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EXECUTIVE SUMMARY 
 
This paper presents a new model using a genetic algorithm optimisation technique for 
determining the optimal schedule of chlorine dosing within a water distribution system 
considering multiple, competing objectives: disinfection control and aesthetic control.  The 
characteristics of genetic algorithms which solves the optimisation problem in parallel, 
using a ‘population’ of potential candidate solutions, makes the genetic algorithm a highly 
suitable technique for solving multi-objective optimisation problems, in particular for 
generating a set of Pareto-optimal solutions (a generating-based method).  A logical 
process for multi-objective genetic algorithm development using generating-based 
methods is to first comprehend the single-objective genetic algorithm problem.  To address 
this, the model formulation is based on the classic weighted-sum approached (a 
preference-based method) to convert the multi-objective problem into a single-objective 
problem, by weighting and summing the individual objective functions, to create a “quasi”-
single objective function, for solving using a single-objective genetic algorithm.  The model 
is also capable of handling improved nonlinear chlorine decay algorithms by separating the 
genetic algorithm code from the network simulation code used to calculate the hydraulic 
and water quality system dynamics. 
 
Six different genetic algorithm models were developed and tested against a hypothetical 
water distribution system using a single monitoring node, to determine the best model 
configuration prior to application on a system consisting of 10 monitoring nodes.  This was 
achieved by means of six different scenarios: a simple genetic algorithm (SGA), an elitist 
genetic algorithm (EGA), and a hybrid (with local search) genetic algorithm (HEGA); each 
tested using either binary-parameter or gray-parameter representations.  Each scenario 
consisted of four simulations with population sizes 4, 8, 16 and 32 respectively.  Of the 24 
model configurations evaluated, the best model was determined as the hybrid elitist 
genetic algorithm using gray-parameter representation, with a population size of 16 
(HEGAGP16).  Overall the hybrid technique was found to produce better results, with 83% of 
these making up the top 6 model configurations.  Gray-parameter representation proved to 
produce better results than binary-parameter representation, with 67% of these making up 
the top 12 model configurations. 
 
The best model configuration (HEGAGP16) was applied to the hypothetical distribution 
system, with 10 demand nodes used as monitoring points.  Three scenarios were 
modelled using weighting factors for disinfection control and aesthetic control as 0.25:0.75, 
0.50:0.50, and 0.75:0.25 respectively.  The results showed that the model was capable of 
producing the optimal dosing schedule considering the varying weighting factors used.  
However, the model is sensitive to the weighting factors applied to the two primary 
objectives and the best dosing schedule depends on some prior knowledge of the priorities 







of each of the two primary objective functions.  Solving the multi-objective problem using 
the weighted-sum approach (a preference-based method) has the disadvantage of 
requiring new runs of the model every time priorities or "preferences" change.  To address 
this limitation, the development of a new multi-objective genetic algorithm model, using a 
Pareto-based approach (a generating-based method), is in progress. 
 
INTRODUCTION 
 
Controlling the levels of chlorine within the distribution system is an important area for the 
water industry.  Chlorine dosing set points at post-treatment booster stations are typically 
constant with adjustments only being made on a weekly or seasonal basis, if at all.  Due to 
the diurnal nature of system demand, opportunities exist to optimise the scheduling of 
chlorine dosing on an hourly basis, via feed-forward predictive optimisation models, to 
maximise disinfection control and minimise aesthetic concerns within water distribution 
systems.  Existing research clearly demonstrate the need for optimal chlorine scheduling 
models to help maintain chlorine residuals within the distribution system within prescribed 
limits (Levi and Mallevialle, 1995 & Uber et al., 1996).  Several studies have addressed 
this problem by developing optimal chlorine booster disinfection scheduling models (Tryby 
et al., 1997, Boccelli et al., 1998, Tryby et al., 1999 & Nace et al., 2001).  Results from this 
research conclude that there are benefits for industry of using such models. 
 
Existing models have treated the requirements for disinfection control and aesthetic control 
as constraints, by applying lower and upper chlorine bounds, to maintain chlorine residuals 
within the distribution system within prescribed limits.  By formulating the requirements for 
disinfection control and aesthetic control as two distinct objective functions, the genetic 
algorithm (GA) model presented in this paper enables system operators to predefine 
priorities (preferences) for disinfection and aesthetic control, in the form of disinfection and 
aesthetic weighting factors. 
 
