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Abstract

Measurements are usually thought of as precise numbers
resulting from observation of a real-world system by means
of special sensors or measuring devices. Humans frequently
resort, however, to qualitative descriptions—based on the
extent by which measurements agree with various models of
relevance to the system being observed—to explain the na-
ture and importance of a particular measurement or that
of a set of related observations. When describing eco-
nomic time series, for example, it is customary to point
to major qualitative features of the series (e.g., uptrends,
downtrends, oscillation patterns) rather than to sequences
of precise values. In another important field of study —
molecular biology—the positions of atoms in a large, com-
plex molecule may be utilized to produce qualitative de-
scriptions (e.g., shapes of significant molecular structures)
that help in the understanding of molecular properties and
function.

We present results of ongoing research on methods for
the automatic derivation of qualitative descriptions of com-
plex objects. The ultimate goals of these investigations are
the development of a methodology for the qualitative rep-
resentation of complex objects, the systematic search and
retrieval of measurements and objects based on those rep-
resentations, and the discovery of knowledge based on the
study of collections of such qualitative descriptions.

Our techniques combine fuzzy logic and evolutionary
computation methods to solve optimization problems asso-
ciated with qualitative description. These methods are note-
worthy in that they do not assume prior knowledge of the
number of interesting structures, or their extension nor do
they require an exhaustive explanation of the object being
described. We present results of the application of these
methods to the description of financial time series.
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1 Introduction

We measure real-world systems for two main purposes.
The first, and more familiar, of the objectives underlying
a measurement action is the identification of the state of a
system of known characteristics and structure. In other in-
stances, however, the goal of a measurement activity is the
identification of the characteristics of the system, that is, its
differentiation among a possible number of structural alter-
natives. Beyond simply inferring the values of structural
parameters, system identification may be broadly described
as the specification of the distinguishing characteristics of
the system and its behavior (e.g., linear, stable, reactive).

The continued development of large, sophisticated,
repositories of knowledge and information has facilitated
the accessibility to vast amounts of data—including mea-
surement data—about complex systems and their behavior.
The usefulness of these databases is, however, limited by
the inability to understand the system-related characteristics
of that data (i.e., the knowledge or information conveyed by
the data) and by the incapacity to search and retrieve data
from these collections on the basis of structural character-
istics that are meaningful to humans. In many advanced
information repositories, complex objects are modeled by
means of structures that promote representational accuracy
and computational efficiency but that do not facilitate their
analysis and understanding. Similarly, search tools and their
supporting structures (e.g., indexes) often fail to provide ca-
pabilities to search database contents according to criteria
that closely match the experience and need of their users.

A prominent example of this type of objects is the bio-
logical molecule, typically represented as a large array of
atoms characteristics and positions that do not readily per-
mit the visualization of important characteristics such as
surface features or structural patterns. Another example of
this class of computational object is the time series where,
again, customary descriptions conceal rather than reveal im-
portant features such as trends or special temporal patterns.

Substantial gains in the accessibility and overall useful-



ness of these data collections might be achieved by develop-
ment of automated techniques for the description of objects
in terms that are of interest to end users and by the related
indexing of digital libraries along lines suggested by these
representations.

This paper presents results of research on the identifi-
cation of qualitative structures in data objects associated
with complex systems, their constituent subsystems, and
their temporal behavior. These investigations are part of
a larger program of research that, beyond discovering such
features, seeks to describe their relations (i.e., theuptrend
preceded theoscillations), produce indexes and linguistic
descriptions based on discovered features and relations, and
discover knowledge (ordata mining) by exploration of the
qualitative descriptions.

2 Problem

We present results of the application of advanced compu-
tational techniques to the identification of interesting struc-
tures in complex data objects. The data objects to be de-
scribed are usually represented, nowadays, by various data
structures of considerable size and complexity. Data val-
ues contained in these structures are typically derived from
measurements of system characteristics or behavior. On the
basis of knowledge—provided by domain experts—about
features of special importance or interest, the methods pre-
sented in this paper seek to generate alternative descriptions
that permit identifying the system as being in a class or
classes related to those features.

From such a systems-oriented viewpoint, we may char-
acterize the problem addressed in this work as one ofsys-
tem identificationor classification, seeking to discover in-
teresting substructures so as to be able to describe the sys-
tem on their basis rather than in terms of the original mea-
surements. From a computational perspective, on the other
hand, the problem may be characterized as one of fitting
certain models to subsystems or substructures of a complex
object and, correspondingly, the principal underlying issues
are the isolation of substructures of potential interest and the
description of substructure by parameterized models drawn
from a catalog provided by domain experts.

