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Abstract. In recent years, the methods of evolutionary computation have proven them-
selves useful in the area of data mining. For rule mining, several objective functions
have been used, relating to both accuracy and interestingness in general. However,
when searching for rules or patterns in a data set, several conflicting objectives will
often be present. As the ultimate goal of data mining is to discover unexpected, use-
ful knowledge, it may not be feasible to prioritize these objectivesa priori. Simply
constructing an aggregate fitness function in these cases could be seen as a more or
lessad hocsolution. In this paper we propose an alternative: Using well-established
multiobjective evolutionary algorithms to evolve a Pareto optimal set of rules.


1 Introduction


In recent years, the methods of evolutionary computation have proven themselves useful in
the area of data mining. For the problem of rule mining, several objective functions have been
used, relating to both accuracy and interestingness in general [1, 2]. However, when searching
for rules or patterns in a data set, several conflicting objectives will often be present. Such
objectives might include measures of accuracy and interestingness, as well as readability or
parsimony. As the ultimate goal of data mining is to discover unexpected, useful knowledge,
it may not be feasible to prioritize these objectivesa priori. Simply constructing an aggregate
fitness function in these cases could be seen as a more or lessad hocsolution. In this paper
we propose an alternative: Using well-established multiobjective evolutionary algorithms.
These produce an approximation of the Pareto front in the multiobjective search space. An
expert user may then inspect the resulting rule set to decide which rules are of potential use.
We demonstrate the idea using the SPEA2 algorithm [3], combined with the temporal rule
mining approach described in [2].


2 Method


In [2] a method for doing unsupervised data mining in time series is presented. The method is
based on genetic programming and generates rules from a prespecified rule language by opti-
mizing a function that measures the (perceived) interestingness of a rule. This is an aggregate
function, which combines several aspects of rule quality into a single measure.







In the following sections, a multi objective genetic programming (MOGP) algorithm
based on the ideas of [2] and [3] will be outlined. In Sect. 2.1 we give a brief description
of our time series preprocessing. Following that, in Sect. 2.2 the rule format and internal rule
representation used by the algorithm is described. Section 2.3 gives a brief outline of mul-
tiobjective optimization and the SPEA2 algorithm. In addition, some small modifications in
the SPEA2 algorithm, used in the MOGP algorithm, are presented. Section 2.4 describes the
objective functions used by the MOGP algorithm. Finally, Sect. 2.5 briefly outlines how the
objective functions are evaluated.


2.1 Discretization


The time series data are discretized by sequentially extracting a real-valued feature from a
sliding window, in this case the slope of a line fitted to the points in the window through
linear regression. Following this feature extraction, discretization limits are found for a set of
symbols in an alphabetΣ (see Sect. 2.2) in a manner that ensures a uniform distribution of
the symbols in the resulting data set. For more information about the discretization process,
see [2].


2.2 Rule Representation


The basic rule format that will be used throughout this paper is the simple and well known: “If
antecedentthenconsequentwithin T time units.” In general, the rule format can be formalized
by defining the respective languagesLa andLc that the antecedent and consequent can belong
to. Several different languages have been used in the literature, ranging from single symbols
from a fixed alphabetΣ [4] to relatively complex pattern languages [2].


The mining algorithm works by using genetic programming to search the space of pos-
sible rules defined byLa, Lc andT. More specifically, each individual in the population is a


syntax tree in the languageLa
T⇒ Lc. This is implemented by using three separate branches;


One branch for each ofLa, Lc, andT.
In the antecedent and consequent branches, the internal nodes in the parse tree are the


syntactical nodes necessary for representing expressions in the corresponding languages. If
for example, the considered language is regular expressions, the syntactical nodes needed are
union, concatenationandKleene closure. The leaf nodes in these branches are the symbols
from the antecedent and consequent alphabets (Σa andΣc).


The function of the maximum distance branch,T, is to set the maximum distance of the
rule. Hence, the branch is constructed by using arithmetic functions (typically+ and−) as
internal nodes, and random integer constants as leaf nodes. The final distance is found by
computing the result of the arithmetic expressionrT , and using the residue ofrT modT +1.


