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SUMMARY

The multiobjective 0-1 programming problem with

fuzzy numbers is a formalization designed to represent

expert judgment. Using the non-fuzzy a-multiobjective

programming problem, in which the membership degrees

of components of the coefficient vector are set in accord-

ance with the decision maker�s objectives, the concept of

an a-Pareto optimal solution with respect to the fuzzy

parameters of the problem and the decision maker�s fuzzy

objectives is introduced. An interactive fuzzy satisficing

method is proposed in which a-Pareto optimal solutions are

found by the expanded minimax method, the evaluation

membership function and the fuzziness are interactively

updated if the decision maker is not satisfied, and a solution

acceptable to the decision maker is derived from the set of

a-Pareto optimal solutions. A character string-coded ge-

netic algorithm is used in solving the expanded minimax

problem. The validity of the method is demonstrated by

means of numerical examples. © 1998 Scripta Technica,

Electron Comm Jpn Pt 3, 81(8): 64�72, 1998
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Pareto optimal solution; interactive method; genetic

algorithm. 

1. Introduction

During the seventies, Professor John Holland, his

colleagues, and students from Michigan University pro-

posed genetic algorithms (GA) as a new learning paradigm

that modeled the natural evolution mechanism [1], although

this concept was not known initially by that name. After the

publication of a book by Goldberg [2] GAs have attracted

attention in various fields as a methodology for optimiza-

tion adaptation and learning. Furthermore, since Michale-

wicz book [3] was published in 1992, research concerning
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applications to optimization problems has increased. The

second edition [3] was published in 1994, and further

developments are expected in this field. Vector evaluated

genetic algorithms (VEGA), proposed by Schaffer [4] for

multiobjective optimization problems are based on an ex-

tension of the traditional fitness function of genetic algo-

rithms from a scalar to a vector function. Further

developments followed as a result of this idea [5]. However,

in all of these multiple evaluation genetic algorithm tech-

niques, the focus has been on how to determine efficiently

the (sub)set of (locally) Pareto optimal solutions to multiple

objective problems. However, the important problem in

multiple decision making tasks is that of choosing a solu-

tion or a compromise, from among the set of Pareto optimal

solutions that satisfies the decision maker (DM). This as-

pect of multiple objection problem solving has absolutely

not been considered.

Recently, Sakawa and coworkers have formalized

multiobjective 0-1 programming problems that consider

fuzzy goals of the DM. They introduced two string genetic

algorithms [6] in the extraction of cooperative solutions ac-

cording to fuzzy decision rules that reflect the DM fuzzy goals.

They also extended the method to interactive techniques [7].

In this context, the focus in this paper is on multiob-

jective 0-1 programming problems. In order to better rep-

resent the human judgment of experts concerned with

problem formalization where several parameters are in-

volved, the ambiguity of these parameters is a characteristic

that is treated as a fuzzy number. By formalizing multiple

objective 0-1 programming problems involving fuzzy num-

bers it is possible to approximate very well the actual

decision making conditions. In a coefficient vector for

which the degrees of membership of all the membership

functions of the fuzzy numbers in the problem are greater

or equal to a, there are some that are particularly good for

the DM. We introduce a nonfuzzy a- 0-1 programming

problem that establishes this a value. Furthermore, we

propose an interactive decision making method in which

we introduce the concept of an extended a-Pareto optimal

solution that considers the ambiguity involved in the prob-

lem. We determine quasi a-Pareto extended mini-max op-

timal solutions for the base membership values and a degree

of ambiguity a, subjectively established by the DM. If the

solutions do not satisfy the DM, then a solution that satisfies

the DM is extracted from the set of a-Pareto optimal

solutions through interactive upgrading of the base mem-

bership values and the degree of ambiguity. Since the

extended mini-max problem used to determine the a-Pareto

optimal solutions becomes a 0-1 programming problem, we

show that the solutions can be very easily determined by

application of the two-string coded genetic algorithm pro-

posed by Sakawa and others [6]. Finally, we demonstrate

the feasibility of the proposed method by means of a

numerical example.

