved in the aggregating
approaches, work has been devoted to development of alternative approaches based
on ranking. Next are examined some of the most popular non-Pareto approaches.
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VEGA
Schaffer (Schaffer, 1985) was probably the first to recognise the possibility of
exploiting Evolutionary Algorithms to treat MOPs. His approach was to use an
extension of the simple GA (called vector evaluated GA ‘VEGA’), and that differed
from the standard one in the way the selection was performed. At each generation a
number of sub-populations were generated by performing proportional selection
according to each objective function in turn. He used a special selection mechanism
which chooses k equally sized subgroups of individuals from the population based
on their performance in each of the k criteria. These sub-populations are then
shuffled together to obtain a new population. It was recognised that this would
favour solutions with extreme performance in at least one objective. Schaffer
suggested applying fitness penalties to locally dominated points and redistributing the
deducted fitnesses to non-dominated ones. This caused a premature convergence
because in populations with few non-dominated points, these points were given large
fitness values. Later analysis of VEGAs performance showed that the fitness was a
linear combination of criteria, the weights (in this linear combination) being defined
by the distribution of the population. Due to the nature of the used selection, the
population contained many extreme individuals and few compromise ones.

Lexicographic ordering
Fourman (Fourman, 1985) introduced a lexicographic ordering, where the basic idea
is that the designer ranks the objectives in order of importance. The optimum
solution is then found by minimising the objective functions, starting with the most
important one and proceeding according to the order of importance of the
objectives. In a first version of his algorithm, objectives were assigned different
priorities by the user and each pair of individuals were compared according to the
objective with the highest priority. If this resulted in a tie, the objective with the
second highest priority was used, and so on. A second version of this algorithm,
consisted of randomly selecting the objective to be used in each comparison. As in
VEGA (Schaffer, 1985), this corresponds to averaging fitness across fitness
components, each component being weighted by the probability of each objective
being chosen to decide at each tournament. However, the use of in-twos
comparisons makes an important difference with respect to VEGA, since in this case
scale information is ignored.

Evolutionary Strategies
Kursawe (Kursawe, 1991) formulated a multiple objective version of evolutionary
strategies (ES) (Schwefel, 1981). Selection consisted of as many steps as objective
functions. At each step, one of these objectives was selected randomly according to a
probability vector, and used to delete a fraction of the current population. After
selection, the survivors became parents of the next generation. The map of the
tradeoff surface was produced from the points evaluated during the run. Since
environment was allowed to change over time, diploid individuals (dominant and
recessive) were necessary to keep recessive information stored.
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Weighted sum
Hajela and Lin (Hajela, 1992) included the weights of each objective in the
chromosome and promoted their diversity in the population through fitness sharing.
Their goal was to be able to simultaneously generate a family of Pareto optimal
solutions corresponding to different weighting coefficients in a single run of the GA.
Besides using sharing, the authors used a vector evaluated approach based on
‘VEGA’ to achieve their goal. The approach belongs to the category of aggregation
selection with parameter variation. The diversity of the weight combinations is
promoted by fitness sharing in the objective space. As a consequence, the method
evolves solutions and weight combinations simultaneously. The weighted-sum
aggregation appears still to be widespread due to its simplicity.

3.4. Pareto-based approaches

While in single objective optimisation the optimal solution is usually clearly defined,
this does not hold for MOPs. Instead of a single optimum, there is rather a set of
alternative tradeoffs, generally known as Pareto-optimal solutions. These solutions
are optimal in the wider sense that no other solutions are superior to them when all
objectives are considered. In the following, we will review some of the main Pareto-
based approaches.

Pareto-based fitness assignment
One of the first attempt to resolve the limitations of Schaffer’s approach was
proposed by Goldberg (Goldberg, 1989). He suggested the use of non-domination
ranking and selection to move a population toward the Pareto front in a MOP. The idea
is to find the set of solutions in the given population that are Pareto non-dominated by
the rest of the population. These solutions are then assigned the highest rank and
eliminated from further contention. Another set of Pareto non-dominated solutions
are determined from the remaining population and are assigned the next highest
rank. This process continues until the population is suitably ranked. The author also
suggested the use of some kind of niching to keep the GA from converging to a single
point on the front. A niching mechanism would allow the GA to maintain individuals
all along the non-dominated frontier.

