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Abstract 1 Introduction

Measurements are usually thought of as precise numbers e measure real-world systems for two main purposes.
resulting from observation of a real-world system by means The first, and more familiar, of the objectives underlying
of special sensors or measuring devices. Humans frequentlyy measurement action is the identification of the state of a
resort, however, to qualitative descriptions—based on the system of known characteristics and structure. In other in-
extent by which measurements agree with various models oktances, however, the goal of a measurement activity is the
relevance to the system being observed—to explain the najgentification of the characteristics of the system, that is, its
ture and importance of a particular measurement or that gjfferentiation among a possible number of structural alter-
of a set of related observations. When describing eco- natives. Beyond simply inferring the values of structural
nomic time series, for example, it is customary to point parameters, system identification may be broadly described
to major qualitative features of the series (e.g., uptrends, s the specification of the distinguishing characteristics of
downtrends, oscillation patterns) rather than to sequencesthe system and its behavior (e.g., linear, stable, reactive).
of precise values. In another important field of study —  The continued development of large, sophisticated,
molecular biology—the positions of atoms in a large, com- yepositories of knowledge and information has facilitated
plex molecule may be utilized to produce qualitative de- the accessibility to vast amounts of data—including mea-
scriptions (e.g., shapes of significant molecular structures) g, ,rement data—about complex systems and their behavior.
that help in the understanding of molecular properties and The usefulness of these databases is, however, limited by
function. the inability to understand the system-related characteristics

We present results of ongoing research on methods forof that data (i.e., the knowledge or information conveyed by
the automatic derivation of qualitative descriptions of com- the data) and by the incapacity to search and retrieve data
plex objects. The ultimate goals of these investigations arefrom these collections on the basis of structural character-
the development of a methodology for the qualitative rep- jstics that are meaningful to humans. In many advanced
resentation of complex objects, the systematic search andnformation repositories, complex objects are modeled by
retrieval of measurements and objects based on those repmeans of structures that promote representational accuracy
resentations, and the discovery of knowledge based on theynd computational efficiency but that do not facilitate their
study of collections of such qualitative descriptions. analysis and understanding. Similarly, search tools and their

Our techniques combine fuzzy logic and evolutionary supporting structures (e.g., indexes) often fail to provide ca-
computation methods to solve optimization problems asso-pabilities to search database contents according to criteria
ciated with qualitative description. These methods are note-that closely match the experience and need of their users.
worthy in that they do not assume prior knowledge of the  p prominent example of this type of objects is the bio-
number of interesting structures, or their extension nor do |Ogica| mo|ecu|e, typ|ca||y represented as a |arge array of
they require an exhaustive explanation of the object being atoms characteristics and positions that do not readily per-
described. We present results of the application of thesemjt the visualization of important characteristics such as
methods to the description of financial time series. surface features or structural patterns. Another example of

this class of computational object is the time series where,
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ness of these data collections might be achieved by develop- In our preferred approach to qualitative characterization,
ment of automated techniques for the description of objectswe rely on application of fuzzy-logic concepts and tech-
in terms that are of interest to end users and by the relatechiques to define degree of matching by means of logical ex-
indexing of digital libraries along lines suggested by these pressions containing fuzzy predicates. From these expres-
representations. sions, it is straightforward to produced numerical measures

This paper presents results of research on the identifi-of fithess or matching that basically describe the extent to
cation of qualitative structures in data objects associatedwhich the substructure matches the logical model.

W'th complex system.s, their con'stltue.nt s.ubsystems, and Other characterizations of the degree of matching rely on
their temporal behavior. These mvestlgathns are part Ofextensions to the fuzzy domain of existing methods to mea-
a larger program of rese_arch th_at, bey_ond d_|scover|ng SuCIEure compliance of datasets with models (e.g., least-square
features, seeks to describe their relations (i.e. uptesnd approximation errors). We are also experimenting with neu-

prece_de.d th@scnlatlons)_, produce indexes and Ilngplstlc ral network techniques to produce computational structures
descriptions based on discovered features and relations, anﬁil

. - . at learn the required measures from a training set of ex-
discover knowledge (adata mining by exploration of the amples g g
gualitative descriptions. '