2.1 Qualitative Description

Our investigations are oriented toward the automated
production ofqualitative descriptionsof complex objects
or datasets (e.g., biomolecules or time series). The term
“qualitative” is meant to indicate that we intend to identify
substructures that match approximately—often measured
by some numerical measure ofdegree of matching—an in-
stantiated version of an idealized model derived from expert
knowledge.

In our preferred approach to qualitative characterization,
we rely on application of fuzzy-logic concepts and tech-
niques to define degree of matching by means of logical ex-
pressions containing fuzzy predicates. From these expres-
sions, it is straightforward to produced numerical measures
of fitness or matching that basically describe the extent to
which the substructure matches the logical model.

Other characterizations of the degree of matching rely on
extensions to the fuzzy domain of existing methods to mea-
sure compliance of datasets with models (e.g., least-square
approximation errors). We are also experimenting with neu-
ral network techniques to produce computational structures
that learn the required measures from a training set of ex-
amples.

2.2 Optimization-based Formulation

Our approach is based on formulation of the qualitative-
feature identification problem as a multiobjective optimiza-
tion. Informally speaking, we seek to pair models—
extracted from a given family of parameterized models
M = {Mα(p)}, representing interesting structures—with
data substructures so that the model does the best possible
job of representing that substructure. Whenever that de-
gree of matching is sufficiently high and whenever the data
substructure identified is deemed to be sufficiently impor-
tant (usually determined by its size or extent), then the pair
(model, structure) is incorporated as part of the qualitative
description of the object. In other words, if the best expla-
nation of a substructure by an instantiated model has a good
degree of matching, then the explanation is incorporated as
part of the overall qualitative description.

The feature-identification problem is, therefore, formu-
lated as a multiobjective-optimization problem where the
objectives are related to the degree of matching between
model and substructure and to the size of the substructure
being explained. These objectives are typically conflicting
as good explanations tend to be limited in extent while those
that, conversely, are capable of describing large subsets of
the dataset do so poorly. In addition, certain constraints are
imposed into the nature of acceptable solutions of the op-
timization problem to assure that they correspond to true
descriptions of meaningful substructures rather than to par-
ticular artifacts of the dataset being described. A significant
example of this type of constraint is a restriction imposed to
prevent involuntary neglect of data points not properly ex-
plained by the model (i.e., data mining as the term used to
be employed in a pejorative manner in statistics to indicate
selective choice of data samples so as to prove ones hypoth-
esis).



3 Methods

Our approach, following an original idea of Ruspini
[13], emphasizes the formulation of clustering problems (it-
self a problem of finding interesting structures in data) as
continuous-variable optimization problems over the space
of fuzzy subsets of the dataset. Generalizations of this idea
are the bases for numerous generalized clustering methods
[5]. Consideration of the clustering problem as the determi-
nation of optimal fuzzy, rather than conventional, partitions
has several methodological and conceptual advantages.

At the conceptual level, availability of fuzzy classifica-
tions provides a richer framework for the description of the
relations between points and clusters [14] while permitting
a less-distorted mapping between the metrics (i.e., similar-
ities) in sample and classification spaces. At the method-
ological level, the underlying classification problems be-
come continuous optimization problems, which are easier
to treat than their discrete counterparts.

A landmark contribution to unsupervised classification
methodology was made by Bezdek [3] with his introduc-
tion of prototype-based methods based on a generalization
of certain classification algorithms of Ball and Hall [2]. The
basic idea of summarizing a dataset by a number of repre-
sentative prototypes, that is, by objects lying in the same
space as the sample points, was to be later extended in many
significant directions by relaxing the concept in a variety of
ways—for example, line segments, ellipsoids [4]. Another
development of high relevance to our research has been the
generalization of these ideas by Krishnapuram and Keller
[10]. This generalization provides the conceptual basis for
the identification and extraction of individual clusters (i.e.,
rather than the determination of a complete clustering or a
partition of the dataset into a fixed number of clusters).

Our approach owes much to these generalizations of the
notion of clustering, incorporating also specific criteria for
the development of measures of cluster quality on the basis
of combinations of various measures of explanatory abil-
ity and extent. One such formulation, based on an aggre-
gation of conflicting objectives, was recently employed by
Thranberend and Ruspini [15] to characterize the problem
of isolating linear clusters in econometric time series. This
formalism is conceptually close to notions of minimum-
description length [12] although it relies on specific mea-
sures of explanatory extent rather than on information-
theoretic notions of modeling parsimoniousness.