Multiple objective genetic algorithm
Fonseca and Fleming (Fonseca, 1995) proposed a scheme in which the rank of a
certain individual corresponds to the number of chromosomes in the current
population by which it is dominated. All non-dominated solutions are assigned rank
1, while dominated ones are penalised according to the population density of the
corresponding region of the tradeoff surface. This type of blocked fitness assignment
is likely to produce a large selection pressure that might produce premature convergence.
To avoid that, the authors use a niche-formation method to distribute the population
over the Pareto-optimal region. The basic concept of the method has been extended
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meanwhile by the adaptive fitness sharing and continuous introduction of random
immigrants (Fonseca, 1998).

Non-dominated sorting genetic algorithm
Srinivas and Deb (Srinivas, 1994) proposed the non-dominated sorting genetic
algorithm (NSGA). The method is based on several layers of classifications of the
individuals. Before the selection is performed, the population is ranked on the basis
of non-domination: all non-dominated individuals are classified into one category.
Each solution is assigned a dummy fitness value–this fitness is proportional to the
population size. In order to maintain diversity of the population, these classified
individuals are shared with their dummy fitness values. This group of classified
individuals is then ignored and another layer of non-dominated individuals is
considered. The process continues until all individuals in the population are
classified. Solutions in the first front have the maximum fitness value, and by the way
they get more copies than the rest of population. This allows a quick convergence of
the population toward non-dominated regions. The efficiency of the method lies on
the way objectives are reduced to a dummy fitness function using a non-dominated
sorting procedure. With this approach, any number of objectives can be solved.

Niched Pareto GA
Horn and Nafpliotis (Horn, 1993) used a Pareto domination tournament (NPGA)
instead of non-dominated sorting and ranking selection method. Instead of limiting
the comparison to two individuals, a number of other individuals was used to help
determine dominance. A comparison set comprising a specific number tdom_pres

(dominance pressure) of individuals is picked at random from population at the
beginning of each selection process. Two random individuals are picked to select a
winner in a tournament selection. Both individuals are compared with the members
of the comparison set for domination with respect to objective functions. If one of
them is non-dominated and the other is dominated, then the non-dominated
individual is selected. If both are either non-dominated or dominated, a niche count
is found for each individual in the entire population. The niche count is calculated by
simply counting the number of points in the population within a certain distance
from an individual. The individual with least niche count is selected. When, both
competitors were either dominated or non-dominated (i.e., there was a tie), the result
of the tournament was decided through fitness sharing (Goldberg, 1989).

3.5. Preferences and local search methods

Local search
Jaszkiewicz (Jaszkiewicz, 1998) presented a random directions multiple objective
genetic local search metaheuristic (RD-MOGLS). The method is based on the idea of
simultaneous optimisation of all possible utility functions. At each iteration of the
method a weighted Tchebycheff or weighted linear utility function is drawn at
random. Then, a sample of best solutions is selected from the set of prior generated
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solutions. The sample is treated as a temporary genetic population. A number of
randomly selected pairs of solutions from the temporary population are recombined.

Multi-objective genetic local search (MOGLS)
Murata et al. (Murata, 1999) proposed a specification method of the local search
direction for each solution in the multiple objective genetic local search algorithm
(MOGLS). The MOGLS is a GA-based hybrid algorithm for finding a set of Pareto-
optimal solutions. They used a weighted sum of multiple objective as a fitness
function for selecting a pair of parents solutions. The fitness function is also
employed in the local search procedure for a new solution generated from the
selected parent solutions. The iterative improvement of the newly generated solution
is performed in the multi-dimensional objective space based on the local search
direction specified by the weight values in the fitness function. The main feature of
the selection procedure is that the weights attached to the multiple objective
functions are not constant but randomly specified for each selection. The elite
preserve strategy uses multiple elite solutions instead of a single elite solution. That
is, a certain number of individuals are selected from a tentative set of Pareto optimal
solutions and inherited to the next generation as elite individuals.

Preferences for MOGA
Cvetkovic and Parmee (Cvetkovic, 1999) presented a method based on preference
relations transforming qualitative relationships between objectives into quantitative
attributes. The preference order method is similar to linguistic methods. For every
two objectives, a preference (or an order) must be given using the following
characteristics:{less important, equally important, much more important, much less important,
more important}. The qualitative preferences between the different objectives yield a
preferences matrix “R”. This matrix permits to compute the weights of the given
objectives. The method is integrated in the weighted sum GA and a combination of
Pareto and weighted GA. A modified Pareto method for MOP is presented. The
method yields a Pareto front dealing with preferences.