2.3 Multiobjective Evolution


Multiobjective optimization is the problem of simultaneously optimizing a setF of two or
more objective functions. The objective functions typically measure or describe different fea-
tures of a desired solution. Often these objectives are conflicting in that there is no single
solution that simultaneously optimize all functions. Instead one has aset of optimal solu-







tions. This set can be defined using the notion ofPareto optimalityand is commonly referred
to as thePareto optimal set[5].


Assuming that the functions inF should be maximized, then a solutionx is Pareto optimal
if there no other solutionx′ exists such thatfi(x′) ≥ f j(x) for all f ∈ F and fi(x′) > f j(x)
for at least onef ∈ F . Informally, this means thatx is Pareto optimal if and only if there
does not exist a feasible solutionx′ which would increase some objective function without
simultaneously decreasing at least one other objective function.


The solutions in the Pareto optimal set are callednon-dominated. Given 2 solutions,x′


andx, x′ dominatesx if fi(x′)≥ f j(x) for all f ∈ F and fi(x′) > f j(x) for at least onef ∈ F .
In other words,x′ is at least as good asx with respect to all objectives and better thanx with
respect to at least one objective.


The goal in multiobjective optimization is to find a diverse set of Pareto optimal solutions.
In evolutionary multiobjective optimization this is typically found by producing a set of solu-
tions from a single evolutionary algorithm run. Several different algorithms for evolutionary
multiobjective optimization exist (see [5] for an introduction and [6] for a survey).


The algorithm used here is based on the SPEA2 [3], which uses a fixed size population
and archive. The population forms the current base of possible solutions, while the archive
contains the current solutions. The archive is constructed and updated by copying all non-
dominated individuals in both archive and population into a temporary archive. If the size of
this temporary archive differs from the desired archive size, individuals are either removed or
added as necessary. Individuals are added by selecting the best dominated individuals, while
the removal process uses a heuristic clustering routine in objective space. The motivation
for this is that one would like to try to ensure that the archive contents represent distinct
parts of the objective space. The fitness of an individual is based on both the strength of
its dominators (if dominated) and the distance to itsk-nearest neighbor (in objective space).
See [3] for further details.


In this work the SPEA2 algorithm has been modified as follows. When selecting individ-
uals for participation in the next generation, both the archive and the main population were
used. The SPEA2 approach of only selecting from the archive was tried, but this resulted in
premature convergence, and the results in the final generation were simple variations of the
first archive contents. In addition, to prevent further convergence of the archive contents, only
individuals having differing objective values were selected in the initial archive filling proce-
dure. If two or more individuals shared the same objective values, one of these was randomly
selected to participate in the archive.


In our experiments, the population size was typically 100 times larger than the archive
size. Subtree swapping crossover was used 99% of the time, while tree generating mutation
was used 1% of the time.


2.4 Objective Functions


Rules generated by an automatic data mining algorithm should often satisfy several require-
ments. For example, the rules should be accurate, interesting and comprehensible [1]. In the
following, formalizations of these notions in the form of real-valued functions are presented.
These formalisms are then used as objective measures in the multiobjective evolution.







2.4.1 Accuracy


Given a ruleR = Ra
t⇒ Rc in the rule languageLa


T⇒ Lc (such thatt ≤ T – see Sect. 2.2),
and a discretized sequenceS= (a1,a2, . . . ,an), the frequencyFS(Ra) of the antecedent is the
number of occurrences ofRa in S. This can be formalized as


FS(Ra) = |{i | H(Ra,S, i)}|, (1)


whereH(Ra,S, i) is a hit predicate, which is true ifRa occurs at positioni in S and false
otherwise. The relative frequency,fS(Ra), is simplyFS(Ra)/n, wheren is the length ofS.


Thesupportof a rule is defined as:


FS(Ra,Rc, t) = |{i | H(Ra,S, i)∧H(Rc,S, j)∧ i+1≤ j ≤ i+t}| (2)


This is the number of matches ofRa that are followed by at least one match ofRc within t
time units.


