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Abstract. The vast majority of the developed planning methods for power dis-
tribution systems consider only one objective function to optimize. This func-
tion represents the economical costs of the systems. However, there are other 
planning aspects that should be considered but they can not be expressed in 
terms of costs; therefore, they need to be formulated as separate objective func-
tions. This paper presents a new multi-objective planning method for power dis-
tribution systems. The method is based on the Strength Pareto Evolutionary Al-
gorithm 2. The edge-set encoding technique and the constrain-domination 
concept were applied to handle the problem constraints. The method was tested 
on a real large-scale system with two objective functions: economical cost and 
energy non-supplied. From these results, it can be said that the proposed 
method is suitable to resolve the multi-objective problem of large-scale power 
distribution system expansion planning. 


1 Introduction 


A power distribution system is a network that consists of substations (electrical power 
source nodes), lines (electrical conductors connecting nodes and carrying power) and 
customers (power demand nodes). System planners must ensure that there is adequate 
substation capacity, line capacity and acceptable level of reliability to satisfy the 
power demand forecasts within the planning horizon. Planning these systems involves 
various tasks [1]; the main of these are: 1) To find the site of substations and lines, 2) 
To determine substations and lines sizes (substations and lines capacities) and 3) To 
determine the electrical power flow in substations and lines. These tasks have to be 
done simultaneously optimizing various objectives such as economical costs and reli-
ability of the systems, and considering three main technical constraints: voltage drop 
limit, substation and line capacity limit and radial configuration (spanning tree con-
figuration). 
 
The vast majority of the developed planning methods consider only one objective 
function to optimize [2]. The objective function of these methods represents the eco-







nomical costs of the system such as, investment, energy losses and interruption costs. 
However, there are other planning aspects that should be considered in the planning 
methods but they can not be expressed in terms of costs. For instances, environmental 
and social impact can be very important in some cases and they can not be expressed 
as economical costs. Reliability of the system is another planning aspect that have 
been expressed in terms of costs and considered in some planning methods but, it is 
required information about the economical impact of power interruptions on custom-
ers and suppliers. This information might be difficult to obtain in some cases. There-
fore, some planning aspects to be considered need to be formulated as separate objec-
tive functions. 
 
There are few multi-objective methods that have been proposed to resolve the prob-
lem of power distribution systems expansion planning with more than one objective 
function separately formulated. In [3], a planning method is proposed to optimize 
three objective functions: economical cost, energy non-supplied (a reliability index) 
and total length of overhead lines. This method generates a set of Pareto-optimal solu-
tions using the ε-constrained technique. This technique transforms two objectives into 
constraints, by specifying bounds to them (ε), and the remaining objective, which can 
be chosen arbitrarily, is the objective function to optimize. In other words, the multi-
objective problem is transformed into a single-objective optimization problem, which 
is resolved by classical single-objective algorithms. The bounds ε are the parameters 
that have to be varied in order to find multiple solutions. 
 
Another planning method that uses the ε-constrained technique is reported in [4]. This 
method resolves the single-objective problems using a simulated annealing algorithm. 
The disadvantage of this technique is that the solution of the resulting single-objective 
problem largely depends on the chosen bounds ε. Some values of ε might cause that 
the single-objective problem has no feasible solution. Thus, no solution would be 
found. In addition, several optimization runs are required to obtain a set of Pareto-
optimal solutions. 
 
In [5], it is reported a planning method that uses the weighting technique to obtain 
non-dominated solutions. This technique consists in assigning weights to the different 
objective functions and combining them into a single-objective function. The Pareto-
optimal solutions are identified by changing the weights parametrically with several 
optimization runs. One difficulty with this technique is that it is difficult to find a uni-
formly distributed set of Pareto-optimal solutions. In addition, many weight values 
can lead to the same solution and, in case of non-convex objective space, certain solu-
tions can not be found. 
 
In [6], a multi-objective optimization method based on genetic algorithms is pre-
sented. This method is able to find a set of approximate Pareto-optimal solutions in 
one single simulation run due to its population approach. The method is formulated to 
find the site and size of substations and lines optimizing two objective functions: eco-
nomical cost and energy non-supplied. The drawback of this method is that the ge-
netic algorithm has to be run several times in order to obtain solutions closer to the 
optimal ones. Moreover, the method uses genetic operators that generate many illegal 







solutions and its encoding technique has low heritability, making the algorithm ineffi-
cient and ineffective. 
 