Existing models have also assumed a first-order chlorine decay algorithm, simplifying the 
complex nonlinear optimisation problem.  Studies have shown that first-order chlorine 
decay algorithms do not adequately represent the system, due to the complex physical, 
chemical and biological reactions that occur in water as it travels from treatment plant to 
customer taps.  The model presented in this paper is capable of handling improved 
nonlinear chlorine decay algorithms by separating the genetic algorithm code from the 
network simulation. 
 
MODEL FORMULATION 
 
The model formulation is based on a hypothetical water supply scheme.  The distribution 
system (Figure 1) is supplied from a ground water source, with the water being treated at a 
ground water treatment plant before being pumped to a high-level excavated service 
reservoir.  Long detention times within the service reservoir require the addition of post-
treatment disinfection, via a chlorine dosing station (node “CD”) at the outlet of the 
reservoir.  The ‘chlorine-refreshed’ water gravity feeds to services (nodes “1” to “10”) within 
the distribution system.  The service reservoir, dosing station (node “CD”), and distribution 
system are modelled using the EPANET network hydraulic and water quality simulation 
package (Rossman 2000).  The hydraulic and chlorine decay models are assumed 
calibrated.  For ease of presentation all network details, such as pipe sizes and chlorine 
decay coefficients, are omitted. System demand is assumed as a periodic 24-hour 
demand pattern (10-minute timesteps) for the predefined time horizon (72 hours for this 
hypothetical distribution system).  The model is not limited to a periodic demand pattern, 







however for ease of presentation the diurnal system demand (Figure 2) is assumed to 
repeat every 24 hours.  The dosing schedule is also assumed as a periodic 24-hour 
pattern, with each one-hour dose rate (1 to 24) representing a decision variable for the 
optimisation problem.  Curve fitting is used to convert the one-hour timesteps into 10-
minute timesteps, for solving using EPANET. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Figure 1 Hypothetical water supply scheme 
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Figure 2 Diurnal demand curve (applied to single equivalent service) 


 
Disinfection Control 
Disinfection control is achieved by ensuring an adequate chlorine residual, nominally 
greater than 0.1mg/L, is maintained at a demand node.  This is formulated as a 
minimisation problem (1). 
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The cost coefficient is nominally 1.0, whilst the cost rate per service per day reflects the 
cost to the community associated with the risk of drinking water containing pathogens.  
The start timestep TSs, calculated by running EPANET with a short pulse of chlorine at t=0 
for chlorine dosing station “CD”, is the time of the first non-zero chlorine residual (plus 12 
hours) at monitoring node m.  The end timestep TSe is calculated as the sum of the start 
timestep plus the duration of chlorine dosing (nominally 24 hours).  The 12 hour delay is 
an artificial fix and should be zero, as it was found that EPANET did not initialise 
immediately and took several hours (after the first non zero value) to stabilise. 
 
Aesthetic Control 
The goal of aesthetic control is to minimise taste and odour problems associated with high 
chlorine residuals, nominally greater than 0.6mg/L.  This is formulated as a minimisation 
problem (2). 
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The cost coefficient is nominally 1.0, whilst the cost rate per service per day reflects the 
cost to the community associated with complaints for drinking water with taste and odour 
problems. 
 







Minimising Volume of Chlorine Used 
The model also considers costs associated with operating the chlorine dosing station “CD”, 
such as minimising the total volume of chlorine used.  Limiting the total volume of chlorine 
used is formulated as a minimisation problem (3). 
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Minimising Large Variations in Chlorine Dose Rates 
Another cost associated with operating the chlorine dosing station “CD” would be to 
minimising large changes in dosing rates over short time intervals, which may affect the 
dosing equipment.  This is formulated as a minimisation problem (4). 
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The cost coefficient is nominally 1.0, whilst the cost rate for exceeding the maximum range 
depends on local preferences and operating costs. 
 







Weighted-Sum Approach 
The weighted-sum approach is the simplest and most widely used classical approach for 
solving multi-objective optimisation problems, which (as its name suggests) involves 
weighting and summing the individual objectives to create a “quasi” single-objective 
function.  If the objectives vary significantly in their order of magnitude, it may be 
appropriate to scale them (also referred to as normalisation) so that each objective has an 
equal order of magnitude.  It is also the usual practice to choose weights such that their 
sum is equal to one. 
 