Theconfidenceof a rule is defined as:


cS(R) =
FS(Ra,Rc, t)


FS(Ra)
(3)


The confidence measures the accuracy of the antecedent at predicting the consequent,
while the support gives a measure of how well the rule represents the data. A rule having
very low support, typically reflects freak incidents or noise in the data and thus is neither
particularly accurate nor interesting.


2.4.2 Interestingness


The term interestingness is one commonly used in the field of data mining to denote the
degree of surprise associated with the discovery of a rule. Several different interestingness
measures have been developed (see [7] for a survey). TheJ-measure ([8]), is one particular
measure which has already been proven useful in mining time series. This is defined as


J(Rt
c,Ra) = p(Ra) ·


(
p(Rt


c|Ra) log2
p(Rt


c|Ra)
p(Rt


c)
+(1− p(Rt


c|Ra)) log2
1− p(Rt


c|Ra)
1− p(Rt


c)


)
. (4)


Here,p(Ra) is the probability ofH(Ra,S, i) being true at a random locationi in S. p(Rt
c) is


the probability ofH(Rc,S, i) being true for at least one indexi in a randomly chosen window
of width t. Finally, p(Rt


c|Ra) is the probability ofH(Rc,S, i) being true at for at least one
indexi in a randomly chosen window of widtht, given thatH(Ra,S, j) is true and thatj is the
position immediately before the chosen window. TheJ-measure combines a bias toward more
frequently occurring rules (the first term,p(Ra)), with the degree of surprise in going from a
prior probability p(Rt


c) to a posterior probabilityp(Rt
c|Ra) (the second term, also known as


the cross-entropy).


2.4.3 Comprehensibility


One of the most important principles of mining comprehensible rules is using a rule represen-
tation that in itself is intelligible. In addition, one often tries to limit the size of the rules. This
is motivated by the fact that larger rules usually are harder to interpret. When using genetic
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Figure 1: The time series analyzed.


programming (GP) as the rule induction method this becomes even more important. This is
because GP tends to create large programs that contain semantically irrelevant parts. This
tendency toward large programs is known asbloat.


Equation (5) gives a definition ofrule complexity, which is used in the following experi-
ments.


complexity(R) = (nodeCount(R)+maxDepth(R))−1 (5)


Here the functionsnodeCount(R) and maxDepth(R) return the number of nodes and the
maximum depth ofR, respectively.


2.5 Rule Evaluation


As in [2], a special purpose search chip [9, 10] is used for finding the support and confidence
of each rule. It is also used for estimating the probabilities needed for calculating theJ-
measure. Spurious correlations introduced by the discretization process are circumvented by
setting a minimum distancedw between the antecedent and consequent in all rules generated
for a sequence discretized with window sizew. The comprehensibility is computed by a
simple traversal of each branch in the rule tree (see Sec. 2.2).


3 Experiments


The MOGP algorithm was tested on four data sets from the UCR Time Series Data Mining
Archive [11]: ECG measurements from several subjects, concatenated; Earthquake-related
seismic data; Monthly mean sunspot numbers from 1749 until 1990; and Network traffic as
measured by packet round trip time delays. Figure 1 shows plots of sub-sequences of the
different time series analyzed.


We performed four sets of experiments. First, the four time series were mined using the
four objective functions from section 2.4: support (2), confidence (3),J-measure (4), and
rule complexity (5). Second, the time series were again mined, but now only the confidence,
J-measure, and rule complexity were optimized. This was motivated by the fact that theJ-
measure implicitly rewards frequently occurring rules via thep(Ra) factor (see (4)). Thus, in
theory, there should be no need to optimize the support explicitly. Third, the MOGP algorithm
was modified so that the final rule set would contain rules having differing consequents and
the time series were again mined. Fourth, we performed a set of experiments to determine how
the window size in the discretization algorithm influenced the results of the mining algorithm.