2. Multiobjective 0-1 Programming

Problem with Fuzzy Numbers

In order to adequately represent the human judgment

of experts concerned with formalizing the problem, rather

than setting up immediately a traditional heuristic or sub-

jective method, in this paper we adopt a method in which

parameters of the type �number approximately equal to m�

are taken as fuzzy numbers for the purpose of more conven-

iently reflecting the actual multiobjective decision condi-

tions. We formalize a 0-1 multiobjective programming

problem with fuzzy numbers, by using fuzzy numbers to

denote the ambiguity of the parameters involved in the

objective functions and constraints of the problem,

Here, A
__

 is an m ´ n matrix with fuzzy coefficients, c
_

and b
_
 are, respectively, n and m dimensional vectors of

fuzzy numbers. For the sake of simplification in this paper,

we assume that all the fuzzy number components of A
__

 and

b
_
 are positive, and we can then regard the problem as a

multiobjective multidimensional knapsack problem.

Since the coefficients in the objective functions and

the constraints in the problem, Eq. (1), have the charac-

teristics of fuzzy numbers, we cannot apply directly the

concept of a Pareto optimal solution to a conventional

multiobjective 0-1 programming problem. Therefore, we

first introduce an a-level set [8, 9] in which the membership

value of each fuzzy number is greater than or equal to a.

Definition 1. The set of all triplets (A, b, c) of values

of the fuzzy number membership functions contained in the

fuzzy parameters A
__

, b
_
, and c

_
 that are greater than or equal

to a is called the a-level set and is denoted as (A
__

, b
_
, c
_
)a.

Assuming that the Decision Maker (DM) for the

problem in Eq. (1) judges a solution correct if the values of

the membership functions of the fuzzy numbers involved

in the objective funct ion and constraints

(A, b, c)Î(A
__

, b
_
, c
_
)a for some value greater than or equal to

a, then we can introduce a nonfuzzy a-multiobjective 0-1

programming problem as follows,

The DM selects the most desirable value that is

greater than or equal to a, which determines the degree of

realizability of the problem out of the (A, b, c)Î(A
__

, b
_
, c
_
)a.

(1)

(2)
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We must pay attention to the fact that for the problem

in Eq. (2), the coefficient vectors (A, b, c) are no longer

regarded as coefficients but as variables. Thus, we define

the a-Pareto optimal solution concept, that takes into ac-

count the vagueness involved in the problem by extending

the ordinary Pareto optimal solution concept to Eq. (2).

Definition 2.  x*ÎX(A*, b*) is called an a-Pareto

optimal solution for the problem in Eq. (2) and the corre-

sponding set of coefficients (A*, b*, c*) are called a-level

optimal coefficients, if there does not exist an

x Î X(A, b), (A, b, c)Î(A
__

, b
_
, c
_
)a such that cix £ cix

*,
i = 1, . . . , k, with at least one j satisfying cjx <cjx

*.

Let us consider in a little more detail the meaning of

a-Pareto optimal solution and a-level Pareto coefficients

for Eq. (2). Since the fuzzy number coefficients included in

the problem are decision variables that can move freely over

an a-level set in which the membership function value is

greater than or equal to the a value in Eq. (2), it is possible

to obtain a solution that reflects the vagueness created in

the problem formalization. In this case the value a, which

expresses a degree of realizability of all the fuzzy numbers

involved in Eq. (1), can be set subjectively to the most

desirable value according to the DM. It is, therefore, obvi-

ous that in Eq. (2) the a Pareto optimal solution x* and

a-level Pareto coefficients (A*, b*, c*) correspond to a

Pareto optimal solution (x*, A*, b* , c*) when the decision

variables, considered as (x, A, b, c), have the ordinary

meaning.

Now, considering the vagueness of judgment by hu-

man decision makers, we might consider that the DM has

an ambiguous goal with respect to each objective function

of the a-multiobjective 0-1 programming problem [8�10]

and that the fuzzy goals for the minimization problem are

something like �I want the objective function cix most of

the time less than or equal to pi.� The linear membership

function

illustrated in Fig. 1 is frequently used as a membership

function for such fuzzy objective characteristics within the

range of individual minimum and maximum for each ob-

jective function. Here the straight line from 1 to 0 joins at

the corresponding values zi
0 and zi

1 of the objective function.

The DM subjectively evaluates the zi
0 and zi

1.

A concrete decision method with linear membership

functions of this kind is found in Zimmermann [10]. He

used zi
min = cix

i0 and

where xi0 is the optimal solution to the particular optimiza-

tion problem for each objective function under the given

constraint  condit ions.  Zimmerman proposed

zi
1 = zi

min, zi
0 = zi

m, i = 1, . . . , k in the linear membership

functions of Eq. (3).