The multi-objective problem defined in this paper consists of four different minimisation 
functions.  However, the researchers are mainly interested in the two primary objectives, 
disinfection control and aesthetic control, defined in (1) and (2) respectively.  The other two 
objectives, (3) and (4), are not weighted and are treated as constraints, similar to the 
"penalty method", a common technique for handling constrained genetic algorithm 
problems.  Normalisation is not required in this case, as the researchers are interested in 
minimising the total cost.  For example, it would not be practical to scale up the cost of the 
volume of chlorine used, as shown in (3), to give this equal priority to disinfection control.  
The composite function is defined in (5). 
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SOLUTION PROCEDURE 
 
The minimisation function (5) is solved using a new model, developed using a new genetic 
algorithm code linked to the existing EPANET network simulation code (EPANET ver 2, 
Rossman, 2000) used to calculate the hydraulic and water quality system dynamics.  
Rossman (1999) developed a programming toolkit for EPANET that allows model 
developers to simplify the tasks required to link the EPANET simulation code to other 
modelling code, such as a genetic algorithm optimisation model.  The independent ‘linked’ 
design developed for the new model enables future, improved chlorine decay algorithms to 
be used without changing the genetic algorithm optimisation code.  The structure of the 
model is shown in Figure 3. 
 
The model was designed to support a population of individuals, where each individual has 
both a phenotype and genotype structure.  Each individual represents one possible 
solution.  The phenotype holds the decision variables, in this case 24 one-hour dose rates, 
whilst the genotype hold the genetic algorithm genes (a decision variable encoded into a 
series of 0 and 1 bits).  The model supports either binary or gray-parameter 
representations, with adjustable user defined precision’s for each dosing rate.  The model 
supports 2-parent tournament selection, multi-point crossover and bit-wise mutation.  
Experimentation with the model indicated a population size ranging between 4 and 32 may 
lead to the best convergence rates, when considering the expensive (time consuming) 
objective function, solved using EPANET.  The individuals of the first population are 
initialised randomly. 
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Figure 3 Model program flow diagram 
 


1. Design Model (not part of program flow): 
Define “Individual” with both “Phenotype” and “Genotype” structure, 
Define structure of “Phenotype” decision variables, 
Define structure of “Genotype” genes, 
Define fitness function from objective function (5), 
Determine appropriate genetic algorithm parameters (popsize etc). 


2. Initialise Model: 
Run EPANET hydraulic simulation (once) and save “hyd” file, 
Load first population “ParentPop” with “popsize” number of “Individuals”, 
Randomise each “Individual-Phenotype” decision variable. 


3. Calculate Objective Function Cost (for each Individual): 
Pass “ParentPop-Individual-Phenotype” to EPANET 
Calculate costs from objective function (5), 
Return “ParentPop-Individual-Phenotype” results, 
Save cost results for current generation. 


10. End Generation:  
Save results to disk, 
IF converged = True THEN 
     Exit 
ELSE 
     Clear “ParentPop and “MatingPop”, 
     Age children to parents by copying “ChildPop” to “ParentPop”, 
     Increment “Generation Counter” by 1 
END IF 


4. Elitism (optional): 
Calculate elite “Individuals” from “ParentPop” and save to “ElitePop”. 


5. Hybrid local search (optional): 
Refine selected  “ParentPop-Individual-Phenetype” using local search, 
Update “ElitePop”. 


6. Calculate Fitness (for each Individual): 
Summarise “ParentPop” costs, 
Calculate “Individual-Genotype” fitness, 
Save fitness results for current generation. 


7. Select Potential Mating Parents: 
Encode each “Individual- Phenotype” into “Individual-Genotype”, 
Using “2-Parent Tournament” build “MatingPop” from “ParentPop". 


8. Parents Reproduce To Have Children: 
Using “Multi-point Crossover” create “ChildPop” from “MatingPop”, 
Using “Bit-wise Mutation” introduce diversity into “ChildPop”, 
Decode each “Individual-Genotype” into “Individual-Phenotype”. 


