Graph Partitioning Revised - a Multiobjective Perspective

Andreas RUMMLER
Department of Electronic Circuits and Systems, Technical University of Ilmenau

Ilmenau, 98684, Germany

Adriana APETREI
Department of Computer Science, Al. I. Cuza University
Iasi, 6600, Romania

ABSTRACT

This paper introduces the possibility of solving the graph
partitioning problem by use of a hybrid multi-objective
evolutionary algorithm. The paper starts with the math-
ematical formulation of the graph partitioning problem
and a short review of conventional approaches. After
a short introduction into the basics of multi-objective
optimization a new persepective on the task is pro-
posed. The next two sections give an overview over
the multi-objective evolutionary algorithm SPEA and
the local improvement operator that has been used to
solve the problem. In the last part results for several
benchmarks are presented and the currently existing
deficiencies of the used technique are analyzed. The
article concludes with a short outlook on future work that
has to be done to make the proposed technique applicable.

Keywords: Genetic/Evolutionary Algorithm, Graph
Partitioning, Multi-Objective Optimization

1. INTRODUCTION

Partitioning is still a significant problem in various engi-
neering disciplines. It plays a key role in designing com-
puter systems in general and VLSI chips in particular. In
most cases graphs are used for modelling electronic circuits
and systems. Therefore, the partitioning of a whole system
can be traced back to a graph partitioning problem.

Depending on the desired abstraction level for modelling
an electronic circuit several different graph models can be
used: simple clique model, bipartite or tripartite graphs.
The deficiencies of the clique model have already been
shown by Schweikert and Kernighan in [13]. That’s why in
most cases a bipartite model is used. The implementation
of this model can be simplified by the use of hypergraphs.
A hypergraph is the generalization of a normal graph with
the extension that edges may have more than two incident
vertices. Such an edge is called a hyperedge.

The problem of partitioning a hypergraph can be for-
mulated as follows: Let H = (V, E) be a hypergraph with
a non-empty set of vertices V and a set of hyperedges E.

Each vertex v; € V' is assigned to one of the subsets (par-
titions) Vi ...V such that V;(V; = @ for ¢ # j. As a
consequence a set of hyperedges E¢ € E exists that con-
tains all hyperedges that have at least two incident vertices
that belong to different vertex subsets. This set of hyper-
edges is refered to as the cutset. The cutsize c(H) = |Ec|
equals the number of hyperedges belonging to the cutset.
The aim of partitioning the hypergraph is to find an assign-
ment of all vertices such that the cutsize becomes minimal.
Depending on whether the number of vertex subsets k is
known or not, this task is refered to as partitioning of a
hypergraph resp. clustering of a hypergraph.

2. CONVENTIONAL APPROACHES

Over the years many algorithms for solving the graph par-
titioning problem have been developed. Depending on the
basic ideas of these algorithms several different classifica-
tions can be undertaken. One is the differentiation be-
tween constructive and iterative algorithms.

Constructive algorithms start with empty partitions and
fill these partitions with vertices during a run. An example
are the algorithms presented by Kodres in [9] which start
from one (or more) seed vertices to form partitions. The
solution quality of such a clustering algorithm is in most
cases highly dependent on the initial choice of the seed
vertex.

Iterative techniques start with an initial random solu-
tion and try to improve this solution in one or more se-
quential runs. The first algorithm of this kind has been
introduced by Kernighan and Lin in [8] and is specialized
in bipartitioning. This algorithm tries to improve an initial
solution by swapping the partition assignment of two ver-
tices. The algorithm has been improved later by Fiduccia
and Mattheyses in [6]. In this paper the notion of the gain
of moving a vertex to another partition has been intro-
duced. The gain has been defined as the improvement in
cutsize that can be achieved by executing a move. By use
of specialized data structures (bucket arrays) a single itera-
tion of the algorithm has the complexity of O(n) instead of
O(nlogn) in the KL-algorithm. Krishnamurthy enhanced
the FM-algorithm in [10] with a look-ahead strategy using
level gains. Sanchis generalized these approaches in [12] to
k-way partitioning.

