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Abstract. A Genetic  Programming-NARMAX
approach has been successful applied to the
identification of non-linear systems. This evolutionary
identification method has been extended to a
multiobjective form with the aim of simultaneously
optimising different measures of the system model
under investigation. So far, this novel approach has
only been tested on simulated data. Here, we
demonstrate a practical application of this technique to
obtain a model of the relationship between the fuel feed
and the shaft speed dynamics of a gas turbine engine.
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INTRODUCTION

In the field of system identification, the problem of
building a model from input-output observations of a
system, non-linear system identification remains a
difficult task. In many cases, no initial information is
generally available about the system structure. For
non-linear system identification problems, Leontaritis
and Billings (6) introduced a means of describing the
input-output relationship of a non-linear system, known
as the NARMAX (Non-linear AutoRegressive Moving
Average with eXtra inputs) model. This model is an
unknown non-linear function of degree / defined as,

y(k) =F(y(k-1),...,y(k—ny),uk-1),...,uk -ny),
ek-1),...,e(k—ng)) +e(k) ¢))

where y(k), u(k) and e(k) represent the output, input and
noise signals, respectively, and #,, n,, and 7. are thejr
associated maximum lags. Since e(k) is unknown, this
equation can be expressed in a simplified from as

¥() = F(y(k=D),...y(k—ny), utk =D),..., u(k ~1y))

@

Leontaritis and Billings have also demonstrated that
the polynomial representation is one of the most
common formulations and has been shown to work well

in practical applications. Thus, a polynomial NARX
model of degree / is expressed as,

y(k) =8¢ + 5 0;,x;, (k) + 53 8;,8;,x;, (k)x;, (k)
=1
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where n=n,+n, (the sum of the corresponding output
and input maximum lags), 6; are scalar coefficients
and x,(k) represents lagged terms in y and ». This non-
linear difference equation model can represent a wide
class of non-linear systems and it is the basis for this
work. As the complexity of the identification process
increases with the degree of non-linearity and lag of the
input, output and cross-coupled terms, Evolutionary
Computing (EC) methods have proved useful for
structure and term selection.

GENETIC PROGRAMMING

EC methods apply the Neo-Darwinian theory of
Natural Selection or survival of the fittest of a
population of structures and terms in a selection
process. In an attempt to alleviate the increasing
complexity in NARMAX model identification problems
with increased degrees of non-linearity and numbers of
possible terms, previous work by (Rodriguez-Vazquez
et al. (8) has investigated an identification approach
based on genetic programming, Koza (4) and (5).
Genetic programming (GP) is a branch of evolutionary
algorithms in which the population consists of tree-
structured individuals which readily represent
alternative structures for the application of the
NARMAX approach. Potential models are encoded as
hierarchical tree structures, thus providing a dynamic
and variable representation, which are members of a
population of different model structures. These
structures consist of functions (internal nodes) and
terminals (leaf nodes) appropriate to the problem
domain. Hence, the function set is here defined as F =
{ADD, MULT} = {+, *}, and the terminal st as T =
{Xo, e Xnys Xyt - Xapma) = {6, Y(k-1), ..., y(k-ny),
u(k-1), ..., u(k-ny)}. The population evolves by means
of crossing over and mutating these structures. In GP,
crossing over two tree individuals produces a pair of
offspring by selecting a random node in each parent
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tree and exchanging the associated subexpressions. The
mutation operation is performed by randomly selecting
a node, that can be internal or terminal, and replacing
the associated subexpression with a randomly generated
subtree.

An example of this hierarchical tree representation of
the polynomial NARMAX model is shown in Fig.1.
This model is written in Polish notation as

(ADD (ADD X1 X4) (MULT (ADD X2 X3)(ADD
X1 X2)))

This is equivalent to the polynomial non-linear model
defined as

y(k) =069 +0;y(k-1)+0,y(k-2)+65uk-1)

+0,y(k— D% +05y(k-Dy(k-2) @

ADD
ADD MULT
/ N
X1 X4 ADD ADD
VAR VA

Figure 1: Polynomial NARMAX model represented as
a hierarchical tree.

where X1, X2, X3 and X4 are 1.0 (the constant term),
y(k-1), y(k-2) and u(k-1), respectively. Then, a least
squares algorithm is applied to compute the parameter
vector 6.