In this paper, we propose a new multi-objective planning method for optimal power 
distribution system expansion planning. The method is based on the Strength Pareto 
Evolutionary Algorithm 2 (SPEA2) [7]. The edge-set encoding technique [9] and the 
constrain-domination concept [11] were used to handle the problem constraints. The 
method was tested on a real large-scale system and some studies were carried out to 
analyze the effect of constraints and non-convex regions of the search space on the 
performance of the proposed method. 
 


2 Problem Formulation 


In this paper, the planning problem is formulated as the problem of selecting the 
number, site and size of substations and lines such that the investment cost, the cost of 
energy losses and the energy non-supplied index are minimum; maintaining the ra-
diality of the network and at the same time not violating the capacity and voltage drop 
constraints in any part of the network. Fig. 1 shows a power distribution system for 
planning.  
 


 
Fig. 1. A power distribution system for planning. The imaginary node and lines are used to ma-
nipulate problems with more than one substation and to represent the systems as spanning trees. 


The candidate substations and lines are the possible components to be selected. The 
candidate components and power demand nodes are known beforehand. 
 







The mathematical formulation of the planning problem is expressed as follows: 
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Subject to the conditions: 
 
   Vmin ≤ Vj ≤ Vmax (Voltage drop constraint) 
   Il ≤ Imaxl (Line capacity constraint) 
   Tt ≤ Tmaxt (Substation capacity constraint) 
   Σ l = n-1 (Radiality constraint) 
 
Where: 
 Fcost = Total economical cost (in Millions) 
 ENS = Energy non-supplied index (in Megawatt-hour) 
 (FCt)s = Investment cost of substation t to be built with size s 
 (Xt)s = 1 if substation t with size s is built. Otherwise, it is equal to 0. 
 It = Current through substation t 
 Rt = Resistance of the transformer in substation t 
 (FCl)c = Investment cost of line l to be built with size c 
 (Xl)c = 1 if line l with size c is built. Otherwise, it is equal to 0. 
 Il = Current through line l 
 Rl = Resistance of line l 
 Coeff = Cost factor = (8760)(Cost of energy)(Loss factor) 
 PW = Present worth factor = [(1+d)p-1]/[d(1+d)p]; 


p = planning years; d = discount rate 
 Nt = Number of proposed substations  
 Ns = Number of proposed sizes for substations 
 Nl = Number of proposed lines 
 Nc = Number of proposed sizes for lines 
 Vj = Voltage in node j 
 PFl = Power flow on line l (in Megawatts) 
 λl = Failure rate of line l (in failures/km*year) 
 rl = Failure duration of line l (in hours) 
 NL = Number of lines in the system 
 Vmin,max = Voltage drop limit (Permissible levels of voltage) 
 Imaxl = Current capacity limit of line l 
 Tmaxt = Power capacity limit of substation t 
 Σ l = Number of selected lines 
 n = Number of nodes 







3 A Multi-objective Planning Method for Power Distribution 
Systems 


A multi-objective planning method is proposed to resolve the problem of power dis-
tribution system expansion planning. The method is based on Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [7]. 


3.1 SPEA2 


SPEA2 uses a regular population and an archive (external set). The overall algorithm 
is as follows [7]: 
 
Step 1 (Initialization): Generate an initial population Po and create the empty archive 
Ao = 0. Set t = 0. 
Step 2 (Fitness assignment): Calculate fitness values of individuals in Pt and At. 
Step 3 (Environmental selection): Copy all non-dominated individuals in Pt and At to 
At+1. If size of At+1 exceeds the archive size NA then reduce At+1 by means of a trunca-
tion operator; otherwise if size of At+1 is less than NA then fill At+1 with dominated in-
dividuals in Pt and At. 
Step 4 (Termination): If t ≥ G (where G is the maximum number of generations) or 
another stopping criterion is satisfied then set Ā (non-dominated set) to the set of the 
non-dominated individuals in At+1. Stop. 
Step 5 (Mating selection): Perform binary tournament selection with replacement on 
At+1 in order to fill the mating pool. 
Step 6 (Variation): Apply recombination and mutation operators to the mating pool 
and set Pt+1 to the resulting population. Increment generation counter (t = t + 1) and 
go to Step 2. 