An alternative classification can be made based on the
computation scheme of the algorithm: deterministic and
stochastic algorithms. The first group is able to reproduce
a result of an algorithm’s run. The techniques mentioned
in the last section belong to this class (although some ran-
dom decisions may be made during a run). Stochastic
algorithms do not guarantee the finding of a particular so-
lution, instead there is a high propability to find a different
solution with each run. An example for stochastic tech-
niques are algorithms based on simulated annealing. This
kind of algorithms start with a random solution and per-
form incremental refinements by moving vertices between
partitions. A move will be accepted if it introduces an im-
provement in the cost function and may be accepted with a
particular propability if no improvement can be achieved.
The propability that a move is accepted is calculated based
on the Maxwell-Boltzmann distribution. Another stochas-
tic approach is evolutionary algorithms (EAs). These al-
gorithms borrow their basic idea from Darwin’s evolution
theory. EAs start with a collection of initial random solu-
tions (the population) and try to improve these solutions
by applying genetic operators. The authors will dwell on
this technique later in this article and some of the oper-
ators that can be applied in such algorithms will then be
explained further. Stochastic algorithms are able to find
near-optimal solutions and are quite insusceptible against
being trapped in local optima unlike deterministic algo-
rithms. The major drawback of such techniques is the
amount of necessary computational effort that is signifi-
cantly higher than that of heuristic algorithms. For that
reason they only became applicable by the rapid increase
of computing power.

3. THE MULTIOBJECTIVE PERSPECTIVE

Conventional partitioning algorithms are specialized in op-
timizing one single objective (in most cases the cutsize).
An additional criterion (partitions of nearly the same size)
are normally treated as constraints. In this section the
authors introduce a multiobjective perspective which gen-
eralizes these approaches.

In real-world optimization tasks it is most likely that
there is more than one objective to be handled. These
objectives may contradict each other. For example, one
may want to buy a new car, which should be as fast and
as cheap as possible. In a such scenario it is impossible
to find the best solution, simply because no such solution
exists (nobody will sell a Ferrari for only 18). Instead the
aim of a multiobjective optimization task is finding a good
compromise.

To get a better idea have a look at figure 1, which shows
a cutout from the search space of a fictitious optimization
problem in which the values of two criteria must be mini-
mized. This search space contains a particular number of
solutions', where it is impossible to improve one criterion
any further without deteriorating the other(s). This set of
solutions forms a borderline, called the pareto front, that
cannot be exceeded. So the aim of the optimization task is
to find solutions from the search space which are situated
as close as possible to this frontier.

1In a continuous search space the number of these solutions
is infinite.

urrently

criterion 2
o

(@) dominated

-— better

-— better criterion 1

Figure 1: fictitious search space including pareto front,
dominated and non-dominated solutions

To be able to evaluate solutions from the search space
they must be compared to each other. In the shown ex-
ample solution C' is better in both criteria than solution
B. This is called dominance of C over B (C > B) or B is
dominated by C. In the case of solutions C' and D resp. F'
and H only one criterion is better, the values of the other
one are equal. This case is called weak dominance (C = D
und F' > H). Solutions A and G each favour one criterion
over another while neglecting the other. Both solutions
are indifferent to each other (A ~ G). The cutout of the
search space which is currently dominated is spanned by
solutions A, C, F and G and is shaded in figure 1.

As already stated the result of an multiobjective opti-
mization is not a single solution, but a vector of solutions,
each representing a pareto optimum. From this vector one
solution is picked out as the final solution by a so called
decision maker. The decision maker (which may be a ma-
chine or a human) performs the decision by taking existing
constraints into account.