The following sections outline the results of the four sets of experiments. All results were
generated by running the MOGP algorithm with a population size of 1000 and archive size
of 10 for a maximum of 100 generations. We used the IQL language [12] as a template for







Table 1: Typical archive contents at algorithm termination for the ECG dataset


Rule J-mea. Conf. Supp. Compl.


t
5⇒ s 0.057 0.67 0.033 0.20


b
9⇒ c 0.050 0.75 0.038 0.20


t
6⇒ s 0.053 0.67 0.033 0.20


!(≥ rnokoussrfisehznh) 9⇒ g 0.020 0.48 0.41 0.020


!((≥ o)(≥ nokoussrfisehznh)) 9⇒ g 0.037 0.52 0.39 0.019


≤ rnokoussrfisehznhdgv
9⇒ g 0.021 0.48 0.41 0.017


≤ rnokoussrfisehznhv
9⇒ g 0.020 0.48 0.41 0.019


≤ rrnouonequsehznhv
9⇒ g 0.017 0.47 0.41 0.020


≤ rnoononequsehznhv
9⇒ g 0.020 0.48 0.41 0.020


≤ rnouonequssrfisehznhv
9⇒ g 0.021 0.48 0.41 0.017


generating rules. The antecedents were IQL expressions, while the consequents were single
characters or concatenations thereof.


3.1 Using Support, Confidence, J-measure, and Rule Complexity


Table 1 lists the results from a run on the ECG data set discretized with a window size of 2.
The hits of the first, second and fifth rules in a subsequence of the ECG series are plotted in
Figure 2.


Table 1 and Figure 2 are representative of the solutions obtained on the ECG set. Two
observations can be made from these results. First, the archive apparently has converged, as
many of the rules are simply minor variations of other rules. Second, the results illustrate an
effect observed in runs on the other data sets. The archive typically contains two groups of
rules: One group with rules havingconfidence� support, and another group havingconfi-
dence< 0.5 andconfidence≈ support. As the plot of the fifth rule from Table 1 in Figure 2
shows, the antecedents in the latter group typically match almost every position in the se-
quence. Because of this, these rules are of little or no value to a human user.1


To conclude this section, Figure 3 presents some of the rules mined from the different
time series. As these plots show, the MOGP algorithm was able to generate rules that rec-
ognize and predict the significant features of the different time series. These include a rule
for recognizing the increased oscillations occurring during an earthquake, rules that recog-
nize the major peaks in the sunspot and ECG data, and a rule that is partly able to detect the
periods of increased network activity.


3.2 Using Confidence, J-measure, and Rule Complexity


Table 2 lists a subset of the results of the reanalysis of the ECG data discretized with window
size 2. In addition, the archive contained 3 versions of the first rule having differing maximum


1Note, however, that the positions where the antecedent of the fifth rule in Table 1 doesnotmatch correspond
to the peaks of the ECG sequence. In other words, the inverse of an antecedent may also reveal interesting aspects
of a sequence.
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Figure 2: Hit locations in a subsequence of the ECG series of selected rules from Table 1. The dots following
theA andC labels on they-axis indicate the hit locations of the antecedent and consequent, respectively. The
dots following theRH label indicate the positions where the rule hits, that is where the consequent follows the
antecedent within the desired distance.


Table 2: Selected archive contents at algorithm termination for the ECG dataset when not optimizing the support


Rule J-mea. Conf. Supp. Compl.


b
2⇒ c 0.058 0.58 0.029 0.20


qq(≥ n≥ n≥ n)q 4⇒ r 0.017 0.92 0.0063 0.042


≥ n(t 49←− (≥ q
83←−≥ n≥ c≥ n≥ n))≥ c |


≥ c(t 49←− (≥ q
83←−≥ n≥ c≥ n≥ n))≥ n


9⇒ q 0.18 0.77 0.13 0.028


qb | bq
1⇒ c 0.000059 1.0 0.000014 0.13


distance, and 3 versions of the third rule having small variations in the antecedent. The hits
of the rules from Table 2 in a subsequence of the ECG series are plotted in Figure 4.


As can be seen, removing the explicit support optimization did not adversely affect the
support of the generated rules. Some of the generated rules did have very low support and
J-measure values (typically corresponding to a single occurrence of the rule in the data set).
Rules like these were, however, also generated when the support was optimized directly (data
not shown).