Fitness Assignment 
The fitness assignment is a two-stage procedure. First, each individual i in the archive 
At and the population Pt is assigned a strength value S(i), representing the number of 
solutions it dominates (the symbol f corresponds to the Pareto dominance relation): 
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Second, the raw fitness of an individual i is determined by the strengths of its domina-
tors in both archive and population: 
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Additional density information is incorporated to discriminate between individuals 
having identical raw fitness values. The density information technique proposed in [7] 







is an adaptation of the k-th nearest neighbor method [8]. Thus, the fitness of an indi-
vidual i is defined by: 
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Where D(i) is the density information. 


Environmental Selection 
In the environmental selection, the first step is to copy all non-dominated individuals 
from the archive and population to the archive of the next generation At+1. In this step, 
there can be three scenarios: 1) The non-dominated set fits exactly into the archive 
(|At+1| = NA), 2) The non-dominated set is smaller than the archive size (|At+1| < NA) 
and 3) The non-dominated set exceeds the archive size (|At+1| > NA). 
 
In the first case, the environmental selection is completed. In the second case, the best 
NA-|At+1| dominated individuals in the previous archive and population are copied to 
the new archive. Finally, in the third case, an archive truncation procedure is invoked 
which iteratively removes individuals from At+1 until |At+1|= NA. The truncation proce-
dure is as follows: 
 
At each iteration, an individual i is chosen for removal if: 
 
• σi


k  = σj
k  for every value of k in the range 0 < k < |At+1| and j Є At+1 or 


• σi
q  = σi


q and σi
k < σi


k  for every value of q in the range 0 < q < k and any value of 
k in the range 0 < k < |At+1|. 


3.2 The Proposed Multi-objective Planning Method 


The proposed multi-objective planning method for power distribution system expan-
sion planning is based on SPEA2. In the following sections, the main components of 
the method are described. 


Encoding and Genetic Operators 
It is proposed that the distribution system topologies be represented directly as sets of 
their lines (edge-set encoding technique), and special recombination and mutation op-
erators be used. This encoding technique and genetic operators were proposed in [9] 
for the degree-constrained minimum spanning tree problem and they were adapted for 
power distribution system planning in [10]. For example, Fig. 1 shows a power distri-
bution network with 37 demand nodes, 3 candidate substations and 53-numbered can-
didate lines. A potential solution for this network is encoded as the set of numbers 
that represent the lines that form the solution (Fig. 2). The imaginary node and lines 
are used to manipulate problems with more than one substation and to represent the 
networks as spanning trees. Therefore, each solution can be encoded with an array 
containing the lines of the solution.  
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Fig. 2. An example of a direct encoding of a solution. 


The recombination operator to create offspring consists on two steps: In the first step, 
a set of lines contained in both parents is selected to initialise the offspring. In the 
second step, lines are randomly and successively selected from the rest of the lines 
contained either in parent 1 or parent 2 (but not in both) to be included in the off-
spring (only lines that do not introduce cycles are included). Fig. 3 shows an example 
of a recombination operation for two parent solutions of the network in Fig 1. Figs. 
3a) and 3b) are the parent solutions 1 and 2, respectively. Fig. 3c) is the offspring ini-
tialised with lines contained in both parents. In this phase, the offspring has compo-
nents disconnected. In the second step, the disconnected components are connected 
with lines contained either in parent 1 or parent 2; as it is shown in figure 3d).  


 
The mutation operator is described as follows (see Fig. 4): In a first step, a candidate 
line currently not in the offspring is randomly chosen and inserted in the offspring, 
e.g. in Fig. 4a) the line 30 (darker line) is inserted. A cycle will be formed with this 
action so, in a second step, a random choice among the lines in the cycle (triple lines) 
is then made (excluding the new line inserted and the imaginary lines), and the chosen 
one is removed from the offspring. In Fig. 4b) the line 41 is removed. 


 
The recombination operation is controlled by a recombination probability parameter 
(Prc): the probability parameter is set to a real number in the range [0.0, 1.0] then, a 
real number is obtained by a random number generator. If the obtained number is 
smaller than Prc, the recombination is executed; otherwise one of the parents is ran-
domly chosen and copied to the offspring population. Mutation operation is applied to 
every individual in the offspring population: exactly one line in an individual is 
changed. The size of the mating pool is equal to the population size and, in each itera-
tion the old population is replaced with the offspring population. 
 







a) b)


c) d)  
Fig. 3. An example of a recombination operation for two parent solutions of the network in Fig. 
1. 


 


a) b)  
Fig. 4. An example of a mutation operation for the offspring in Fig. 3. 


