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Abstract: 
 
One of the first steps in setting up an optimal groundwater remediation design problem is 
developing an appropriate objective func tion, which represents the primary goals of the 
design. Selecting appropriate objective functions can be challenging. A more realistic 
objective function, which is a cost function applied to a realistic site without 
simplification, may yield more accurate results but at the same time it will require more 
time and effort to develop the appropriate function for a particular application. On the 
other hand, a simple function will save setup time but may sacrifice the accuracy of the 
results. This research seeks to identify what situations encountered in remediation design 
would make the development of a realistic objective function necessary. It also examines 
tradeoffs among three objectives: total cost, risk, and total cleanup time. A pump-and-
treat system is designed for a case study to explore these questions. The model used here 
is NSGA II (Non-dominated Sorting Genetic Algorithm-II) combined with two numerical 
models (Modflow and RT3D) and an exposure and risk assessment model. Four different 
cost functions are applied, ranging from simple to complex. The results show that the 
realistic cost function generally found better solutions than the simplified ones, especially 
for shorter-term cleanups. These findings are now being tested for a field-scale 
application at Umatilla Army Depot in Oregon. 
 
Introduction 
 
One of the first steps in setting up an optimization model for water resources 
management is developing an appropriate objective function, which represents the 
primary goals of the design. For groundwater remediation design, the primary focus of 
this research, several types of objective functions have been used in the literature, which 
are: 1) cost function without capital cost, e.g. Gorelick et al (1984), Wagner and Gorelick 
(1987), Andricevic and Kitanidis (1990), Culver and Shoemaker (1992),  Sawyer and Lin 
(1998),  Yoon and Shoemaker (1999); 2) cost function with fixed capital cost, e.g. 
Marryott et al (1993), Culver and Shoemaker (1997), Kwanyuan and Fontane (1998), 
Lee and Kitanidis (1991), McKinney and Lin (1996), Rizzo and Dougherty (1996), Culver 
and Shenk (1998), Aly and Peralta (1999), Johnson and Roger (2000); 3) realistic cost 
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function, including fixed and variable capital costs and operational costs, e.g. Huang and 
Mayer (1997), Smalley and Minsker (2000).  Most groundwater remediation optimization 
efforts have considered only a single objective, but a few have considered two objectives, 
such as: Cieniawski et al (1995), Coello (1999), Van Veldhuizen et al (2000) and Reed 
(2001).   
 
Previous work has usually focused on the problems after the optimization models had 
been setup, such as the algorithm selection, uncertainty analysis etc. This paper focuses 
on the setup of optimization model, namely the choice of objective functions. What are 
the tradeoffs in cost, human health risk, and remediation time? How does the choice of 
cost function affect the optimal solutions found? A detailed, realistic cost function was 
implemented on a case study and compared with simpler cost functions that have been 
used in the past. In the first section of this paper, the case study that was used to test the 
cost function is introduced, and then the methodology is described in the second section. 
In the last two sections, the results are presented. 
 
Background of the Case Study 
 
The case study examined here involves a multi-objective groundwater remediation design 
to find cost-effective optimal pumping strategies for treating a contaminated aquifer 
using pump-and-treat. The case study is based on a hypothetical confined, heterogeneous 
and isotropic aquifer, 480m by 240m by 20m, which has been studied by Smalley et al 
(2000). The target contaminant is BTEX. The initial plume is shown in Figure 1. 


 
Figure 1 Initial BTEX plume (adapted from Babbar et al (2002)) 


 
The flow of the groundwater in the aquifer is assumed to be steady state and the direction 
of flow is from left to right in Figure 1. The average hydraulic conductivity is 2256 
m/year. The porosity of the field was assumed to be 0.3 and the soil bulk density of the 
aquifer was 2000 kg/m3. The longitudinal dispersivity was assumed to be 15 m with a 
ratio of transverse to longitudinal dispersivity of 0.2 and a ratio of vertical to longitudinal 
dispersivity of 1.0. The left and right boundaries of the domain in Figure 1 are constant 
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head boundaries with a mean hydraulic gradient of 0.00146. The upper and lower 
boundaries are no flow boundaries. The reaction constant for a linear sorption reaction is 
0.000062 m3/ kg. 
 