In the treatment presented in this paper we have, in-
stead, relied on formulations based on the extraction of
clusters having certain desirable relationships (i.e., Pareto-
optimality) between the values of the conflicting objectives.
Our preferred approaches to the solution of these problems
are evolutionary-computation methods [1].

3.1 Optimization Methods

In the past, genetic algorithms (GA) have been primar-
ily applied to single-objective problems. Multiple-objective
problems have been treated by introducing weighted linear
combinations of penalty functions. In these cases, the final
GA solutions have been found to be very sensitive to small
changes in the penalty function coefficients and weighting
factors.1

Our current work has been based in a different approach
oriented toward determining all possible tradeoffs between
conflicting objectives. These solutions are said to benon-
dominatedin that there are no other solutions that are su-
perior in all objectives (i.e., improvement of one objective
results in a lower value for another). The set of nondomi-
nated solutions lies on a surface known as thePareto opti-
mal frontier.

We have evaluated various multiobjective approaches
[7, 8], focusing eventually on the niched Pareto method of
Horn, Nafpliotis, and Goldberg [9]. In this method, binary
tournaments, known asPareto domination tournaments, are
employed to determine the dominance status of two com-
petitors A and B. If one of the competitors is dominated
by a member of the sample while the other competitor is
not dominated at all, the nondominated individual wins the
tournament. If both or neither are dominated, then fitness
sharing is used to determine the winner (whichever has
the lower niche count). The sample size is used to con-
trol Pareto selection pressure in a manner similar to that
employed to regulate tournament size in normal (single-
objective) tournament selection.

3.2 Models

Although, conceivably, the models defined by features of
interest in our financial time-series analysis problem might
have been specified using simple mathematical structures
(e.g., linear or quadratic expressions), we sought to rep-
resent a wider class of models by introduction of logic-
based expressions describing required characteristics of a
good fit between model and substructure. Each of these
logical expressions is based on a combination of elastic
(or fuzzy) predicates essentially that measure—in a [0,1]-
scale—the extent by which the structure has some property.
The overall logical expression defining the model formed
by conjunction of individual requirements is the basis for
the definition (by application of truth-combination formu-
las of fuzzy logic) of functions measuring the quality of the
approximation (with 1 being a perfect match and 0 corre-
sponding to a very poor fit).

1Previous research on this problem was based on this type of approach
[15].



For example, in our time series application:

Uptrend |= (∀ peaks in interval

peak ¹ next-peak ) ,

∧
( ∀ valleys in interval

valley ¹ next-valley ) ,

where¹ stands for the fuzzy predicateapproximately
lower or equal . Simply stated, in an uptrend inter-
val every peak is (approximately) lower than or equal to its
successor and every valley is (approximately) lower than or
equal its successor. In our application, the ground predi-
cateapproximately lower or equal is modeled,
using standard conventions, by a trapezoidal function hav-
ing a soft discontinuity at 0. Application of this formula to
a particular interval produces, by application of the combi-
nation formulas of fuzzy logic, a number between 0 and 1
describing to what extent the values of the time series in the
interval represent a financial uptrend.

This logic-based approach is noteworthy in several re-
gards. First, the methodology permits a clear description
of the requirements that must be met to qualify a structure
as being explained by a model. In addition, whenever the
results of a feature-identification experiment do not corre-
spond to the intuitive notion that is being modeled, the logi-
cal expression may be readily analyzed and corrected. Fur-
thermore, reliance on logical expressions typically depends
on a reasonably small number of predicates combined by
means of simple functions. Finally, from a purely experi-
mental viewpoint, the resulting model expressions have the
complexity required to determine the applicability of the
methodology to a wide class of models.