After having introduced the basic elements of multiob-
jective optimization it is possible to apply the graph parti-
tioning problem to this scheme. In graph partitioning most
algorithms perform an optimization towards one criterion.
The most important one is of course the minimization of
the cutsize ¢(H). In other words the purpose is to min-
imize the number of hyperedges |Ec| that have incident
vertices belonging to different partitions. The incidence of
a hyperedge e; with a vertex v; is denoted by e; > v;.
This criterion can be written as

¢(H)=|e; € E| = minimal
with de; <> vj,e; <> vg
and v; € Vv €V, and Vi, NV, =0

An algorithm trying to minimize only the cutsize would
produce a particular solution: all vertices assigned to the

same partition. This is a very good solution in terms of
cutsize (which is zero), but of course a useless one. That
is why most algorithms include a heuristic to preserve or
restore the balance of the solution. Balancing a solution
means that all partitions have the same size resp. contain
the same number of vertices. It is important that the
partitions should have same sizes but need not. Unlike in
conventional approaches where the balance is often treated
as a constraint it is possible to turn the balance into a
second criterion (according to the multiobjective paradigm
introduced). This criterion can be formulated as follows:

k
oy 4]

with ngp: = T = minimal
i=1
(1)

Finding a minimal cutsize implies that most of the hy-
peredges in a graph should “reside in the same partition”,
that is, most hyperedges should be incident to vertices
assigned to the same partition V;. A third criterion can
be defined for this requirement, that could be used as an
alternative to the first one: maximize the number of hyper-
edges that have incident vertices that belong to the same
partition.

Other criteria may be formulated based on the partition-
ing task originating from the concrete real-world problem.
Especially in VLSI design other criteria are conceivable,
like for instance the minimization of the signal delay be-
tween different partitions.

What is the motivation for this multi-objective ap-
proach? Real optimization tasks in which more than one
criterion must be considered are not individual cases —
they are standard cases. Traditionally a multiobjective
optimization problem is led back to one with a single ob-
jective. Quite popular is the approach of weighted sums,
that assigns a weight to each criterion and adds up all val-
ues. But there are many cases where it is difficult to define
the weights because of the different range of values of the
criteria. Beyond that it can be shown mathematically that
in several cases no optimal solution can be found [1].

Evolutionary algorithms work with several solutions si-
multaneously. For this reason they present themself to be
used in multi-objective optimization. Nevertheless have
been used for such tasks only recently. The book by Deb
[4] gives a very good overview over the current state of
research in this field.

Nopt — |‘/;|

Nopt

4. THE STRENGTH PARETO
EVOLUTIONARY ALGORITHM

The Strength Pareto Evolutionary Algorithm (SPEA) was
introduced in 1999 by Zitzler. It belongs to the class of so-
called elitist evolutionary algorithms and was chosen for
this work because of its good performance compared to
other similiar algorithms [4]. The algorithm is described
in detail in [15], therefore only a short overview will be
given here.

SPEA incorporates two populations instead of one: a
normal population P and a so-called archive A. The
archive stores non-dominated solutions, that have been
found by the the algorithm during a single evolution cycle.
In every generation the individuals of the current popula-
tion are compared to the ones contained in the archive and

the non-dominated are saved in the archive. The individ-
uals from the archive also take part in all genetic opera-
tions to steer the algorithm towards areas in the search
space with good solutions. An overview of the algorithm
is shown in figure 2.

Fitness
Intialization Archive =+ Assignment
Archiv l

Evaluation Sort Out Merge
Optimization —» Non-Dominated g
- N Solutions
Criteria Solutions
Fitness I
Population —» Assignment
Population

Figure 2: schematic overview over SPEA

SPEA starts with an initial number of N, randomly cre-
ated individuals and an empty archive of maximum size
N,. For all individuals the objective function(s) are evalu-
ated and the non-dominated solutions are copied into the
archive. Solutions that are already contained in the archive
but are now dominated by newer individuals are deleted.
After this step the archive contains the non-dominated
individuals of both population and old archive contents.
During the algorithm’s runtime there is the danger of an
overcrowded archive. SPEA solves this problem by ap-
plying a clustering algorithm if the number of solutions
contained in the archive is greater than its maximum size.
The clustering algorithm reduces the solutions that rep-
resent the pareto front. For a detailed description of the
clustering algorithm one may refer to [15].

