The minimum dissipative passband insertion loss 10 log((1 —
[SuPY/| S, including connectors was measured to be 0.1dB.
Assuming a dissipative loss contribution between 0 and 0.05dB
from the connectors, bond wires and contacts, an unloaded qual-
ity factor between Q) = 6000 and Q, = 12000 can be evaluated.
Although even the latter value does not reach state-of-the-art
quality factor values of planar HTS resonators [3, 7], one has to
consider that very narrow strip conductors (40um) have been used
to obtain a high degree of miniaturisation. Furthermore, an identi-
cal filter realised in copper would display a quality factor @, < 40
and an insertion loss of ~16dB.

A comparison between simulation and measurement shows
good agreement although a frequency shift of ~27.5MHz exists.
This shift can be explained by taking into account that the mate-
rial parameters of the substrate (thickness and permittivity) may
differ from the assumed ideal values. To meet the correct centre
frequency, several experimental iteration steps must be performed.
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Multi-objective genetic programming for
nonlinear system identification

K. Rodriguez-Vazquez and P.J. Fleming

Genetic programming is applied to the identification of non-linear
polynomial models. This approach optimises multiple objectives
simultaneously, and the solution set provides a trade-off between
the complexity and the performance of the models. This is
achieved using the concept of the non-dominated or Pareto-
optimal solutions. The approach is tested on the simple Wiener
model.

Introduction: System identification, the problem of building a
model from input-output observations of a given system, can be
posed as a multi-objective optimisation problem where several
aspects of the modelling process can be involved. Using the NAR-
MAX model representation [1], this work introduces a non-linear
system identification approach based on the concepts of multi-
objective optimisation and genetic programming. The aim of this
work is to exploit the dynamic representation scheme offered by
the genetic programming paradigm to identify a set of valid and
parsimonious models that satisfy the performance criteria.

NARMAX/genetic programming approach. Focused on non-linear
systems, the NARMAX (non-linear autoregressive moving aver-
age with exogenous input) model [1] represents a means of describ-
ing the mput-output relationship of a non-linear system. This
model is an unknown non-linear function of degree / defined as

y(k) = F(y(k - 1)7 7y(k - ny),u(k - 1)7 7U(k/‘ - nu)?
ek —=1), ..., e(k—ne)) +ek) (1)

where y(k), u(k) and e(k) represent the output, input and noise sig-
nals, respectively, and n,, #,, and #, are their associated maximum
lags. Since e(k) is unknown, this equation can be expressed in a
simplified polynomial form as

W) =00+ 3 Bz B+ S S b, (B ()

i1=1 i1=113=%1
n n
4+t Z Z O - Ozs, (k) - - 4, (K)
i1=1 =11
@

where n = n, + n, (the sum of the corresponding output and input
maximum lags), 6, are scalar coefficients and x(k) represents
lagged terms in y and w.

0 20 40 60 80 100 120

Fig. 1 Simple Wiener model input—output data

In this sort of model representation, the complexity of the iden-
tification process increases with the degree of nonlinearity and lag
of the input, output and cross-coupled terms. Genetic program-
ming (GP) i1s proposed here as an alternative means of determin-
ing the non-linear model structure for a given system. GP [2] is a
branch of evolutionary computing (EC) methods that applies the
theory of natural selection or survival of the fittest of a population
of structures in a selection process. In the NARMAX-GP case, the
population consists of tree-structured individuals that readily rep-
resent alternative structures for the application of the NARMAX
approach. Potential models are encoded as hierarchical tree struc-
tures, thus providing a dynamic and variable representation,
which are members of a population of different model structures.
These structures consist of functions (internal nodes) and termi-
nals (leaf nodes) appropriate to the problem domain. Hence, the
function set is defined here as F = {ADD, MULT} = {+, *}, and
the terminal set as 7' = {X,, ..., X,,, Xs1, --s Xopamd = {¢, p(k = 1),
wo Yk —m), uk - 1), .., u(k —n)}.