For the remediation model (Figure 2), fifteen monitoring wells were used to monitor the 
concentrations of the contaminant in the aquifer for the whole remediation period. Five 
above-ground treatment technologies (air stripper low profile tray stack, air stripper 
packed tower, modular carbon adsorbers-duel bed, modular carbon adsorbers-permanent 
and modular carbon adsorbers-disposable) were selected for inclusion in the model based 
on a previous analysis (Vieux(1999)). The model chooses the most cost-effective 
technology for any selected pumping rate, using the ranges shown in Table 1. Three 
remediation wells were allowed for extraction/injection at the 58 candidate locations 
shown in Figure 2. The maximum pumping capacity of each well was assumed to be 250 
m3/day. For more detailed information, please see Babbar et al (2002). 
 
Table 1: Cost-effective pumping rate ranges for aboveground treatment technologies 
 


Technology Effective pumping rates (gpm) Effective pumping rates (m3/day) 
Air stripper low 
profile tray stack 


0 ~ 750 0 ~ 4088 


Air stripper packed 
tower 


10 ~ 2250 55 ~ 12264 


Modular carbon 
adsorbers-duel bed 


0 ~ 2000 0 ~ 10901 


Modular carbon 
adsorbers-permanent 


0 ~ 200 0 ~ 1090 


Modular carbon 
adsorbers-disposable 


0 ~ 200 0 ~ 1090 


 
Figure 2 Plan view of the case study aquifer (adapted from Babbar et al (2002)) 
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Methodology 
 
The case study was used to investigate the importance of objective function selection in a 
multi-objective groundwater remediation design model.  The model is composed of 
several components: NSGA II (Non-dominated Sorting Genetic Algorithm-II), an 
optimization model, two numerical models (Modflow and RT3D) and an exposure and 
risk assessment model.  
 
Optimization Model 
 
The optimization model is composed of three objective functions and several constraints. 
The objective functions represent the main goals of the model: minimize the cost of the 
pump-and-treat design, minimize the maximum human health risk, and minimize total 
clean-up time. The objectives are shown mathematically below: 
 
Min SYSTMONREMTOT CCCC ++=  


Min (Max ktriskriskriskrisk nc
kt


shw
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kt
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TOTC : Total cost  


REMC : Capital and operation costs for remediation wells  


MONC : Costs for site monitoring  


SYSTC : Capital and operation costs for remediation system 
TOTAL


ktrisk , : Total individual lifetime health risk at time t and exposure location k  
w
ktrisk , :  Risk of ingestion of contaminated drinking water 


shw
ktrisk , : Risk of inhalation of due to showering 


nc
ktrisk , : Risk of inhalation of volatiles from contaminated water due to other non-


consumptive use 


totalt : The total clean-up time            
 
For detailed functions of REMC , MONC  and TOTAL


ktrisk , , please refer to Smalley et al (2000).  
 
The detailed equation for remediation cost is (based on Vieux(1999))  
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kjC , : Capital cost for technology j of contaminant class k associated with total pumping 
rate 
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kjC , : Annual O&M cost for technology j of contaminant class k per year 
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POTWcapC , : Capital cost for disposing of treated groundwater to POTW (publicly-owned 
treatment works) associated with total pumping rate  


POTWopC , : Annual O&M cost of disposing treated groundwater to POTW per year 
anaC : Cost of collecting, testing and analyzing groundwater and off-gas sample for 


technology j of class k per test 
NW : Number of remediation wells 
g : Number of tests per year  


iQ : Pumping rate of remediation well i    
),,|( niAP : Financial factor for converting a series of O&M costs to a present value  


iX : A indicator variables of well installation, 1=iX  if well i is installed, otherwise, 
0=iX  


                                                                                                                                 
All the data for the remediation cost were obtained from RACER (Remedial Action Cost 
Engineering and Requirement), a parametric modeling system. The capital cost can be 
obtained directly from RACER for a particular site and pumping rate. To get the annual 
O&M cost (including treatment and discharge costs), the variable O&M costs over a 15-
year remediation period were annualized and plot for different flow rates. The O&M 
costs showed a linear relationship within different flow ranges, which were used to create 
detailed functions for each flow range and technology. 
 