The fitness assignment is divided into two parts. First
is the assignment of the fitness values to the individuals
contained in the archive. This value is called strength S
and is defined as:
ni

Si= @

The value of n; represents the number of solutions in the
current population, that are dominated by solution . N is
the total number of individuals in the current population.
It applies that S; < 1.

In the second step each individual j in the population
is assigned a fitness value F in a similiar way:

Fi=1+ Y S (3)

i€ANI>]

The fitness Fj is equal to the sum of all strength values of
the individuals in the archive that dominate the solution
j. It applies that F; > 1. With a comparison of both
inequations it can be seen that individuals contained in
the population can never have a better fitness than the
ones in the archive.?

After assigning the fitness values the solutions of both
the archive and the population are merged and processed
with suitable genetic operators that are problem-specific.
The operators that have been used in this work for graph

2Unlike in other evolutionary algorithms in SPEA a smaller
fitness value is defined to be the better one.

partitioning are explained in more detail in the next sec-
tion.

5. GENETIC OPERATORS & LOCAL
IMPROVEMENT

The genetic operators used for offspring creation (selec-
tion, recombination and mutation) in an evolutionary algo-
rithm are always problem-specific. They must be tailored
to the genetic representation that has been chosen to rep-
resent a potential solution of the particular optimization
problem.

For the graph partitioning problem a vector-like genetic
representation presents itself. Each vertex can be assigned
an integer number indicating the index of the partition the
vertex belongs to. Therefore a suitable genetic represen-
tation is a vector of integer numbers with the length equal
to the number of vertices in the hypergraph.

All genetic operators used in the evolutionary algorithm
must be tailored to the chosen vector representation. For
recombination a biased uniform crossover has been used.
The basic form of this operator has been described in detail
in [14]. The modification that was made here concerns the
contribution propability. This propability was calculated
dependent on the fitness of both parents. The parent with
the better fitness contributes more to the offspring than
the worse one. Offspring solutions are more alike to the
better parent than to the worse. For mutation a simple
scrambling of the integer vector was used. The operator is
applied with a propability of 0.05. Tournament selection
was chosen as selection operator. As termination condition
the average cutsize of all solutions representing the pareto
front was calculated. The algorithm stops when the change
of the average cutsize over the last 20 generations drops
below 5%.

For support of the multiobjective evolutionary algo-
rithm described above a local improver has been devel-
oped. Due to the fact that the improver must be applied to
a number of individuals, it must have a small runtime. Be-
cause of this reason the multi-way partitioning algorithm
developed by Sanchis has been used and modified for use
as a local improver. The algorithm is explained in detail
below. The reasons for incorporating a local improver into
the evolutionary algorithm are explained in section 6.

The local improvement algorithm that has been used
here is a move-based algorithm. The basic idea is to ana-
lyze the possible moves of all vertices for an improvement
in cutsize. Only moves which improve the cutsize are ex-
ecuted - a typical hill-climbing strategy.

Every vertex ¢ is assigned a gain vector I'; of the size
equal to the number of partitions. Each element ; with
0 < j < |I4| in the vector I'; represents the gain that is
achieved by moving the vertex to partition j. The gain is
defined as the improvement (the decrease) in cutsize that
would be achieved if that move was executed. The gain
can be both positive and negative.

In most cases a number of possible moves have the same
gain, so it is difficult to find the move which is to be ex-
cuted. For that reason each vertex was assigned a second
gain vector ©; with the same size as I';. The gain 6; with
0 < j < |©;| represents the incidence gain that is achieved
by moving the vertex to partition j. The incidence gain is

defined as the improvement (the decrease) in the incidence
degree of a vertex that would be achieved if that move was
executed. The incidence degree is defined as the number
of different partitions the neighbours of a vertex belong to.
Hyperedges incident to a vertex can only be removed from
the cutset if the incidence degree is equal to 1 (the vertex
has only neighbours in the same partition), therefore the
incidence degree must be lowered if possible.