4 Experimental Results

Our methods were applied to the identification of signifi-
cant technical-analysis [11] patterns in financial time series.
The time series that were analyzed correspond to monthly
averages of closing prices of various financial commodi-
ties and indexes. In the examples presented in this paper,
our GA approach was applied to the monthly averages of
closing values of the Dow-Jones Industrial Average index
(DJIA) between 1912 and 1922 (Figure 1). A typical ex-
periment involved analysis of time series with 100 to 150
values. We present results corresponding to the identifica-
tion of three basic structures:uptrends, downtrends, and
head-and-shoulders(H&S).
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Figure 1. DJIA index (1912–1922)

In our current version of the feature-identification algo-
rithm, the niched Pareto algorithm was employed to deter-
mine conventional (i.e., crisp) intervals corresponding to
downtrends, uptrends, or H&S intervals. Two objectives
were considered. The first objective—quality of fit— mea-
sures the extent to which the time-series values correspond
to a financial uptrend, downtrend, or H&S interval. The
second objective—extent— measures, through a simple lin-
ear functional, the length of the interval being explained.
Clearly, these objectives are conflicting in the sense that,
typically, it is possible to explain better smaller than larger
intervals.

The chromosomes of the GA were coded as a pair of
numbers representing an interval of time. A population of
size 200 was modified by the GA over a total period of
600 generations. Cross-over probabilities were chosen in
the [0.7, 0.9] range, while the mutation probability was 0.1.
The niche size (i.e., the proportion of the population where
the sharing function is applied) varied from 1% to 10% of
the maximum value encoded as an interval end in the chro-
mosomes. The niche size allows the distribution of the pop-
ulation over different solutions in the search space (i.e., it
prevents all chromosomes from converging to a few solu-
tions). For computational simplicity, niche counts are cal-
culated on the partly filled next-generation population rather
than on the current population [9].

In our experiments we employed a tournament size be-
tween 4 and 20 to control the selection pressure. In this re-
gard, is important to note that our evaluations have showed
that the niched Pareto algorithm is somewhat sensitive to
the selection pressure and to the sharing pressure applied.
Small values of the tournament size (close to 1–2% of the
population size) results in too many dominated individu-
als (i.e., a very fuzzy front) while higher values (more than
20%) result in premature convergence to a small portion of
the front [6]. Finally, a small percentage of random indi-
viduals were introduced in each generation to make the GA
more sensible to new zones [6] . These individuals are as-
signed to zones not yet represented by any of the features
that we seek to identify.

In our formulation, uptrends were defined by means
of logical expressions based on comparison of successive



peaks and valleys in the time series. The definition of up-
trend is a soft definition in the sense that, rather than provid-
ing a crisp distinction between matching and nonmatching
intervals, it associates a numerical degree of matching be-
tween the concept of uptrend and any interval. Figures 2(a)
through 2(c) show examples of uptrend intervals determined
by our optimization-based approach.
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Figure 2(a) Uptrend (12/1914–5/1916)
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Figure 2(b). Uptrend (12/1917–10/1919)

1912 1914 1916 1918 1920 1922

10
2

Figure 2(c). Uptrend (5/1921–10/1922)

Downtrends are another example of simple structure that
may be defined by means of logical models. As is the case
with uptrends, our methods discover (in the Pareto-optimal
frontier) downtrend intervals of various extents and quality
of fit.

Figures 3(a) through 3(c) show examples of downtrend
intervals determined by our optimization-based approach.
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Figure 3(a). Downtrend (2/1914–1/1915)
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Figure 3(b). Downtrend (11/1916–2/1918)
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Figure 3(c). Downtrend (10/1919–2/1921)

Finally, we present, in Figures 4(a) through 4(c), exam-
ples of a more complex structure—head & shoulders— that
were also identified by our approach. Structures such as
H&S rely on models that are considerably more complex
than those defining (in an approximate fashion) uptrends
and downtrends.
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Figure 4(a). H&S (10/1911–1/1915)
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Figure 4(b). H&S (12/1914–2/1918)
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Figure 4(c). H&S (12/1917–8/1921)

5 Conclusions

Generalizations of fundamental ideas that regard cluster
analysis as the problem of finding interesting structures in
datasets have been applied to describe complex objects and
datasets, such as those arising as the result of measurement
activities. Application of basic ideas from fuzzy logic per-
mit modeling the problem of extracting qualitative features
as a multiobjective optimization problem. The resulting set
of extracted features, orqualitative description, may be em-
ployed to classify and index the corresponding dataset and
to identify the underlying system in terms that are meaning-
ful to domain experts.

Experiments in the solution of these multiobjective op-
timization problems in the context of the description of

economical time series by means of genetic-algorithm ap-
proaches indicate that the combination of fuzzy logic and
evolutionary computation techniques may be successfully
applied to the solution of complex qualitative description
problems.

We are continuing our research currently seeking meth-
ods to summarize and relate the multiple solutions, lying on
the effective frontier, produced by our GA-based approach.
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