All of the objectives are subject to the following constraints: 
1) The pumping rates (or injection rates) of the wells, iQ , should be within the well 
capacities [ iQmin, , iQmax, ] for any remediation well i.  


iQQQ iii ∀≤≤ ,max,min,  
2) The hydraulic head, hi,l, for remediation well i should be within the allowed head range 
[ ll hh max,min, , ] at any well location l. 


lihhh llil ∀∀≤≤ ,,max,,min,  
 
Numerical Model and Risk Assessment Model 
 
Groundwater Modeling System (GMS) modules MODFLOW (McDonald et al, 1988) 
and RT3D (Clement et al, 1998) were used in this case study to create and run the 
numerical model. Modflow was used to predict the groundwater flow, while RT3D was 
used to predict fate and transport of the contaminant in the source area shown in Figures 
1 and 2.  
 
The concentrations of the contaminant within the source zone from the two numerical 
models were then used to predict human health risks at an exposure point 200 m 
downgradient of the right boundary of Figure 2 using a risk assessment model. Please 
refer to Smalley et al (2000) for more information on the risk assessment model. 
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NSGA II (Non-dominated Sorting Genetic Algorithm-II) 
 
This multiobjective optimization problem was solved using NSGA II (Non-dominated 
Sorting Genetic Algorithm-II) (Deb et al. (2000)). NSGA II was used in this problem 
because it has been shown to perform as well as or better than other second generation 
Multiobjective genetic algorithms on difficult, high order problems (see Deb et al. 2001).  
For detailed information on how NSGA II works, please refer to Deb et al. (2000). 
 
Tradeoffs Among Objectives  
 
There are many ways to illustrate the non-dominated solutions of high order problems 
(problems with more than two objectives), such as scatter-plot matrix method, value path 
method, bar chart method, etc. (Please refer to Deb (2001) for detailed information.) In 
this paper, we propose a new approach to express the tradeoffs among three objectives 
that allows easy visualization of all of the relationships among the objectives to improve 
decision making. 
 
Figure 3 shows the tradeoffs between two objectives based on different ranges for the 
third objective. Figure 3(a) shows the tradeoffs between cost and log risk for different 
ranges of time, while 3(b) shows the tradeoffs between cost and time based on different 
ranges of log risk and 3(c) shows time and log risk tradeoffs for different cost ranges. 
This visualization approach is very straightforward for elucidating the relationships 
among the objectives. The effects of possible bounds on different objectives can be easily 
seen and candidate solutions that meet the bounds identified.  For example, if the project 
is constrained by time, Figure 3 (a) can be used to find the tradeoff between cost and risk 
for different ranges of cleanup time. Or if a target risk is to be set, Figure 3 (b) can be 
used to identify tradeoffs in cost and cleanup time. Generally, Figure 3(b) shows that if 
the required risk level is high (higher than 10-4), a short term remediation (less than 10 
years) is preferred. For a low risk level (especially lower than 10-10), a long term 
remediation is shown to be more cost effective. The non-dominated solutions for risk 
level less than 10-4 are almost all gathered in the area where cleanup time less than 10 
years, while almost all the non-dominated solutions for risk level greater than 10-10 are 
gathered in the area where time is larger than 30 years.   
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(a) Tradeoffs between cost and log risk for different ranges of cleanup time 
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(b) Tradeoffs between cost and cleanup time for different ranges of log risk 
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(c) Tradeoffs between time and log risk for different ranges of cost 


 
Figure 3 Tradeoffs among objectives  


 
Complexity of Cost Objective Function 
 
A realistic objective function, such as the one proposed above, may yield more accurate 
results but at the same time it will require more time and effort to develop the appropriate 
function for a particular application. On the other hand, a simple function will save setup 
time but may sacrifice the accuracy of the results. In this section, four different cost 
functions from complex to simple were applied to the case study described previously. 
The study was performed for two objectives (cost and risk) with two different clean-up 
times to simplify the analysis. 
 