3.6. Constrained problems

The presence of ‘hard’ constraints in a MOP may cause further difficulties. It is sure
that the success of a multiple objective GA in tackling these problems depends on
the constraint-handling technique used. Traditionally, a simple penalty-function
based method has been used to penalise each objective function. Penalty function
methods demand an appropriate choice of a penalty parameter of each constraint.
Many other techniques are reported in the literature.

Multi-objective evolution strategy for constrained optimisation problems
To (To, 1997) presented a MultiOBjective Evolution Strategy method (MOB-ES) for
solving MOPs subject to linear and non-linear constraints. The method is based on
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the concept of C- (constraints), F- (objective function) and N- (niche)fitness, which
allows to handle constraints and (in)feasible individuals. The author provided new
ideas for handling (in)feasible individuals, since some niche infeasible individuals can
be better than some feasible ones. The use of niche infeasible individuals enables to
avoid an unnecessary concentration of the population at local optima and quickly to
shift the population towards the feasible global optima.

Strength Pareto evolutionary algorithm
Ziztler (Ziztler, 1999) introduced an evolutionary approach to multi-criteria
optimisation, called the Strength Pareto EA (SPEA). The method combines several
features of previous multiple objective EAs in a unique manner. Like other MOEAs, the
method stores non-dominated solutions in an external and continuously updated
population. The individual’s fitness depends on the number of non-dominated points
(in external population) that dominate it. The population diversity is preserved using
the Pareto dominance relationship. The method performs a clustering procedure to
reduce the number of individuals externally stored without destroying the
characteristics of the tradeoff front.

Constraints handling through a multiobjective optimisation technique
Coello (Coello, 1999) proposed a population-based approach similar to VEGA to
handle constraints. The proposed approach does not rank individuals, but it uses
instead different fitness functions for each of the sub-populations allocated,
depending on the feasibility of the individuals contained within each of them. The
VEGA approach (Schaffer, 1985) is known to have difficulties in MOPs due to the
fact that it tries to find individuals that excel only in one dimension regardless of the
others. These drawbacks turns out to be an advantage in the case of constrained
problems, because the aim is to find solutions that are completely feasible, instead of
good compromises that may not satisfy one of the constraints.

For a comprehensive review, see the overview of different MO-GA methods
presented by Fonseca and Fleming (Fonseca, 1995) and Coello (Coello, 1999). Van
Veldhuizen (Van Veldhuizen, 1999) made a survey on test problems. Until now,
there is no systematic study to speculate what problem features may cause an MO-
GA to face difficulties. Deb (Deb, 1999), identified a number of features and
suggested a methodology to construct test problems from single-objective
optimisation problems. The author believes that more studies are needed to better
understand the working principles of a MO-GA.

4. Grouping problems and the grouping genetic algorithm

4.1. Grouping problems

Since our main objective in this study is design of assembly lines which can be simply
described as a problem of assignment of tasks to stations. The problem can be easily
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transformed to a grouping problem. In the following we will introduce the main
features of the grouping genetic algorithm developed by Falkenauer (Falkenauer,
1998).

4.2. Grouping genetic algorithm (GGA)

Falkenauer (Falkenauer, 1998) pointed out the weaknesses of standard GAs when
applied to grouping problems, and introduced the grouping genetic algorithm
(GGA), which is a GA heavily modified to match the structure of grouping
problems. Those are the problems where the aim is to group together members of a
set (i.e. find a good partition of the set). The GGA’s operators (crossover, mutation
and inversion) are group-oriented, in order to follow the structure of grouping
problems.

Encoding scheme
The most distinctive feature of the GGA is the special solution encoding it uses.
Falkenauer (Falkenauer, 1998) indicated several drawbacks of standard GAs applied
to grouping problems stemming from the fact that the schemata processed by either
the classic GA of Holland (Holland, 1975) or the ordering GA of Goldberg
(Goldberg, 1989) do not represent meaningful regularities of the search space of
grouping problems.

1
2

3

4 5 6

7 8
910 11

12 13

2,5,8 9,13,10 12 3,4,7 1,611

Figure 5.2. A grouping and the corresponding GGA chromosome.

In a grouping problem, the groups constitute the natural regularity of the search
space, since the cost function to optimise is defined over the groups rather than
isolated objects (members of the set being partitioned). Given the fact that schemata
processed by a GA are defined over the genes in the chromosomes, it thus follows
that a GA adapted for grouping problems must cast groups as genes in its
chromosomes.

Consequently the genes in the GGA’s chromosomes encode groups of objects,
rather than the objects themselves. Figure 5.2 illustrates the idea. The objects in the
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upper part of the figure are grouped into six groups of various sizes. Likewise the
corresponding chromosome depicted in the lower part of the figure features six
genes, each of them encoding a group of one more objects.