Having determined the membership functions for

each objective function, the decision problem for the mul-

tiobjective 0-1 programming problem with fuzzy parame-

ters consists of trying to maximize all of the membership

functions and, simultaneously, to maximize the degree of

realizability of the problem. The decision problem that

considers simultaneously the k + 1 competing objective

functions of the DM can be formalized by means of the

following definition, assuming the existence of an aggrega-

tion function that expresses the DM�s selected structure.

Here, P(a) is the set of a-level optimal coefficients corre-

sponding to the a-Pareto optimal solutions. We assume also

that the aggregation function mD(×) is usually strictly mono-

tonically increasing with respect to mi(×) and a. If we could

identify directly the function form for mD(×) then the prob-

lem would become an ordinary single objective optimiza-

tion problem. However, since it is difficult to identify

mD(×) globally, it is necessary to determine a self satisfying

solution from among the ordinarily infinite point set of

a-Pareto solutions by means of interaction with the DM.

3. Extended Mini-Max Problem

Let us now assume that the DM has subjectively set

up the base membership functions m
__

i, i = 1, . . . , k that re-

flect the DM reference levels for each of the membership

functions mi(cix). In this case, if the establishment of the

(3)

(4)

Fig. 1. Linear membership function.

(5)
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base membership value is moderately attainable, we look

for a desirable a-Pareto optimal solution that is better than

the membership values. If the determination of the base

membership values is not attainable, than it is desirable to

determine an a-Pareto optimal solution as close as possible

to the membership value. Such a-optimal solutions can be

obtained as the solution to the following mini-max problem

[8, 9].

However, if the uniqueness of the optimal solution

obtained by solving the mini-max problem is to be guaran-

teed, then one is not limited to a-Pareto optimal solutions.

Hence, we encounter the problem of having to do tests for

common a-Pareto optimality. In order to circumvent this

problem it is recommended to search for an a-Pareto opti-

mal solution close to the meaning of a mini-max in the base

membership values by using the following extended mini-

max problem instead.

Here, r is a sufficiently small positive number.

We should observe that, since in Eqs. (6) and (7) A,

b, and c are treated as variables, the constraint conditions

in this situation also become nonlinear.

Fortunately, because of the properties of the a-level

set for the matrix A
__

 of fuzzy coefficients and the vectors c
_

and b
_
 of fuzzy numbers, the domain of realizability of

A
__

, b
_
, and c

_
 can be expressed by closed intervals

[Aa
L, Aa

R], [bja
L , bja

R ], and [cia
L , cia

R ] by means of the left and

right end points of the a-level sets. Thus, obtaining an

optimal solution for the extended mini-max problem is

equivalent to solving the following problem:

Since the constraints of this 0-1 programming prob-

lem are linear and all the coefficients are positive, we try to

apply the two-string coded genetic algorithms proposed by

Sakawa and others [6, 7].

4. Double String Genetic Algorithms

4.1. Double string coding

The double string coding as shown in Fig. 2 has been

proposed for multiobjective 0-1 programming with linear

constraints Ax2b, with all the components of A and b posi-

tive [6, 7]. The elements in the upper part are the variable

indices and those in the lower part the values of the vari-

ables. Here, s(i) corresponds to the index j of the variable xj,

and xs(i) is the value of the variable xj, corresponding to

s(i).
If we decode the double string according to the fol-

lowing algorithm, we generate only realizable solutions.

Here, the length of the string is n, the position of a string is

i, the index of the variable s(i), the value of the variable

xs(i), the coefficient of the constraint formula as(i), and the

constraint condition Si=1
n as(i)xs(i) £ b. Denote by ps(i) the

decoded value of xs(i).

Step 1: Make i =1, sum = 0

Step 2: If xs(i) = 0 take ps(i) = 0, i = i + 1 and go to step

4; if xs(i) = 1, go to step 3.

Step 3:  If  sum + as(i) £ b,  take

ps(i) = 1, å = å + as(i), i = i + 1 and go to step 4; otherwise

take ps(i) = 0, i = i + 1 and go to step 4.

Step 4: If i > n, stop. Otherwise, go back to step 2.