Multiobjective Genetic Programming

In a further study, Rodriguez-Vazquez et al. (9), this
method was transformed into a multiobjective genetic
programming approach that is based on the
combination of the notion of preferability, Fonseca and
Fleming (3), with the concept of Pareto-Optimality or
non-dominance, Ben-Tal (1). The Pareto-optimal
concept means that when considering a minimisation
problem and given two # components objective function

vectors, f, and f,, one can say that f, dominates T,

(is Pareto-optimal) if

Vie{l,...,n},fui <fy, /\Eie{l,...n},ful_ <f, ®

producing a set of possible and valid solutions known
as the pareto-optimal or nondominated set. Fig, 2
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illustrates graphically the nondominated solution set for
a bi-objective problem.
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Figure 2: Pareto-ranking without

information.

preference

Additionally, preference information can be introduced
in the form of a goal vector which provides a means of
evolving only a specific region of the search space.
From Fig. 2 it is seen that the individuals which satisfy
their goals (g/ and g2) are preferable to, and therefore
have a lower rank than, all of the remaining ones.

o

Figure 3: Pareto-ranking with preference information.

Fitness Assignment (Cost Function)

Fonseca and Fleming (2) introduced a multiobjective
genetic algorithm that uses a rank-based fitness
assignment where the rank of a certain individual x; at
generation ¢ is related to the number of individuals p;t)
in the current population by which it is dominated. This
is expressed as

rank(xi ,t) =Pi (t) . 6

All non-dominated individuals are assigned rank 0 and
the remaining ones are penalised according to the
above equation.

The fitness (cost function) is assigned by interpolating
from the model that shows the best performance and
has the simplest structure (rank=0) to the worst. Then,
the fitness assigned to models with the same rank is
averaged where the global population fitness is kept
constant.



Thus, in the context of system identification based upon
the NARMAX model, the multiobjective approach has
the aim of optimising different measure requirements
within the identification process such as residual errors,
long-term prediction error, the validation of identified
models by means of the evaluation of statistical tools
and model parsimony. Results of these studies proved
encouraging although the GP-NARMAX identification
approach was applied to simulated data only,
Rodriguez-Vazquez et al. (9).

GAS TURBINE ENGINE DATA: A PRACTICAL
APPLICATION

This section reports the application of the
multiobjective ~ genetic  programming-NARMAX
approach to model the relationship between the fuel
feed and the shaft speed dynamics of a gas turbine
engine. The input-output data measured on a Spey
engine at DERA Pyestock is used for the identification

purpose.

In addition to the use of a variety of performance
measures, the  multiobjective  framework is
demonstrated to be a useful tool for simultaneously
identifying and validating models using different test
signals at the same operating points; or, alternatively,
the same test signal at different operating points. Thus,
in a first experiment, the identification is based upon a
multisine input signal considering different operating
conditions. Besides the objectives related to the model
structure such as the number of terms (NT), degree
(DG) and lag (LG) of the model, the residual variance
(VAR) and the k-step ahead prediction error (K-PE) at
each of the operating points (53.8%, 75.45, 75.3% and
88.7% mean NH) are also optimised. A population of
100 individuals (potential models) and crossover and
mutation probabilities of 0.9 and 0.1, respectively, are
used.

Table 1 summarises the results obtained in this run and
Fig. 4 shows the multiobjective trade-off graph. The
eleven objectives are ranged along the x-axis and the
performance achieved for each objective is indicated in
the y-direction. For presentational purposes, these
objectives are normalised with respect to each other;
"X" denotes the target posed for each objective. A
number of solutions (indicated by individual lines)
satisfy all the objectives and are also non-dominated,
i.e. no solution is deemed better than any other (refer to
Eqn (5)). Interestingly, although non-linear terms were
available for creation within the tree structure, a linear
representation was the most satisfactory solution. This
will be discussed further in a subsequent section.

1387

Trade-off Graph

Polynomial NARX Identification
T T T T

Cost

Figure 4: Multiobjective Genetic
Framework. Run 1.

Programming

In a second experiment , five test signals at the same
75% NH operating point are used for the identification
process which are (i) no-imposed input, (ii) a multisine
input, (iii) Inverse-Repecat Maximum Length Binary
Signal (IRMLBS), (iv) a multisine at an input
amplitude of + 10% of the steady state fuel flow, (v) a
IRMLBS at + 25% of the input amplitude fuel flow.
The family of models identified in this experiment are
the same linear models as obtained in the previous run.
Table 2 shows the terms involved in each linear model
and Figure 5 represents the results of this second
experiment. Although the engine shows to be non-
linear (next section), these linear models are shown to
predict well but they are not statistically valid models.