9. Check Convergence: 
Save generation data from “ParentPop” and “ChildPop”, 
Check convergence. 


REPEAT: steps 3 to 10 
if converged = False 


EPANET 


EPANET 







Calculating Objective Function Cost 
For each individual in the population, the phenotype representation, which consists of 24 
one-hour dose rates, is passed to EPANET.  Using the programmer's toolkit provided with 
EPANET, the chlorine dosing schedule is loaded into the EPANET input file, where each 
input file consists of distribution system hydraulic and water quality data.  EPANET is run 
and the predicted chlorine residual data for each monitoring node is saved.  Given the 
chlorine dosing schedule, costs for objective function (3) and (4) can be calculated.  Using 
the results from each monitoring node the costs for objective functions (1) and (2) can be 
calculated.  The total cost for each genetic algorithm individual, which represents a 
potential optimal solution, is finally calculated using (5). 
 
Calculating Fitness 
In the simplest terms the genetic algorithm simulates the evolution process of life, whereby 
the fittest individuals (in this case an individual represents a mathematical solution) are 
brought together for mating.  The concept is that these fit individuals, using the genetic 
algorithm reproduction process, will pass on "good" parts of themselves to their children, 
whilst unfit individuals die off.  The measure of fitness for each individual can simply be the 
cost of the objective function (5), where a lower cost represents a fitter individual.  
However, this can cause confusion for some, where a high fitness has a low cost value.  
To overcome this, the model uses (6) to calculate the fitness of each individual, using 
population costs statistics, where the lowest cost individual has a fitness value of 100 and 
the highest cost individual has a fitness value of zero. 
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Convergence Criteria 
The end of the first genetic algorithm reproduction process is referred to as the first 
generation.  Future generations are evolved from this first generation, using steps 2 
through 8 of Figure 3, until a suitable (ideally optimal) solution is found.  To stop the 
generation process from continuing infinitum a convergence check is required.  The model 
supports three levels of convergence checking.  The model stops running when one of the 
following three criteria (7) is met, whichever comes first. 
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The Elitist Genetic Algorithm 
The genetic algorithm reproduction process may not always lead to better individuals.  For 
example, it is possible that the lowest cost of all individuals within the parent population of 
generation X is greater than the lowest cost of all individuals within the parent population 
of generation X-1.  To prevent the loss of good solutions an elitist strategy was 
implemented.  The genetic algorithm elitism process saves a set number (e%*popsize) of 
the best (lowest cost) individuals from each generation into an elite population of size 
e%*popsize.  The elite population of generation X is compared with the elite population of 
generation X-1 and the best e%*popsize number of individuals of both elite populations 
replace the individuals within the elite population of generation X. 
 
The Hybrid Genetic Algorithm 
The combination of a local search technique is sometimes referred to as a hybrid genetic 
algorithm.  The model was developed to support the option of including a local search, the 
objective being to take the best h%*popsize of the parent population and apply a local 
search on each individual until a better (if possible) cost is achieved.  This is done by 
randomly picking a decision variable (a one-hour dose rate) and incrementing the value by 
a small amount, in a random direction (up or down).  The modified chlorine dosing 
schedule is then solved and the cost function (5) calculated.  If the cost is lower the 
process repeats, moving in the same direction until there is no more improvement in cost.  
If the cost is higher (or the same) the direction of change is reversed and the process 
repeated in the new direction. 
 
MODEL CONFIGURATION 
 
Prior to applying the model to a hypothetical distribution system (Figure 1) consisting of 10 
demand nodes, the model was first tested against a single demand node, to determine the 
best model configuration.  This was achieved by means of six different scenarios: a simple 
genetic algorithm (SGA), an elitist genetic algorithm (EGA), and a hybrid (with local 
search) elitist genetic algorithm (HEGA); each tested with either binary or gray-parameter 
representation.  Each scenario consists of four simulations, with each simulation consisting 
of 5 separate randomly initialised runs.  Demand node "10" was chosen as the test node.  
The schedule for chlorine dosing at node “CD” was defined as 24 one-hour decision 
variables with lower and upper bounds of 0.2 and 6.0mg/L respectively and a minimum 
precision of 0.1mg/L.  All model configurations used 2-parent tournament for selection and 
2-point crossover (probability of 0.8) with bit-wise mutation (probability of 0.02) for 
reproduction.  The convergence check data, as per (7), was defined as: Cstop = $50, rstop = 
0.98 (X=10, Y=600), and Gstop =3000.  The weighting factors for disinfection control and 
aesthetic control were 0.5 and 0.5 respectively.  Data for each scenario are listed in Table 
1 through Table 4.  Optional parameters were e= 20 and h= 20. 
 