Similiary two vectors B; and Bj are assigned to each
hyperedge, both with the size of the number of partitions.
Each element §; in vector B; represents the number of
neighbouring vertices belonging to partition j. The ele-
ments in vector B; are defined as the sum of the 3; values
that do not belong to the same partition.

All possible moves are held in a hash table, which guar-
antees storage and removal operations to be executed in
nlogn time. Each executed move and the associated value
of the cutsize are recorded in a list. At the end of a run of
the improver this list is searched for the move where the
cutsize has been minimal. Up to that move the recorded
moves are replayed. The resulting configuration is used as
genetic information in the next evolution cycle.

Algorithm 1 local improvement

initialize B and B’ in all hyperedges
initialize I' and © vectors in all vertices
calculate all 8 values in B vectors of all hyperedges
calculate all 8’ values in B’ vectors of all hyperedges
calculate all v and 6 values of all vertices
create set of possible moves
while more moves are possible do
get best move from move record
execute move of vertex
delete moves for this vertex from move record
update 8 and ' values of incident hyperedges
update v and 6 values of neighbouring vertices
end while
find move with best cutsize
replay stored moves

The whole improvement algorithm is shown in algorithm
1. By inspecting the algorithm it stands out that the bal-
ance of the created partitions was not taken into account.
This is not necessary because the balance has been defined
as an optimization criterion in SPEA — the multiobjective
evaluation mechanism handles this criterion automatically.

6. ANALYSIS & RESULTS

The performance of the partitioning algoritm has been
tested on several graphs from the benchmark suite avail-
able from [2]. The characteristics of the graphs are item-
ized in table 1.

The performance of evolutionary algorithms in terms of
quality have been reported as very good in the literature.
For our application the quality was very poor and quite
disappointing. For this reason the local improvement op-
erator has been incorporated. The difference between the
multiobjective EA with and without local improvement is
shown in figure 3. It seems that the evolutionary algorithm
without the help of the improver nearly does not work at
all. The reasons for that are analyzed later in this section.

[Graph | # Vertices | # Hyperedges |

fract 149 147
balu 801 735
primary1 833 902
bm1 882 903
test04 1515 1658
test03 1607 1618
struct 1952 1920

Table 1: characteristics of the test graphs including
the number of vertices and hyperedges

600 SN
500] SAirnaspsssaas
©]
N !
@]
3 400
o]
[y} |
3]
()]
> 300
< i
B \A — EA with local improvement
200 - - EA without local improvement
0 20 40 60 80 100 120 140
Generations

Figure 3: progress of the average cutsize in graph balu
with and without local improvement

Figure 4 shows the progress of the pareto front in graph
balu partitioned into four parts. The progress is quite fast
during the first generations but slows down quite fast. Af-
ter 80 generations the algorithm converges and the pareto
front contracts towards one single point. This behaviour
has been observed in almost all of the experiments.

By looking at figure 3 it might be assumed that graph
partitioning with hybrid evolutionary algorithms incorpo-
rating local improvers works well. But indeed this is not
the case if the results presented here are compared to other
techniques. The partitioning results are summarized in ta-
bles 2 and 3. The first two columns show results from the
hybrid evolutionary algorithm introduced here (best cut-
size bHEA and average cutsize aHEA). For each graph the
algorithm has been run 15 times. As final solution the so-
lution with the lowest cutsize and a partition imbalance of
not more than 10% has been chosen. For comparison the
results from a heuristic (PFM3) and a simulated annealing
algorithm (SA) reported in [3] and results generated with
the hMETIS (MT) partitioning software available from [7]
have been included.