MODEL VALIDATION BY MEANS
STATISTICAL TOOLS

The autocorrelation function ACF of the residuals and
the crosscorrelation function CCF between the residuals
and input are measures for statistically validating
models. These correlation tests are respectively defined
as

OF

ACF = min® g =0 )
CCF = min® ¢ (7) vt ®
and
D (1) = E[E(t—1)E(1)] ®
@ (1) = E[u(t-)(0)] a



where 3(7) is the Kronecker delta, &(t)
residuals and input, respectively.

The ACF and CCF are now included in a third run of
this identification approach. As explained in a previous
section, the multiobjective approach allows the
introduction of preference information and the
assignation of different priority levels. Thus, the ACF
and CCF objectives are assigned a higher priority than
the remaining objectives which means that the goal
values of these two functions have to be met first; in
other words, the constraints have to be satisfied. The
goal value for the correlation functions is set up to be
1.95/YN which corresponds to the 95% confidence
interval. N is the number of points used for validation.

and u(t) are the

The identification is then addressed to a region of valid
models in the space of all possibilities. In this run, this
method provides a set of non-linear, rather than linear,
models (Fig. 6) which satisfy the new statistical
validation requirements. Models with a non-linear
degree of two and three arise in this case which
involve slightly more terms than the linear model
encountered earlier. These results are corroborated
with the information extracted from the data which
describes the degree of non-linearity of the system
explained in the next section. An example of this set of
non-linear models is expressed by

y(t) =0g +01y(t - 1) +65u(t — 1) + O3u(t - 3) +

8,4y(t— u(t - 2) +O5u(t — 2)u(t - 5) +Ogy(t - y(t - 3)°

where a cubic output term is involved.

Cost

S:

Figure

Multiobjective  Genetic
Framework. Run 2.

Programming
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Figure 6: Multiobjective Genetic Programming
Framework. Run 3
NON-LINEAR DYNAMICS

The non-linear dynamic degree can be a priori
information obtained directly from the output data. For
this purpose, Mendes (7) has applied the concept of
fixed points which has been shown to be a useful tool
for the determination of the non-linearities of the
model structures. The fixed points are no more than the
roots of the autonomous polynomial or the solutions of
the differential equations. Based upon an algorithm
written by Mendes, the number of fixed points, which is
the degree of non-linearity, can be calculated.

From the data illustrated in Fig.7 we can identify the
location of three fixed points. Two of the points are
clearly shown - they are the upper and lower edges of
the curves; the third point has been found, on closer
inspection, to bisect these curves. This confirms the
degree of non-linearity found in Fig. 6 (Objective 2).
However, the fixed points locations more clearly seen at
the higher input amplitude (fuel flow) and the higher
NH value (Figs. 7b and 7c). The clearer distinction of
fixed points in Fig. 7c suggests that fuel flow
contributes to the non-linearities of the system.
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Figure 7: HP tendency. Fixed points location.

CONCLUSIONS AND FUTURE WORK

Since this is a multiobjective identification approach,
there is no single solution but a family of models and
the modeller is left to select the most suitable model
depending on the purpose of the modelling.

It has been shown that a set of simple linear models
predict well at different operating conditions although
they are not statistically valid models. Introducing the
correlation tests - autocorrelation and crosscorrelation,
the search process has centred on a region of non-linear
models. It has also been pointed out that the non-
linearity of the engine is affected by the amplitude of
the fuel flow.
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This work has basically focused on the analysis of the
HP shaft speed dynamics, but, the relation between the
fuel flow and the LP shaft speed can be examined in a
similar way.

In terms of the validation of the non-linear system
description, the two correlation functions evaluated in
this work are necessary conditions but not sufficient.
Therefore, higher order correlation tests have to be
considered.
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TABLE 1 - Multiobjective genetic programming identification of a multisine input signal at different operating
conditions, The identified models are all linear models.

Model NT LAG . VAR K-PE, VAR, K-PE, VAR; K-PE; VARy4 K-PE4
1 8.6190 k 8.6035 © 6.1151 82585  6.1856 10.093 5.0191 12.013
2 7.0341 7.4798 7.6930 8.4910 5.6612 5.1242  6.8299 11.581
2 7.9635  7.4308 5.9626 8.8259 4.1407 54512 47378 12.095
2 8.2633 11.566  6.1481 8.2645 4.5760 56710  4.7652 11.770
2 5.8557 7.0325 5.6946 8.5667 3.9777 5.0554 47346 11.910

3
4
4
4
5

LV R S

* The residual variance and the k-step prediction error have the exponent 107,

" TABLE 2 - Identified linear models.

Model\Term c yt-1) y(t2) u(t-1) u(t-2)

1 X X X

2 X X X X
3 X X X X
4 X X X X
5 X X X X X
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