Table 1 Data for disinfection control, objective function (1) 
Scenarios m M m


dcC  m
drC  t TSs TSe m


vN  minu  


1-6 10 1 1 5000 10 224 368 200 0.097 
 







Table 2 Data for aesthetic control, objective function (2) 
Scenarios n N n


acC  n
arC  t TSs TSe n


vN  maxu  


1-6 10 1 1 5000 10 0 144 200 0.103 
 


Table 3 Data for chlorine volume control, objective function (3) 
Scenarios s S s


ccC  s
crC  t T 


1-6 CD 1 1 2000 10 144 
 


Table 4 Data for dose change rate control, objective function (4) 
Scenarios s S s


pcC  s
prC  t T 


max
sr  


1-6 CD 1 1 3000 10 144 0.5 
 
Scenario 1: Simple GA using Binary Representation (SGAB) 
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Figure 4 SGAB - dosing at node "CD" for monitor node "10" 
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Figure 5 SGAB - residuals at monitor node "10" (target 0.1mg/L) for dosing at node "CD" 
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Figure 6 SGAB - cost versus EPANET runs 


 
Scenario 2: Simple GA using Gray Representation (SGAG) 
The results of the dosing schedule and monitor node residuals for SGAG follow similar 
trends as Figure 4 and Figure 5 respectively. 
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Figure 7 SGAG - cost versus EPANET runs 


 
Scenario 3: Elitist GA using Binary Representation (EGAB) 
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Figure 8 EGAB - dosing at node "CD" for monitor node "10" 


 
The results of the monitor node residuals for EGAB follow similar trends as Figure 5, with 
slight improvement. 
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Figure 9 EGAB - cost versus EPANET runs 


 
Scenario 4: Elitist GA using Gray Representation (EGAG) 
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Figure 10 EGAG - dosing at node "CD" for monitor node "10" 
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Figure 11 EGAG - residuals at monitor node "10" (target 0.1mg/L) for dosing at node "CD" 


 
The results for cost versus EPANET runs follow similar trends as Figure 9. 
 
Scenario 5: Hybrid Elitist GA using Binary Representation (HEGAB) 
The results of the dosing schedule and monitor node residuals for HEGAB follow similar 
trends as Figure 10 and Figure 11 respectively. 
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Figure 12 HEGAB - cost versus EPANET runs 


 
Scenario 6: Hybrid Elitist GA using Gray Representation (HEGAG) 
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Figure 13 HEGAG - dosing at node "CD" for monitor node "10" 
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Figure 14 HEGAG - cost versus EPANET runs 







The results of the monitor node residuals for HEGAG follow similar trends as Figure 11. 
 
Summary of Model Configuration 
The simple genetic algorithm (both binary and grey-parameter model configurations) 
performed fairly, as compared to the best solution provided by HEGAGP16.  The elitist 
genetic algorithm models performed better overall, as compared to the simple genetic 
algorithm models.  EGAGP32 produced the lowest cost (refer Figure 16).  However, when 
compared to the results obtained from HEGAGP16, it was concluded that HEGAGP16 was the 
best (out of 24) model configuration, when considering the computational expense, in 
terms of the number of EPANET runs.  Overall it was observed that simulations with a 
larger population size were able to obtain a lower final cost.  It was also noted that models 
using grey-parameter representation performed better overall, as compared to models 
using binary-parameter representation, with 67% of these making up the top12 (out of 24) 
model configurations.  Overall the hybrid technique was found to produce better results, 
with 83% of these making up the top 6 model configurations.  Figure 15 summarises all 
model configurations.  The top 12 of 24 model configurations are shown in detail in Figure 
16. 
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Figure 15 Summary of all model configurations (order of lowest cost) 
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Figure 16 Detailed view of top 12 (of 24) model configurations 
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MODEL APPLICATION 
 