2 Problem 2.2 Optimization-based Formulation
We present results of the application of advanced compu-
tational techniques to the identification of interesting struc- ) ) o
tures in complex data objects. The data objects to be de- Our approach is based on formulation of the qualitative-
scribed are usually represented, nowadays, by various datgeature identification proplem asa multlobject!ve optimiza-
structures of considerable size and complexity. Data val-tion. Informally speaking, we seek to pair models—
ues contained in these structures are typically derived froméXtracted from a given family of parameterized models
measurements of system characteristics or behavior. On thé"! = {Ma(p)}, representing interesting structures—with
basis of knowledge—provided by domain experts—about _data substructur_es so that the model does the best possible
features of special importance or interest, the methods predOP Of representing that substructure. Whenever that de-

sented in this paper seek to generate alternative description§€€ of matching is sufficiently high and whenever the data
that permitidentifying the system as being in a class or substructure identified is deemed to be sufficiently impor-
classes related to those features. tant (usually determined by its size or extent), then the pair

From such a systems-oriented viewpoint, we may char- (modt_al, _structure) is _incorporated as part_of the qualitative
acterize the problem addressed in this work as ongysf des_crlptlon of the object. In ot_her quds, if the best expla-
tem identificationor classification seeking to discover in-  Nation of a substructure by an instantiated model has a good
teresting substructures so as to be able to describe the syslegree of matching, then the explanation is incorporated as
tem on their basis rather than in terms of the original mea- Part of the overall qualitative description.
surements. From a computational perspective, on the other The feature-identification problem is, therefore, formu-
hand, the problem may be characterized as one of fittinglated as a multiobjective-optimization problem where the
certain models to subsystems or substructures of a complexbjectives are related to the degree of matching between
object and, correspondingly, the principal underlying issues model and substructure and to the size of the substructure
are the isolation of substructures of potential interest and thepeing explained. These objectives are typically conflicting
description of substructure by parameterized models drawnas good explanations tend to be limited in extent while those

from a catalog provided by domain experts. that, conversely, are capable of describing large subsets of
o o the dataset do so poorly. In addition, certain constraints are
2.1 Qualitative Description imposed into the nature of acceptable solutions of the op-

timization problem to assure that they correspond to true
Our investigations are oriented toward the automateddescriptions of meaningful substructures rather than to par-
production ofqualitative description®f complex objects ticular artifacts of the dataset being described. A significant
or datasets (e.g., biomolecules or time series). The termexample of this type of constraint is a restriction imposed to
“qualitative” is meant to indicate that we intend to identify prevent involuntary neglect of data points not properly ex-
substructures that match approximately—often measuredplained by the model (i.e., data mining as the term used to
by some numerical measure @dgree of matching-an in- be employed in a pejorative manner in statistics to indicate
stantiated version of an idealized model derived from expertselective choice of data samples so as to prove ones hypoth-
knowledge. esis).



3 Methods 3.1 Optimization Methods

In the past, genetic algorithms (GA) have been primar-
ily applied to single-objective problems. Multiple-objective
problems have been treated by introducing weighted linear

self a problem of finding interesting structures in data) as L X )
. . D combinations of penalty functions. In these cases, the final
continuous-variable optimization problems over the space . "
o .~ GA solutions have been found to be very sensitive to small
of fuzzy subsets of the dataset. Generalizations of this idea

are the bases for numerous generalized clustering methodggggsels in the penalty function coefficients and weighting

5]. Consideration of the clustering problem as the determi- . .
[5] gp Our current work has been based in a different approach

nation of optimal fuzzy, rather than conventional, partitions . L :
has several methodological and conceptual advantages oriented toward determining all possible tradeoffs between
" conflicting objectives. These solutions are said taba-

_ Atthe gc(j)ncept_ual Iefvel, avallibfllltyhof ;UZZY_C@SS”C']‘C?]' dominatedin that there are no other solutions that are su-
tions provides a richer framework for the description of the o i1 i 411 objectives (i.e., improvement of one objective

relations between points and clusters [14] while permitting results in a lower value for another). The set of nondomi-

a Ies;-d|storted mapping pgtwgen the metrics (i.e., S'm'l"j‘r'nated solutions lies on a surface known asRaesto opti-
ities) in sample and classification spaces. At the method- -\ fontier