Crossover operator
A crossover’s job consists of producing offspring out of two parents in such a way
that the children inherit as much as possible of the meaningful information from
both parents. Since it is the groups that convey important information in grouping
problems, we must find a way to transmit groups from the parents onto the children.
The GGA crossover proceeds as follows (see Figure 5.3).

1. Select at random two crossing sites, delimiting the crossing section, in each of the
two parents.

2. Inject the contents of the crossing section of the first parent at the first crossing
site of the second parent. Recall that this means injecting some of the groups
from the first into the second.

3. Eliminate all objects now occurring twice from the groups they were members of
in the second parent, so that the ‘old’ membership of these objects gives way to
the membership specified by the ‘new’ injected groups. Consequently, some of
the ‘old’ groups coming from the second parent are altered: they do not contain
all the objects anymore, since some of those objects had to be eliminated.

4. If necessary, adapt the resulting groups, according to hard constraints of the
problem and the cost function to optimise. At this stage, local problem
dependent heuristics can be applied.

5. Apply the points 2 through 4 to the two parents with their roles reversed in order
to generate the second child.

3,7 1,4 2,5 6,8

1,4,5 2,7,3 6,8

3,7 1,4 2,5 6,81,4,5

Appear twice 

3,7 6,81,4,5

2
Left aside 

3,7 6,8,21,4,5

Reinserted

Injected group 

1. Select crossing sections 2. Inject CS group(s)

3. Eliminate empty groups 
and groups with doubles

4. Reinsert missing objects

B E D B E H

B E A C DE F G

B A C D

Figure 5.3. The GGA crossover operator.

Note that the child inherits genes from the first parent (its crossing section injected
in point 1) as well as from the second (the genes not affected by the elimination in
point 3). Since the genes encode groups, the child therefore inherits groups from
both parents, as required by the structure of grouping problems.
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Mutation operator
According to the nature of the particular grouping problem, one or more of the
following three operators can be applied: create new group(s) from randomly
selected objects; eliminate a randomly selected group by distributing the objects it
contains over the other groups; shuffle a small number of objects among groups.

Inversion operator
The inversion serves to shorten promising schemata made of coadapted genes. In the
GGA, the mechanism is the same as the operator of Holland (Holland, 1975), i.e. a
segment on the chromosome is selected at random and the order of genes in that
segment is inverted.

For more details about the GGA and its applications, the reader is asked to refer to
(Falkenauer, 1998).

5. Multiple objective grouping genetic algorithm (MO-GGA)

population
initialisation
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stop criterion
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set of solutions
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Figure 5.4. Integrating search and decision making into the GA.

Selecting a solution from a set of possible ones on the basis of several objectives can
be considered as a difficult and intriguing problem. The main difference between
existing methods is the way the ‘best’ solution is chosen from a set of valid ones. We
use a multi-criteria decision-aid (MCDA) method to deal with such problems.

Figure 5.4(a) presents the most used approach to MOPs the GA generates a set of
Pareto solutions and the DM uses his preferences to choose the best solution. Thus,
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the MCDA is used after the search phase. Making some decision after the search
phase can eliminate a vast number of desired solutions and let us focus on a few
alternatives. As introduced above, an integration of a search and decision was
proposed. The main problem in MOPs is how to evaluate the quality of a given
solution and how to measure the closeness of solution to the optimal solution in the
search space. Indeed, there is no common agreement on what optimum really means.
The approach we propose is based on a merge of a search and a MCDA as illustrated
in Figure 5.4(b). Indeed, in order to come out of the MOP stated by the cost function,
the MCDA method called PROMETHEE II2 is used as a ranking technique. For
more details about the PROMETHEE II method, the reader is invited to refer to
(Brans, 1994). It is however important to know that it computes a net flow φ which
is a kind of fitness of each solution. This ‘fitness’ gives a ranking between the different
solutions of the population.

The most used methods in that MCDA field are ELECTRE (Roy, 1986) and
PROMETHEE. It is obvious that those methods have a lot of similarity because
they are based on the same philosophy, which consists in accepting to be less
rigorous mathematically in order to be able to fit better with the uncertainty of
human reasoning. We have preferred to use PROMETHEE because it is simpler to
use than ELECTRE and easier to understand and manipulate by a novice in the field
of MCDA.