Fitness Function 
The fitness function is defined by the strategy formulated in SPEA2 algorithm. In this 
paper, the application of a different domination definition from the conventional one 
is suggested in order to handle the constraints of power system planning problems. 
This new concept of domination is called constrain-domination [11]. 


Selection Mechanism 
The binary tournament selection is the selection mechanism used in the phase where 
solutions are selected for recombination (step 5 of SPEA2). This mechanism selects 
two solutions randomly and picks out the solution with better fitness value. Using the 
concept of constrain-domination in the fitness function formulation, one of the fol-
lowing scenarios is created each time this selection mechanism is applied: 







• If both solutions are feasible, the solution closer to the Pareto-optimal front is 
chosen 


• If both solutions are infeasible, the solution with the smaller constraint violation 
is chosen 


• If one solution is feasible and the other is not, the feasible one is chosen 
• If both solutions are feasible and close to the Pareto-optimal front, the solution 


with the smaller density of individuals in its neighborhood is chosen. 


4 Case Studies 


The proposed method was tested on a real large-scale system presented in [6] (Fig. 5).  
 


 
Fig. 5. Power distribution network for the case studies. The darker lines represent the existing 
lines and the proposed routes are represented by thin lines. 


 







The system has 45 existing demand nodes and 44 existing lines with one power sub-
station of 40 MVA. 163 routes were considered for new lines to connect 137 new de-
mand nodes and one substation in node 182. This future substation was proposed with 
two sizes of 8 MVA and 40 MVA. For the new lines, two conductor sizes were con-
sidered. The proposed conductors and substation sizes have different investment cost. 
The substation size of 40 MVA costs 300 millions (unit of money), whereas the other 
substation size costs 136 millions. Similarly, the conductor with the bigger size costs 
more but, it has less failure and failure duration rate than the other conductor. 
 
The parameter values of the algorithm used to resolve the problem were: population 
size of 200; external archive size of 50; recombination probability of 0.8 and the 
maximum number of generations was 500. The tests were done using a PC compati-
ble 1 GHz Pentium with 128 Mb of RAM, WindowsME and a Visual C++ compiler. 
 
In this case, the problem was to find a set of Pareto-optimal solutions (or a set of ap-
proximate Pareto-optimal solutions) considering two objective functions to optimize: 
the economical cost function and the energy non-supplied function. 
 
Fig. 6 shows the set of approximate Pareto-optimal solutions found by the proposed 
method.  
 


10.5
11


11.5
12


12.5
13


13.5
14


14.5
15


15.5
16


16.5
17


17.5
18


1040 1080 1120 1160 1200 1240 1280 1320


Cost (Millions)


E
ne


rg
y 


no
n-


su
pp


lie
d 


(M
W


h)
-


 
Fig. 6. Approximate Pareto-optimal solutions found by the proposed planning method to the 
problem of Fig. 5. 


 







Because of two substation sizes are proposed with different costs for the new substa-
tion, the Pareto front is divided into two fronts. The left front contains solutions with 
the new substation size of 8 MVA; and the other front contains solutions with the new 
substation size of 40 MVA. 
 
Solutions with the substation size of 40 MVA provide more reliability (in terms of 
energy non supplied) than solutions with the substation size of 8 MVA because a big-
ger substation size can supplied more power; therefore, the total power demand is 
more equally shared between the existing and new substation and it experiences less 
interruption rate. However, in this case, the substation size of 40 MVA is more expen-
sive. Similarly, in each front, there are solutions with better reliability than others but 
they have higher costs. This is because the energy non-supplied is a function of the 
configuration and the types of conductors in the system. In this case, the cheaper con-
ductor has the higher failure rate. 
 
The solutions shown in Fig. 6 produce conflicting scenarios between the both objec-
tive functions. If both objectives are equally important, none of these solutions is the 
best with respect to both objectives. However, this set of solutions can help the sys-
tem planner to evaluate the solutions considering other criteria. The planner can as-
sess the advantages and disadvantages of each of these solutions based on other crite-
ria which are still important; and compare them to make a choice. 
 
Fig. 6 is different from the figure that depicts the solutions for the same problem re-
ported in reference [6]. In this reference, the Pareto front is not divided into two fronts 
and it is not clear if the two proposed substation size have different fixed cost or not. 
Also, it is not mentioned which substation size was selected for each solution or what 
is the effect of the substation size on the set of non-dominated solutions. 
 
In addition to the above study, more studies were carried out to analyze the effect of 
constraints and non-convex regions of the search space on the performance of the 
proposed method. These studies are reported as cases B, C, D and E. Case A corre-
sponds to the original problem of reference [6](Fig. 6). 
 