ological Ieyel, the un_de_rlying classification problems b?' We have evaluated various multiobjective approaches
come contmuou_s qpt|m|zat|on problems, which are eaSIer[7 8], focusing eventually on the niched Pareto method of
to treat than their dls_cret_e counterparts. ) ~ Horn, Nafpliotis, and Goldberg [9]. In this method, binary
A landmark contribution to unsupervised classification toyrnaments, known @areto domination tournamentsre
methodology was made by Bezdek [3] with his introduc- employed to determine the dominance status of two com-
tion of prototype-based methods based on a generahzatlorbetitors A and B. If one of the competitors is dominated
basic idea of summarizing a dataset by a number of repre-mot dominated at all, the nondominated individual wins the
sentative prototypes, that is, by objects lying in the sametgyrament. If both or neither are dominated, then fitness
space as the sample points, was to be later extended in MaN¥haring is used to determine the winner (whichever has
significant directions by relaxing the concept in a variety of the lower niche count). The sample size is used to con-
ways—for example, line segments, ellipsoids [4]. Another tro| Pareto selection pressure in a manner similar to that
development of high relevance to our research has been th%mployed to regulate tournament size in normal (single-
generalization of these ideas by Krishnapuram and Ke”erobjective) tournament selection.
[10]. This generalization provides the conceptual basis for
the identification and extraction of individual clusters (i.e.,
rather than the determination of a complete clustering or a
partition of the dataset into a fixed number of clusters). . _
Our approach owes much to these generalizations of the _Although, c?_ncewatlmly, the models delfln_ed byg:aature_s ﬁf
notion of clustering, incorporating also specific criteria for 'Nterestin ourfinancial time-series analysis problem might

the development of measures of cluster quality on the basishave ll).een specmeg using S|mplg mathematical structures
of combinations of various measures of explanatory abil- (e.g. inear or qua rafic expressmn_s), We soug tto rep-
ity and extent. One such formulation, based on an aggre-f€S€nt @ wider class of models by introduction of logic-

gation of conflicting objectives, was recently employed by based expressions describing required characteristics of a

Thranberend and Ruspini [15] to characterize the problemlgoc_’d I't between mc?detl) an% substructu[)g. Each fOf Ithege
of isolating linear clusters in econometric time series. This ogical expressions Is based on a combination of elastic

formalism is conceptually close to notions of minimum- (or fuzzy) predicates es_sentially that measure—in a [0,1]-
description length [12] although it relies on specific mea- SCalé—the extent by which the structure has some property.
sures of explanatory extent rather than on information- The overall logical expression defining the model formed
theoretic notions of modeling parsimoniousness by conjunction of individual requirements is the basis for
In the treatment oresented in this paper wé have. in the definition (by application of truth-combination formu-
stead, relied on forraulations based opn Ft)he extractio,n ofIas of fuzzy logic) of functions measuring the quality of the
' : : . . o approximation (with 1 being a perfect match and 0 corre-
clusters having certain desirable relationships (i.e., Pareto PP ( gap

> o S “sponding to a very poor fit).
optimality) between the values of the conflicting objectives. P g yp )
Our preferred approaches_to the solution of these problems Iprevious research on this problem was based on this type of approach
are evolutionary-computation methods [1]. [15].

Our approach, following an original idea of Ruspini
[13], emphasizes the formulation of clustering problems (it-

3.2 Models




For example, in our time series application:
Uptrend E (V peaks in interval
peak = nextpeak ),
A
(V valleys in interval
valley < next-valley ),
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. . Figure 1. DJIA index (1912-1922)
where= stands for the fuzzy predicasgproximately

lower or equal . Simply stated, in an uptrend inter- In our current version of the feature-identification algo-
val every peak is (approximately) lower than or equal to its rithm, the niched Pareto algorithm was employed to deter-
successor and every valley is (approximately) lower than ormine conventional (i.e., crisp) intervals corresponding to
equal its successor. In our application, the ground predi- downtrends, uptrends, or H&S intervals. Two objectives
cateapproximately lower or equal is modeled,  were considered. The first objectiveuality of fit— mea-
using standard conventions, by a trapezoidal function hav-sures the extent to which the time-series values correspond
ing a soft discontinuity at 0. Application of this formulato  to a financial uptrend, downtrend, or H&S interval. The
a particular interval produces, by application of the combi- second objective-extert— measures, through a simple lin-
nation formulas of fuzzy logic, a number between 0 and 1 ear functional, the length of the interval being explained.
describing to what extent the values of the time series in theClearly, these objectives are conflicting in the sense that,
interval represent a financial uptrend. typically, it is possible to explain better smaller than larger