The PROMETHEE II method is known as one of the most efficient but also one of
the easiest in the MCDA field. Given a1 , a2 , …  ai , …  an a set of n potential
alternatives and f1 , f2 , …  fj , …  fk k evaluation criteria. Each evaluation fj(ai) is a real
number. This set of data can be presented in a matrix format as shown in Table 1.

In the case of GA each potential alternative ai is an individual of the population and
the evaluation criteria fj (ai) is the value of objective j for individual ai. The ranking of
a given population starts when the evaluation matrix is available. PROMETHEE
then computes the ‘net flow’ φi for each individual i. Weights (associated to each
objective) are involved in the computation of the φ number and represents the
relative influence of each objective. Thus, solutions are not compared according to a
cost function yielding an absolute fitness of individuals as in a classical GA, but are
compared to each other thanks to the flows, depending on the current population.

f1(.) ... ...
a1 f1(a1) f2(a1) ... fj(a1) ... fk(a1)
a2 f1(a2) f2(a2) ... fj(a2) ... fk(a2)
...
ai f1(ai) f2(ai) ... fj(ai) ... fk (ai)
...
an f1(an) f2(an) ... fj(an) ... fk(an)

f2(.) fk(.)fj(.)

φ1 φ2 φj φk

Table 1. PROMETHEE II evaluation matrix.
                                               
2 A short description of the PROMETHEE II method is given in Appendix 3.
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At each generation, a ranking change the fitness of individuals with their environment
(the current individuals in the population). In classical GAs, the fitness of an
individual is independent of the other individuals constituting the population. There
is no direct feedback from the environment to the individual’s fitness which remains
constant, unaffected by their environment. We believe this is an handicap of a GA-based
methods in the case of MOPs.

The values of the φ are context related and have no absolute meaning. Hence, it
becomes impossible to fix a stop criterion for the GA. The optimisation is stopped at
user’s request, or if no better solution has been found for a given number of
generations.

5.1. Control strategy

As the fitness of the individuals is content dependent, solutions have to be compared
to the best ever found one. At each generation, a set of old individuals, the new
individuals as well as the best-ever solution are involved in the evaluation of the
whole population (Figure 5.5). Suppose that the values of the different objectives of
each individual are separately evaluated in advance. The MCDA method ranks the
individuals taking into account the presence of the others. This fitness allows the GA
to choose the best solution simply by looking for the individual having the maximum
value φ.

current best solution
be

tte
r s

ol
ut

io
ns

ranking at generation i ranking at generation i+1

PROMETHEE II

old 
individuals

new 
individuals

Figure 5.5. Control strategy of the MO-GA.

5.2. Individual Construction Algorithm

Evolutionary algorithms typically seed the initial population with entirely random
values (i.e., starting from scratch). Evolution is used to discover which of the
randomly sampled areas of search space contain better solutions, and then to
converge upon that area. Sometimes, the entire population is constructed from



Multiple Objective Grouping Genetic Algorithm
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

98

random mutants of a single (created randomly or user-supplied) solution. Often
random values are generated between specified ranges (a form of constraint
handling). It is not uncommon for explicit constraints handling to be performed
during initialisation, by deleting solutions which do not satisfy the constraints and
creating new ones. More complex problems often demand alternative methods of
initialisation.

In our opinion, how the initialisation is done is critical as it influence the
convergence of the GA. Thus, any explicit knowledge about the system being
optimised have to be used to initialise population. However, some kind of
randomisation must also be used to create diversity in the population. For a given
problem, the Individual Construction Algorithm (ICA) is an algorithm (exact method
or a heuristic) used to create individuals (solution to a problem at hand). In the case
of ALB problem an ICA called ‘equal piles’ was proposed (Chapter 6) meanwhile the
‘equal piles/branch and cut’ ICA was presented for the RP problem (see Chapter 7).

5.3. Overall architecture of the evolutionary method

The choice of one solution over the others requires problem knowledge. It is the
DM task to adjust the weights to help the algorithm to find good solutions.
Optimising a combination of the objectives has the advantage of producing a single
solution, requiring no further interaction with the DM. For given user’s preferences
and a given design problem we run the following multiple objective GA.

The initial population is generated using an ICA just like in the simple GAs. The
individuals are then ranked using the MCDA method (PROMETHEE II). At each
iteration of the main loop, the better solutions are selected from the current
population. Recombination produces a number of new individuals (offspring). The
mutation is used to explore the search space. The offspring is then incorporated into
the original population. Again, the individuals are ranked using the MCDA. The loop
finishes when the termination criteria given by the user (e.g., convergence, maximum
number of generations, etc.) are reached.