To analyze the effect of the constraints, the method was applied on the same problem 
of reference [6] with different levels of constraints. Fig. 7 shows the solutions found 
by the proposed method to the problem with the permissible level of voltage drop 
changed from the original 3.0 percent to 1.0 percent (case B). In Fig. 8, it is shown the 
solutions for the problem with the capacity limit of lines reduced by 50 percent (case 
C). Finally, Fig. 9 shows solutions to the problem with the proposed substation size of 
40 MVA changed for a substation size of 9 MVA (the cost does not change) (case D). 
 
Figs. 7 and 8 show that the proposed method was able to converge to one of the Pa-
reto fronts previously found for the original problem. This Pareto front corresponds to 
the solutions with the new substation size of 40 MVA, which satisfy the new con-
straints. The other Pareto front of the original problem now lies on the infeasible re-
gion. 
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Fig. 7. Approximate Pareto-optimal solutions to the original problem (case A) and to the prob-
lem with the permissible level of voltage drop changed from 3.0 percent to 1.0 percent (case B) 
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Fig. 8. Approximate Pareto-optimal solutions to the original problem (case A) and to the prob-
lem with the capacity limit of lines reduced by 50 percent (case C) 


 







These solutions of the cases B and C were expected since, as it was mentioned early, 
solutions with the bigger substation size have the total power demand more shared be-
tween the existing and the new substation; therefore, the lines carry less amount of 
current and the voltage drop is lower. 
 
In case D, Fig. 9 shows that the method converged to two Pareto fronts. One of these 
Pareto fronts is the same one found for the original problem, which corresponds to the 
solutions with the new substation size of 8 MVA. The other Pareto front is different 
from the one of the original problem since the second proposed substation size has 
been changed for a smaller one. 
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Fig. 9. Approximate Pareto-optimal solutions to the original problem (case A) and to the prob-
lem with the new proposed substation size of 40 MVA changed for a substation size of 9 MVA 
(case D) 


Similarly, the solutions of case D were expected. Because of one of the proposed sub-
station size was not changed, the method converged to the corresponding Pareto front. 
The other Pareto front is different from the one of the original problem because the 
substation size of 9 MVA has less capacity to supply energy; therefore, more power 
demand is satisfied by the existing substation and, as a consequence, the energy non-
supplied index increases. 
 
To analyze the effect of non-convex regions of the search space on the performance 
of the proposed method, the method was applied on the same original problem [6] 
with the cost of the new substation size of 40 MVA reduced from 300 millions to 200 
Millions. Fig. 10 shows the solutions found by the method to this case (case E). 
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Fig. 10. Approximate Pareto-optimal solutions to the problem with the cost of the new pro-
posed substation size of 40 MVA reduced from 300 millions to 200 millions (case E) 


In this case E, there is a non-convex region in the Pareto front. The presence of sev-
eral alternatives to build lines and substations with different economical and electrical 
characteristics can produce this type of scenarios. 


5 Conclusions 


Traditionally, the planning problem has been formulated to minimize the economical 
costs of the system being treated. However, a distribution system involves other as-
pects such as reliability, environmental and social impact. If solutions to a planning 
problem are described only in terms of economical costs, it might be difficult to qual-
ify the solutions. If instead the solutions are described in terms of other aspects, there 
would be more information available to help the planner to compare and select op-
tions. 


 
Evolutionary algorithms (EAs) are ideal candidates to be applied on problems consid-
ering more than one objective since EAs work with a population of solutions; how-
ever, this property of EAs has been little exploited. 
 
In this paper, a new multi-objective method for large-scale power distribution system 
expansion planning was introduced. The method is based on SPEA2 algorithm. The 







method has been tested on several multi-objective optimization problems. Some of 
these are presented in this paper. From the results we concluded that: 


 
• The proposed method was able to find a set of approximate Pareto-optimal solu-


tions, despite the complexity of these problems. One of the difficulties in these 
problems is that the Pareto-optimal front is not continuous.  


• The constraints can cause complications for some planning methods to converge 
to the Pareto-optimal front and to maintain a diverse set of Pareto-optimal solu-
tions. In these cases, it can be said that the proposed method was success in tack-
ling these difficulties. 


• Many multi-objectives optimization methods face difficulties in solving problems 
with non-convex search space. In one case reported here, the proposed method 
was able to find solutions in the non-convex region. 
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