This logic-based approach is noteworthy in several re- intervals.
gards. First, the methodology permits a clear description ~The chromosomes of the GA were coded as a pair of
of the requirements that must be met to qualify a structure NUmbers representing an interval of time. A population of
as being explained by a model. In addition, whenever the Sizeé 200 was modified by the GA over a total period of
results of a feature-identification experiment do not corre- 600 generations. Cross-over probabilities were chosen in
spond to the intuitive notion that is being modeled, the logi- the [0.7, 0.9] range, while the mutation probability was 0.1.
cal expression may be readily analyzed and corrected. Fur-The niche size (i.e., the proportion of the population where
thermore, reliance on logical expressions typically dependsthe sharing function is applied) varied from 1% to 10% of
oh a reasonably Sma” number Of predicates Combined bythe maximum value encoded as an interval end in the chro-
means Of Simp'e functions_ Fina”y1 from a purely experi_ mosomes. The niChe Size a.”OWS the diStribu'[ion Of the pOp—
mental viewpoint, the resulting model expressions have theulation over different solutions in the search space (i.e., it
complexity required to determine the applicability of the Prevents all chromosomes from converging to a few solu-
methodology to a wide class of models. tions). For computational simplicity, niche counts are cal-
culated on the partly filled next-generation population rather
than on the current population [9].

In our experiments we employed a tournament size be-
tween 4 and 20 to control the selection pressure. In this re-
gard, is important to note that our evaluations have showed
that the niched Pareto algorithm is somewhat sensitive to

Our methods were applied to the identification of signifi- the selection pressure and to the sharing pressure applied.
cant technical-analysis [11] patterns in financial time series. Small values of the tournament size (close to 1-2% of the
The time series that were analyzed correspond to monthlypopulation size) results in too many dominated individu-
averages of closing prices of various financial commodi- als (i.e., a very fuzzy front) while higher values (more than
ties and indexes. In the examples presented in this paper20%) result in premature convergence to a small portion of
our GA approach was applied to the monthly averages ofthe front [6]. Finally, a small percentage of random indi-
closing values of the Dow-Jones Industrial Average index viduals were introduced in each generation to make the GA
(DJIA) between 1912 and 1922 (Figure 1). A typical ex- more sensible to new zones [6] . These individuals are as-
periment involved analysis of time series with 100 to 150 signed to zones not yet represented by any of the features
values. We present results corresponding to the identifica-that we seek to identify.
tion of three basic structuresuptrends downtrends and In our formulation, uptrends were defined by means
head-and-shoulder@H&S). of logical expressions based on comparison of successive

4 Experimental Results



Figures 3(a) through 3(c) show examples of downtrend

peaks and valleys in the time series. The definition of up-
trend is a soft definition in the sense that, rather than provid-intervals determined by our optimization-based approach.

ing a crisp distinction between matching and nonmatching

intervals, it associates a numerical degree of matching be- ‘ ‘ ‘ ‘

tween the concept of uptrend and any interval. Figures 2(a) .

through 2(c) show examples of uptrend intervals determined F— o g

by our optimization-based approach. ' .
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Finally, we present, in Figures 4(a) through 4(c), exam-

ples of a more complex structure—head & shoulders— that

Figure 2(c). Uptrend (5/1921-10/1922) ( Ol
were also identified by our approach. Structures such as
H&S rely on models that are considerably more complex

Downtrends are another example of simple structure that - . : .
: . . than those defining (in an approximate fashion) uptrends
may be defined by means of logical models. As is the case
. . : - “and downtrends.
with uptrends, our methods discover (in the Pareto-optimal
frontier) downtrend intervals of various extents and quality

of fit.
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Figure 4(a). H&S (10/1911-1/1915)
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Figure 4(c). H&S (12/1917-8/1921)

5 Conclusions

economical time series by means of genetic-algorithm ap-
proaches indicate that the combination of fuzzy logic and
evolutionary computation techniques may be successfully
applied to the solution of complex qualitative description
problems.

We are continuing our research currently seeking meth-
ods to summarize and relate the multiple solutions, lying on
the effective frontier, produced by our GA-based approach.
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