The basic features of the MO-GGA are illustrated in the following pseudo-code.

Generate an initial population with an individual construction algorithm;
Order individuals using PROMETHEE II;
repeat

Select parents;
Recombine best parents of the population;
Mutate children;
Reconstruct individuals using the ICA;
Replace individuals of the population by children;
Use PROMETHEE II to order the new population;

until a satisfactory solution has been found.



Multiple Objective Grouping Genetic Algorithm
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

99

This hybrid algorithm presents the advantage of allowing a real multi-criteria
optimisation since one considers to optimise simultaneously multiple objectives.
Note that the weights associated to the different objectives used in PROMETHEE
II allow an easy matching of the user’s wishes.

5.4. Branching on populations

The presented GA-based method is a merge of search and MCDA. Classically, the
idea of ‘weight associated to objectives’ is less-loved since it leads to rather artificial
function and it is thus difficult to tune the weight of each objective. Because of the
variability in the results, inherent to the stochastic nature of GAs, it is common to
run GA several times for different preferences and to take the best result. However,
it is possible to save the GA’s population at some intermediate states and restart
from one of these populations rather than from the very beginning. By doing so, we
generate a tree of populations, where a child node is generated from its parent by
running a number of GA iterations. This is what we call the branching on population3

technique (Figure 5.6). The idea is based on artificial intelligence search techniques
like branching and backtracking. The method is inspired from the work of Steinberg et
al. in their optimisation method by searching a tree of populations (Steinberg, 1999).
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Figure 5.6. Branching on population.

                                               
3 GAs have the feature that if repeatedly run on the same problem it will get a range of different
results with varying quality. Even if this variability is often less than with classical methods, it still may
be significant. In general, this variability can be reduced by running the GA a few times on the same
problem, and taking the best result.
In practice the GA is run several times from beginning to end. Suppose, however, that the GA is ran
in stages, that is, stopping after every n iterations and saving the current population. This process can
be seen as an operator that generates one population from another. Because of the stochastic nature
of this operator, it can be applied to the same ‘parent’ population (that is, go back and restart from the
same saved population) many times, and it will generate many different ‘child’ populations. This
operator can also be applied to one or more child populations. In this way we can generate a tree of
populations.
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Each criterion is attributed a triplet (w, p, q) where:

p is the preference threshold
If the absolute value of difference between two solutions is higher than p, that means
that this difference is significant, and the solution representing the highest
performance is better (preferred) than the other.
q is the indifference threshold
If the absolute value of difference between two solutions is lower than q, that means
that this difference is not significant, and the two solutions are practically equivalent.

w is the weight
The weight w or in other words coefficient of importance means that if a criterion is
attributed a weight of 3, and another a weight of 2, that means that 2 (respectively 3)
points gained with the first criterion can be compensated by 4 (respectively 5.5)
points gained in the second. Is supposed that the values p and q are the same for the
two criterion.

Let:

- ),,( g
i

g
i

g
i

g
i wqpt =  the triplet p, q and w  of objective i at the generation g,

- ),...,,,( 321
j

N
jjjj ttttT = a set of triplets at generation j,

- N is the number of objectives.

The procedure starts by assigning a triplet to each criterion ( iT a set of triplets at
generation i), GA is then run for a certain number of iterations gi. The population
obtained after gi iterations (generations) is then analysed by the user (quality of the
objectives, the global quality of the best solution, … ). If the user is unsatisfied by the
solution, the triplets assigned to the different criterion can be modified. The GA is
re-run again using the new values of the triplets ( 1+iT ). This technique of branching
on populations helps to guide the GA to deal with MOPs looking for the
compromise between objectives.

A set of triplets at generation j is obtained by applying the function j
iM on the set of

triplets at generation i:

),...,,,(,...,,, 321321
i
N

iiij
i

j
N

jjj ttttMtttt =

For instance suppose we have two objectives and let the two triplets at generation 0:
)0,0,1(),1,0,1( 0

2
0
1 == tt  and let the modifying function 1

0M which transforms the
triplets of generation 0 to those of generation 1: )5.0,0.1(),5.0,0.1( 1

2
1
1 == tt .

The population at generation j is obtained running the GA and using its
corresponding set of triplets j

N
jjj tttt ,...,,, 321  as illustrated in Figure 5.7.
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)( ij
i

j PMP =
where :

- j
iM is the function modifying triplets of generation i to triplets of generation j,

- Pi is the population at generation i,
- )( ij

i PM transforms population of generation i using triplets j
N
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Figure 5.7. Evolving from generation 1 to generation 2.