The best model configuration (HEGAGP16) was applied to the hypothetical distribution 
system, taking into consideration all nodes "1" to "10.  Three scenarios were modelled 
using different weighting factors for disinfection control, to assess the impact this had on 
the optimal chlorine dosing schedule.  Figure 17 shows the results for weighting factors 
Wd=0.25, 0.50, and 0.75. 
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Figure 17 HEGAGP16 - dosing at node "CD" for monitoring ALL nodes "1" to "10" 


 
Each scenario converged after approximately 3000 EPANET runs (Figure 18).  The time to 
run each simulation, using a Pentium4™ (2GHz) personal computer, was approximately 
25 minutes for each scenario.  This is within suitable time requirements for off-line 
scheduling, considering a scheduling period of 24 hours.  It is anticipated that the time to 
converge to an optimal solution, considering a slightly modified demand pattern at some 
future time (say 2 hours past first model run), would be decreased dramatically if the 
model were initialised using results from a previous run. 
 


0


1,000


2,000


3,000


0 500 1000 1500 2000 2500 3000 EPANET runs


C
os


t (
$,


00
0)


75%Dis


50%Dis


25%Dis


 
Figure 18 HEGAGP16 - cost versus EPANET runs (varying Wd) 


 
Figure 19 shows the results, using Wd=0.5, for three representative nodes within the 
distribution system, a node closest to the dosing station (node "1"), a node midway (node 
"6"), and a node furthest from the dosing station (node "10").  It was observed that node 
"1" had some rapid chlorine residual increases, at around 31 hours.  Depending on the 
degree of change, this could pose a problem for customers as they may notice the 
changes.  However, in the case above, the change is only 0.2mg/L and this would not be a 
great concern for the hypothetical distribution system.  However, to avoid this change rate 
from becoming too excessive when applying the model to other distribution systems, an 
additional cost function could be added to (5).  The additional cost function could be used 
to penalise large changes in chlorine residual over a short period, similar to cost function 
(4). 
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Figure 19 HEGAGP16 - Dosing at "CD" with Wd=0.5, showing nodes "1", "6", and "10" 


 
CONCLUSIONS 
 
This paper presented a new model using a genetic algorithm optimisation technique for 
determining the optimal schedule of chlorine dosing within a water distribution system 
considering multiple, competing objectives: disinfection control and aesthetic control.  The 
design of the model enables future, improved chlorine decay algorithms to be used with 
the optimisation model without changing the genetic algorithm optimisation code.  The 
model was developed to support either binary or gray-parameter representations.  Six 
different model configurations were developed and each configuration was tested using a 
scenario with four different population sizes, applied to a single demand node within a 
hypothetical distribution system.  The first two model configurations were developed based 
on the "classic" simple genetic algorithm, but slightly modified to include 2-parent 
tournament for selection and multi-point crossover with bit-wise mutation for reproduction.  
The next two model configurations were developed to include elitism, which was found to 
increased the performance of the model, in attaining an optimal chlorine dosing schedule.  
The last two model configurations were developed as a hybrid genetic algorithm.  The 
hybrid design included a local search technique and was found to outperform all other 
model configurations.  Of the 24 model configurations evaluated, the best model was 
determined as the hybrid elitist genetic algorithm using-gray parameter representation. 
Overall gray-parameter representation was found to produce better results, as compared 
to model configurations using binary-parameter representation.  Hybrid model 
configurations, including the local search technique, performed the best overall, with 83% 
of these making up the best 6 configurations. 
 
The best model configuration (HEGAGP16) was applied to the hypothetical distribution 
system with 10 demand nodes used as monitoring points.  Three scenarios were modelled 
using weighting factors for disinfection control and aesthetic control as 0.25:0.75, 
0.50:0.50, and 0.75:0.25 respectively.  The results showed that the model was capable of 
producing the optimal dosing schedule considering the varying weighting factors used.  
However, the model is sensitive to the weighting factors applied to the two primary 
objectives and the best dosing schedule depends on some prior knowledge of the priorities 
of each of the two primary objective functions.  Solving the multi-objective problem using 
the weighted-sum approach (a preference-based method) has the disadvantage of 
requiring new runs of the model every time priorities or "preferences" change.  To address 







this limitation, the development of a new multi-objective genetic algorithm model, using a 
Pareto-based approach (a generating-based method), is in progress. 
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