An example of this hierarchical tree representation of the poly-
nomial NARMAX model is expressed in Polish notation as (ADD
(ADD X1 X4) (MULT (ADD X2 X3}ADD X1 X2))). This is
equivalent to the polynomial non-linear model defined as

y(k) =0 + Ory(k — 1) + G2y (ke — 2) + Bzu(k — 1)
+ 04y (k — 1)? + 05y (k — Dy(k — 2) (3)

where {X0, X1, X2, X3} = {1.0 (the constant term), y(k — 1), y(k —
2), ulk — 1)}. A least squares algorithm is applied to compute the
parameter vector O to minimise the residual of errors between the
mode] and measured data. Then, the population of the non-linear
model is evolved by means of selection, crossover and mutation
operators. In GP, crossing over two tree individuals produces a
pair of offsprings by selecting a random node in each parent tree
and exchanging the associated subexpressions. The mutation oper-
ation is performed by randomly selecting a node, which can be
internal or terminal, and replacing the associated subexpression
with a randomly generated subtree.
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Multi-objective fitness function: To perform selection, all model
measures considered in the identification are evaluated for each
member of the population. The fitness value of each population
member is assigned by means of a rank-based fitness method [3].
This fitness evaluation is based on the definition of Pareto-opti-
mality or nondominance [3]. If we consider a minimisation prob-
lem, given two n component objective function vectors, f, and
f ., we can say that /, dominates 7, (is Pareto-optimal) if

Vie{l,oon}, fu < fo AJi€{l, .0} fu < fo, (4)

producing a set of possible and valid solutions known as the
Pareto-optimal or nondominated set. Selection in the evolutionary
process is made using a method of ranking which favours non-
dominant members of the population [3].

Simulation results: The method described above is demonstrated
on the simple Wiener model and compared with conventional
identification techniques such as stepwise regression and orthogo-
nal regression [4]. The differential equation of the linear dynamic
part of the simple Wiener model is

100(t) + o(t) = u(t) (5)
and the static non-linear part is expressed by
y(k) =2+ v(k) +v*(k) (6)

The input-output data used here are defined in [4] (Fig. 1).

The multi-objective genetic programming (MOGP) approach
was run considering five objectives representing the structure and
the performance of the models. These were the number of terms,
D, degree of non-linearity, DEG, maximum lag, LAG, residual var-
iance, VAR, and long-term prediction error, LTPE. Crossover and
mutation probabilities were 0.9 and 0.1, respectively, and the pop-
ulation consisted of 200 tree expressions. The MOGP method was
run several times and gave similar families of solutions each time.
Table 1 contains the results of one such run (MOGP,_, are repre-
sentative solutions of this run).

Table 1: Comparative performance of the identification methods

Model J4 DEG LAG  VARx103 LTPEXx10?

MOGP, 6 2 1 2.3839 6.0221
MOGP, 6 2 2 2.1978 6.7967
MOGP, 7 2 2 1.6484 6.4279
MOGP, 7 2 2 1.6474 7.8151
Stepw. [4] 7 2 2 1.6808 7.8526
Orth. [4] 7 2 2 5.2243 26.8080

Polynomial NARMAX models obtained by the MOGP
approach have similar model structures (Table 2) with some terms
in common with the models obtained by conventional methods.
All of the MOGP,_, results dominate stepwise regression and

orthogonal regression solutions when we consider both objectives.
In the case of MOGP; and MOGP,, improved variance results are
achieved and the LTPE results are also better than the stepwise
regression case (see Table 1).

Table 2: Simple Wiener model structures

Term  MOGP, MOGP, MOGP, MOGP, Stepw. (5] Orth. [3]

¢ x x X x x x
W-1) X x x x X X
W(-2) X X x
u(t-1) X x x
u(t-2) X
y(-1) x x x X X

He=D(-2) x
We=2) x
WE=Du(e-1) x x x X X
u(t-1)? x x x x x X
We-Du(e-1) x
u(-1u(r-2) x

Concluding remarks: A multi-objective evolutionary identification
method, using a tree-based coding structure, has been shown to
produce a similar and even better performance in some respects, in
non-linear system identification, than conventional techniques.
Although MOGP is demonstrated here using a simple model, at
the present time it is being tested on more complex identification
problems such as chaotic systems and data from gas turbine
engine tests. For these applications, different statistical objectives
for validating the models (e.g. autocorrelation of residuals and
crosscorrelation tests) and different performance measures are
being considered.
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