The term generation is referred to the order of the modification. The modification
function is set by the DM after analysing the quality of the best solution for the given
set of triplets. The whole process of optimisation is composed by a set of R runs of
the GA using different set of triplets. If the results of a modification cannot be
accepted, due to an inappropriate setting of the triplets, the DM has the choice
between:

- start the run from the beginning,
- go back to the last triplets and restart from the last population.
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Figure 5.8. Cycling approach.

The modification function must be reversible. The reversibility means that a given set of
triplets yield a same population (regardless of the stochastic behaviour of GAs).
Abstraction is done from which population we start. In other words results obtained
using a given set of triplets is independent of the starting population. Figure 5.8
illustrates our words. The population obtained using the triplets T0 must be more or
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less the same as the population obtained using the sequence of triplets T0 T1 T2

… Ti…  Tk…  T0. The set of triplets allows to guide the GA during the search phase.

The ‘branching on population’ allows the DM to explore easily the search space. In
addition to the GA’s which permits to generate a set of populations, the method
search in the space of populations dealing with the DM’s preferences. In the same time the
method can be fruitful to test the robustness of search methods.

The branching factor (the number of changes of a given number of triplets) in the
case of k objectives is 12 *3 −= kN  (64 in the case of two objectives). It is the number
of different groups composed by n objects (the factor 3 is due to the fact that for
each objective we have a triplet p, q, w). These changes are not always possible and
are far to be realistic. The backtracking technique can be used to go back to an old
population. The step of variation (number of generations of each set of triplets) as
well as the variance of variables depends on the size of problem at hand. In the next
section an academic example is introduced to bring our words into play.

6. An academic example

Here, an academic MOP is addressed using the proposed method. It is a grouping
problem with two totally conflicting objectives. The first objective is maximal if the
second objective is minimal and vice-versa. A set of N objects have to be grouped in
a set of groups. Let Objsi={i /i ∈ [0..N]} be the set of objects in group i. The size of
each object is equal to its identity.
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Figure 5.9. One object by group (a) and one group for all objects (b) and two objects
by group (c) solutions.
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A graphical representation of the problem is given in Figure 5.9. In the first solution
each object {1, 2, 3, 4} is put in its own group while in the second solution all objects
are grouped in the same group. Each group is characterised by its average and its
standard deviation. The average of a given group is the sum of the identity of its
objects divided by the number of its items (size). For instance in Figure 5.9 (a) the
average of the group 4 is 4 since it is composed only by the object 4 while its
standard deviation is null.

The aim is to optimise the two following objectives:

- minimise the standard deviation on the average of groups,
- minimise the average of the standard deviations.

Let’s NbGrp the number of groups of a given solution, and sizei the size of each
group.

The average of a group i is the sum of the size of objects of the group divided by the
its size. It is given by:

i

size

j i

i size

jObjs
Avg

i∑=
][

The average of a given solution is the sum of the average of groups divided by the
number of groups and it is given by:
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The standard deviation of a group indicates how closely the size of objects are
clustered around the average:
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The first objective is the standard deviation of the standard deviation of the groups:
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The second objective is the average of the different standard deviation:

NbGrp

divStd
objectiveMinimize

NbGrp

i
i∑

== 0

_
2:

The formulation of the two objectives show that (see Figure 5.9):

- the first objective takes the value ‘0’ if there is only one group and in the same
time the second objective takes its maximal value.

- the second objective takes the value ‘0’ if there only one object by group while
the first objective takes its maximal value4.

Figure 5.10 presents the evolution of the two objectives where the second objective
is neglected (w1=1.0, w2=0.0). The word ‘neglected’, mean that the weight or the
preference attributed to the given objective is set to zero. This figure shows that the
method tends to minimise the objective 1, and ignores the other.
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Figure 5.10. Evolution of objective 1 in case the objective 2 is neglected.
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Figure 5.11. Evolution of objective 2 in case the objective 1 is neglected.

                                               
4 Note, that a solution composed by two groups where the first group contains the objects {1, 4} and
the second {2, 3} takes the value ‘0’ for the first objective and the value ‘1’ for the second objective.
This solution is not optimal in case the aim is to find the minimum value of objective 1 and the
maximal value of the objective 2.
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Figure 5.11 represents the evolution of the two objectives where the objective 1 is
neglected. The weight attributed to objective 1 is null (w1=0.0, w2=1.0). The figure
shows that the method tends to minimise the objective 2, and pays less attention to
the evolution of the objective 1. In fact, setting the weight of a given objective to
zero indicates to the MO-GGA to give it less importance. Thus, minimising the
objective 2 tends to maximise the objective 1 and vice-versa.