Such heuristics are available for instance in the soft-
ware package hMETIS [7]. The algorithm described here
has been implemented by use of a generic software frame-
work for evolutionary algorithms written in Java ([11], [5])
while hMETIS has been written in C. hMETIS has been
highly optimized in the task of recursive bipartitioning
while generic toolkits naturally include quite a lot of com-
putational overhead. Therefore both implementations are
too different to be compared in terms of runtime. But a

] —= Generation 2

0.8 —= Generation 10
q - Generation 15
! —+- Generation 20
] -~ Generation 30
0.6 - Generation 40
] -+ Generation 60
-+ Generation 80

02 & \T

LA N A

150 200 250 300 350 400 450 500 550 600
Cutsize

Figure 4: progress of the pareto front over 80 genera-
tions in graph balu

comparison of the quality of the results can be made and
reveals that repetitive bipartitioning is able to produce re-
sults that are better by factor 2-3!

[Graph | bHEA [aHEA [PFM3 | SA [MT |

fract 22 34 n/a n/a | 22
balu 124 141 75 76 45
primaryl 155 186 112 114 92
bm1 158 186 n/a n/a | 91
test03 329 396 246 157 | 102
test04 316 363 n/a n/a | 97
test06 294 343 138 151 84
struct 284 308 111 130 64

Table 2: benchmark results, 4 partitions

[Graph [bHEA [aHEA | PFM3 [SA [MT |

balu 178 227 159 | 146 | 74
primaryl | 230 303 149 | 144 | 115
bml 224 247 n/a | nja | 127
test03 432 507 348 | 251 | 158
test04 140 488 n/a | n/a | 130
test06 400 441 203 | 192 | 98
struct 360 400 295 | 180 | 93

Table 3: benchmark results, 8 partitions

Although the feasibility of evolutionary algorithms for
optimization tasks in many engineering disciplines has
been reported, this approach does not seem to work very
well in our case. This raises the question for possible rea-
sons which are analyzed in the rest of this section.

This first weak point is the genetic representation that
has been used. In the vector representation that was used
here there are p” possible “individuals” with v being the
number of vertices in the graph and p the number of parti-
tions. A closer look reveals that there are a number of vari-
ants for the representation vector possible, that are redun-
dant. For better explanation imagine a very simple graph
with three vertices A, B and C that should be splitted in

two pieces. For this case there are p* = 2% = 8 possible
variants. But by counting all possiblilities by hand there
are less: namely the possibilities {ABC}{}, {A}{BC},
{AB}{C} and {AC}{B}. This is because there are vari-
ants that describe the same case. The two representation
variants {000} and {111} describe that vertices A, B and
C are assigned to partition 0 resp. to partition 1 — but the
real proposition is another: all vertices are assigned to the
same partition. Therefore one of both variants is redun-
dant. Unfortunately ‘relative’ propositions like “vertices
A and B are assigned to another partition than verter C”
cannot be expressed in this form of genetic representation.

The second weak point is the recombination operator.
The idea of recombination in evolutionary algorithms is to
inherit good properties or attributes from parents in hope
for an improvement of these attributes in the offspring.
This does not really happen in biased uniform crossover
that has been used here. Namely, the operator permits
more influence of better parents, but does not care about
information about the current partitioning structure con-
tained in the parent individuals. In This case the directed
search through the search space that should be performed
by the recombination operator is implemented in a very
weak way.

A third point can be observed when examining figure 4.
The pareto front contracts over the runtime of the algo-
rithm towards a single point. This means the diversity of
points in the search space that is used for the search de-
creases with progressing algorithm. With this decrease the
chance of exploring new areas in search space is naturally
reduced and the algorithm converges too early. This effect
can also be seen when examining the benchmark results.
The cutsizes achieved with the best runs of the algorithm
are significantly lower than the average ones.