The four different functions used in this study were: 


1. Realistic: Fixed capital cost + variable capital cost + O&M cost (given previously) 
2. Fixed Capital + O&M cost 
3. O&M cost 
4. Total pumping rates 


 
Figure 4 compares the optimal tradeoffs for different clean-up times. The first three cost 
functions show that for a high risk level, a short term remediation is more cost effective, 
as was the case for three objectives. But the results of total pumping rates did not show 
that. This suggests that for this case, total pumping rates as an objective may not be a 
good choice. 
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(a) Tradeoffs between cost and risk for two different remediation times for the 


realistic cost function 
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(b) Tradeoffs between cost and risk for two different remediation times for linear capital 


+ O&M cost function 
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(c) Tradeoffs between cost and risk for two different remediation times when O&M cost 


function was used 
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(d) Tradeoffs of cost and risk for two different remediation times for the total pumping 


rates function 
 


Figure 4 Tradeoffs between cost and risk for each cost function with two clean-up times. 
 
Next, we examine the effects of choosing a simpler cost function if the real cost function 
is more complex (as represented by the realistic cost function). To ensure comparison, the 
optimal designs identified with each of the four cost functions were re-evaluated with the 
realistic function. Figure 5 shows the resulting Pareto fronts. 
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(a) Short term case (10 years) 
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(b) Long term case (30 years) 


 
Figure 5 Comparison of Pareto fronts from four cost functions, evaluated using the 


realistic cost function  
 


Results for both short and long cleanup durations indicate that the realistic cost function 
performed better than the other functions. The differences are greater for the short-term 
cleanup where capital costs would represent a larger fraction of the total present worth 
cost.   For example, for a risk level of 10-3, the solution found using the total pumping 
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rate objective function would be 13% more expensive than one found with the full 
realistic cost function.  
 
When the solutions of the other functions were re-evaluated by the realistic function, 
some of the solutions were no longer optimal and are dominated by other solutions that 
used to be on the same front. More solutions were dominated for the short term cleanup 
than the long term cleanup. Fixed capital cost + O&M cost function gave better solutions 
than the O&M cost function, but not consistently better. For some risk levels (from 10-3.59 


to 10-3.28), O&M cost actually gave better solutions than capital + O&M cost. Further 
study is needed to identify whether this finding is random or a true phenomenon. The 
function of total pumping rates performed the worst for short-term cleanups, but was 
almost the same as O&M cost for a long term project. However, the total pumping rate 
function did not identify as many solutions on the Pareto front as the other functions did.  
 
Conclusion 
  
In this paper, we have presented a new approach to illustrate the tradeoffs among three 
objectives that allows easy visualization of all of the relationships among the objectives. 
This approach demonstrated that for a high risk level, short-term remediation is most cost 
effective, but low risk criteria longer-term remediation is most cost-effective. We have 
then compared the performance of four different cost functions. Our findings show that 
the realistic cost function found better solutions than the simplified ones, especially for 
shorter-term cleanups. Total pumping rates performed the worst for both cleanup 
durations studied. For a long-term remediation project, the function of fixed capital cost + 
O&M cost performed almost as well as the realistic one for the entire range of risks and 
the O&M cost could also be used at some risk levels. However, for a short-term project, 
the realistic function appears to be more important, with as much as 16% improvement in 
the solutions found. These findings are now being tested for a field-scale application at 
Umatilla Army Depot in Oregon. 
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