3.3 Promoting Differing Consequents


To further stimulate the discovery of rules exploring different properties of the time series,
the domination relation in the MOGP was modified slightly: One rule could only dominate
another rule if both rules shared the same consequent. In addition, all rules with no support
were automatically dominated.


This approach did not however have the intended effect. Even though the resulting rules
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Figure 3: Hit locations of selected results on different sequences (see Figure 2 for the definitions ofA, C, and
RH).


did have differing consequents, most of the rules produced were either highly specialized
(having confidence≈ 1 and low support andJ-measure), or had very low confidence (data
not shown). Thus it seemed that instead of the multiple almost identical rules produced ear-
lier, the system now produced a few relevant rules and several unwanted and uninteresting
rules. These results suggest that the MOGP algorithm can find rules involving the most inter-
esting consequents, without using the modification described in this section. As a result, this
approach was abandoned.


3.4 Investigating the Window Size Effect


We performed several analyses of the four time series discretized with different window sizes.
This revealed that by increasing the window size, the MOGP algorithm was better able to gen-
erate rules for recognizing the characteristic features in some of the series. This is illustrated
in Figure 5, which shows a plot of different rules generated from the earthquake sequence dis-
cretized with window sizes 2, 4, 8, and 16. This figure shows that by increasing the window
size, the generated rules zoom in on the part of the sequence representing an earthquake.


We observed the same effect in the sunspot set, but it was not as apparent in the ECG
series (data not shown). This is most likely because the ECG sequence contains far less
noise than the earthquake and sunspot sequences. To test this hypothesis, several versions
of the ECG series with increasing noise levels were constructed. These sequences were
constructed by adding Gaussian noise with mean zero and a the standard deviations set to
0.1%,0.5%,1%,5%,10% and 20% of the original value range.


The system was able to generate good rules recognizing the characteristic feature of the
ECG series for all window sizes for the two lowest noise levels. For 1% error level, the system
only generated good rules for sequences discretized with window sizes of 4 or more. For the
other series, the minimum window size required for generating good rules was 8, 16 and 32,
respectively (in order of increasing noise levels).







b
2⇒ c qq(≥ n≥ n≥ n)q 4⇒ r


A
C


RH


A
C


RH


≥ n(t 49←− (≥ q
83←− . . .


9⇒ q qb| bq
1⇒ c


A
C


RH


A
C


RH


Figure 4: Hit locations in a subsequence of the ECG series of the rules from Table 2 (see Figure 2 for the
definitions ofA, C, andRH).


When analyzing the network series with increasing window sizes, the same effect was not
observed (data not shown). A possible explanation is that the significant feature in the network
series is short bursts of increased network activity, represented by isolated series of spikes.
Increasing the window size increases the minimum distance between the antecedent and con-
sequent (see section 2.5). In addition, large window sizes represent more long term trends
in the data (see section 2.1). Thus one should expect that rules produced from large window
sizes will focus on more long term trends than rules produced from small window sizes. As
shown above, when the window size is increased, the long term trends in the sunspot, earth-
quake, and noisy ECG data are more easily detected, while the short bursts in the network
series are not. Thus the results support this proposition.


4 Summary and Conclusion


An algorithm for unsupervised data mining in time series has been presented. The algorithm
works by optimizing several, often conflicting, measures of rule quality. As a result, it is able
to generate a set of rules exploring different aspects of the time series analyzed. This has
been demonstrated by analyzing several different sequences, and extracting rules detecting
the significant features in each sequence. The robustness to noise has also been demonstrated.


The algorithm presented here is an extension of a method presented in [2], where a single
ad hoc rule goodness measure was used. This work follows the more natural approach when
dealing with multiple, conflicting objectives, using multiobjective optimization to generate
several possible solutions instead of a single result. This leaves the task of evaluating the
trade-offs between the different objectives to the human user. In addition, optimizing a single
measure may reduce the diversity of the resulting rules, and thereby omit certain potentially
interesting results.
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Figure 5: Rules generated from the earthquake series with increasing window sizes (see Figure 2 for the defini-
tions ofA, C, andRH).
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