7. CONCLUSION

In this article an advanced approach for partitioning hy-
pergraphs based on multi-objective evolutionary optimiza-
tion coupled with local improvement support has been
presented. Although the shown mechanism works, it is
not able to compete with conventional heuristics. Accord-
ing to existing literature evolutionary algorithms are able
to outperform other techniques in terms of result quality.
In contrast the authors have shown that the application
of such algorithms does not automatically imply good re-
sults. The application of standard operators for solving
particular problems is no guarantee for the creation of a
well-performing algorithm. All operators must be tailored
carefully to the optimization task, otherwise the resulting
algorithm works only with low performance or even not at
all.

The weak points in the presented algorithm have been
analyzed and are now subject of further investigations. It
may not be possible to solve all open problems. Especially
eliminating the redundant variants included in the genetic
representation may be hard or even impossible. On the
other hand it should be viable to incorporate more intel-
ligence into the recombination to perform a much more
effective search. The authors are convinced that with the
development of such new operators similiar approaches like
the one presented in this paper become applicable in the

future.

References

[1] Y. Censor. Pareto Optimality in Multiobjective Prob-
lems. Applied Mathematics and Optimization, (4):41—
59, 1977.

[2] The Circuit Partitioning Page. http://vlsicad.
cs.ucla.edu/"cheese/benchmarks.html. URL time:
January 20th, 2002, 10%.

[3] Ali Dasdan and Cevdet Aykanat. Two Novel Mul-
tiway Circuit Partitioning Algorithms Using Relaxed
Locking. Technical report, Computer Engineering De-
partment, Bilkent University, Turkey, 1996.

[4] Kalyanmoy Deb. Multi-Objective Optimization using
Evolutionary Algorithms. John Wiley & Sons, Chich-
ester, 2001.

[6] eaLib. http://www.inf-technik.tu-ilmenau.de/
“rummler/eng/ealib.html. URL time: August 28th,
2001, 143°.

[6] Charles M. Fiduccia and R. M. Mattheyses. A Linear-
Time Heuristic for Improving Network Partitions.
In Proceedings of the 19th IEEE Design Automation
Conference, pages 175-181. 1982.

[7] hMetis. http://www-users.cs.umn.edu/ karypis/
metis/hmetis. URL time: April 4th, 2002, 140,

[8] B. W. Kernighan and S. Lin. An Efficient Heuristic
Procedure for Partitioning Graphs. The Bell System
Technical Journal, 29(2):291-307, 1970.

[9] U. R. Kodres. Partitioning and Card Selection. In
Melvin A. Breuer, editor, Design Automation of Dig-
ital Systems: Theory and Techniques, volume 1, pages
172-212. Prentice Hall, 1972.

[10] Balakrishnan Krishnamurthy. An Improved Min-Cut
Algorithm for Partitioning VLSI Networks. IEEE
Transactions on Computers, 33(5):438-446, 1984.

[11] Andreas Rummler and Gerd Scarbata. eaLib - a Java
Framework for Implementation of Evolutionary Al-
gorithms. In Computational Intelligence: Theory and
Applications, volume 2206 of Lecture Notes in Com-
puter Science, pages 92-103. Springer-Verlag, 2001.

[12] Laura A. Sanchis. Multi-way Network Partitioning.
IEEE Transactions on Computers, 38(1):1384-1397,
1989.

[13] D.G. Schweikert and B.W. Kernighan. A Proper
Model for the Partitioning of Electrical Circuits. In
Proceedings of the Ninth Design Automation Work-
shop on Design Automation, pages 57—-62. 1972.

[14] Gilbert Syswerda. Uniform Crossover in Genetic
Algorithms. In D. Schaffer, editor, Proceedings of
the Third International Conference on Genetic Algo-
rithms. Morgan Kaufmann, 1989.

[15] Eckart Zitzler. FEwolutionary Algorithms for Multi-
objective Optimization: Methods and Applications.
Ph.D. thesis, Eidgenossische Technische Hochschule
Ziirich, 1999.