In case one wants to optimise the two objectives, a simple way is to set the weights
to (w1=0.5, w2=0.5). Figure 5.12 shows that the two objectives are conflicting, that
is, minimising one objective tends to maximise the other.
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Figure 5.12. Evolution of two objectives having the same preference.

10 * 10 *

Figure 5.13. Evolution of objective 1 with preferences of the two objectives.

The evolution of objective 1 (see Figure 5.13) and objective 2 (Figure 5.14) for
different values of w1 and w2, let us conclude that the weights given to the different
objectives allow to guide the algorithm. Figure 5.15 represents the evolution of the
two objectives for different values of w1 and w2. It shows that for small values of



Multiple Objective Grouping Genetic Algorithm
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

106

w1, the algorithm tends to optimise objective 2 and for small values of w2, the
algorithm tends to optimise objective 1. For similar values of w1 and w2, the
algorithm optimises the two objectives at the same time. Thus, seeking to optimise
an objective consists in choosing good preferences.

10 *
10 *

Figure 5.14. Evolution of objective 2 with preferences of the two objectives.

10 *
10 *

Figure 5.15. Evolution of objective 1 and 2 with their preferences.

In order to verify the idea of branching on population the following test was done.
For the same problem, we started with the given preferences (w1=1.0, w2=0.0). The
algorithm was stopped after 180 generation, then the preferences were set to
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(w1=0.0, w2=1.0). Again, the algorithm was stopped at generation 570, the
preferences were set to (w1=1.0, w2=0.0) (see Figure 5.16 and Table 2). The graphic
shows that the best solution of the population as well as the search direction changes
once the preferences given to the objectives change. The fact that the population
switch quickly from one direction to another is attributed to the mutation which
makes a kind of diversity5 in the population.

0

2

4

6

8

10

12

1 92 183 274 365 456 547 638 729 820 911 1002 1093

Objective 1

Objective 2

generation

Figure 5.16. Changing the search direction by changing preferences.

generation objective 1 objective 2 generation objective 1 objective 2
2 1.59 7.92 291 8.87 0.38
3 1.59 7.92 368 9.1 0.11
4 1.02 8.78 420 8.89 0.06
5 1.02 8.78 462 9.11 0.03
6 0.56 8.51 504 9.23 0
18 0.22 8.71 570 5.4 7.27
78 0.06 9.21 572 0.75 9.19

177 4.67 4.19 589 0.32 7.3
183 4.67 4.19 655 0.12 9.81
184 6.67 1.75 772 0.07 9.35
245 9.21 0.62 896 0 9.02
290 9.21 0.62

Table 2. Critical values of the two objectives.

These results show that the proposed method respects the user’s preferences
regarding the optimisation objective.

                                               
5 The process of diversity loss is often the cause of premature convergence which is the early
convergence on an inferior local maximum. A large number of existing techniques are used to
maintain diversity in GAs. These include maintaining large population sizes, employing low
reproductive or parent-selection pressures, applying mutation, restarting the GA, employing parallel
populations, and niche-formation techniques.
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7. Summary and applications

We cannot say ‘anybody who is optimising is engaged in multiple objective
optimisation, since it can be either single objective or multiple objective, and single
objective functions can in some cases replace multiple objective functions’. Thus, the
proposed GA approach to MOPs is also valid approach for problems having non
proportional conflicting objectives, otherwise the weighed sum approach can do
good job.

The idea of Pareto optimisation is to provide the DM with a representative set of
solutions from the Pareto optimal front. The DM can see the tradeoffs that have to
be made in choosing a solution, rather than asking these to be fixed through
assignment of weights beforehand. The problem is the number of solutions the DM
has to choose among. The human cannot easily decide among more than a few
solutions, and the Pareto frontier most of the time is composed by many non-
dominated solutions. Thus, we settled for proposed method rather than for the
Pareto optimality.

We introduced a new paradigm to deal with multiple objective using evolutionary
computation methods. The method is based on a the MO-GA, the genetic algorithm
combined with the MCDA method. The MCDA method is based on the
PROMETHEE II method. The method was chosen due to its simplicity, other
MCDA methods can be used as well. We showed how the method can deal with the
preferences, simply by adjusting the weight of the different objectives.

The proposed method will be used to two multiple objective grouping problems,
namely the assembly line balancing (ALB) for manual assembly lines and the resource
planning (RP) for hybrid assembly lines.
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