In this algorithm, the elements for which the variable

xs(i) is 1 satisfy the constraints and are sequentially fixed

starting from the left-hand side of the strings within the

range, all other variables are fixed to 0.

4.2. Fitness

It is natural to set the fitness function f(s) of the string

s as

(6)

(7)

(8)
Fig. 2. Double string.
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In addition, we use a linear scaling fi
g = a × f + b to scale the

fitness. The coefficients a and b here become the invariant

points of the average fitness of the group of individuals and

the optimal fitness is set up so as to linearly reflect on the

squared value of the average fitness.

4.3. Reproduction

Sakawa and coworkers [6] investigated six types of

reproduction operators (ranking selection, elitist ranking

selection, expected value selection, elitist expected value

selection, roulette selection, and elitist roulette selection).

The results showed that the elitist expected value selection

is relatively more efficient. Therefore, in this paper we use

the elitist expected value selection that includes in the

expected value selection the so-called elitist preserving

selection. The expected value selection carries out repro-

duction by the expected value of the individuals remaining

in the following generation. The elitist preserving selection

unconditionally retains individuals with maximum fitness

out of the present generation individuals.

4.4. Crossover

Since in two-string coding there are letters other than

0 and 1 in the upper subset of indices, it is possible when

doing the traditional one point and multiple point cross-

overs that similar index variable numbers of the variables

emerge in the upper part of indices. To avoid this inconven-

ience, in this paper we use the partially matched crossover

PMX [5]. The PMX for two strings is given by the following

sequence.

Step 1: Set two 2-strings X and Y. Let the elements

of index i in the strings X and Y be sX(i), sY(i), and let

xsX(i), xsY(i) be the corresponding values of the variables.

Select two crossover points at random and determine the

substrings to be exchanged.

Step 2: Taking the indices of the substring of Y that

changes to be identical to the indices of the substring of X

that changes, use the operations (1), (2), and (3) below and

let X¢ be the result of changing the values of the indices and

variables of X.

(1) Make h and k ( > h) the first and last ends of the

changing substring and make i = h.

(2) Determine j such that sY(i) = sX(j) and exchange

the i-th column (sX(i), xs
X
(i))T of X with the j-th column

(sX( j), xs
X
( j))T of X, and set i = i + 1.

(3) If i > k, stop. Otherwise, go to (2).

Step 3: Let X* be the string that results when substi-

tuting the transformed substring of Y into the respective X¢.

Similarly, determine Y*. Having obtained X* and Y* by

crossover, stop.

4.5. Mutations and inversions

In individuals coded by single strings, mutations are

carried out by exchanging the elements at two arbitrary

positions in the string. However, in the representation of

individuals by double strings, decoding is achieved by

giving preference in a sequence from the left hand elements,

so it becomes difficult to yield a better individual if only

elements of the indices in the upper subset are exchanged.

In order to deal with this problem, it is convenient to append

a so-called inversion genetic operator that reverses the order

of a substring of some length. The inversion for double

strings is expressed by the following steps:

Step 1: Select two positions in the double string, k

and h, (k > h), and in the upper index section select the

substring going from position h to position k.

Step 2: Rearrange the substring between positions h

and k in reverse order.

Step 3: Replace the original substring in the upper

index section of the double string with the reversed sub-

string and stop.

5. Interactive Fuzzy Method

The basic algorithm that introduces into interactive

fuzzy programming [8, 9] a GA which generates only

realizable solutions [7] is as follows.

Step 0: For a = 0.1, determine the respective maxi-

mum and minimum values of each objective function in the

given constraint domains.

Step 1: The DM subjectively defines the linear mem-

bership functions taking into consideration the different

maximum and minimum values of each objective function.

Step 2: The DM sets the initial value of a(0 £ a £ 1)

and sets the initial membership values to 1.

Step 3: Randomly create N double string coded indi-

viduals and generate the initial group of individuals.

Step 4: Determine the fitness of each individual and

carry out reproductions corresponding to each fitness under

fixed rules.

Step 5: Carry out crossover with a predefined cross-

over probability pc and generate new individuals.

Step 6: Carry out mutations with a predefined muta-

tion probability pm and generate new individuals.

Step 7: Repeat steps 4 to 6 until the final conditions

are satisfied. Take then the individuals with maximum

fitness as optimal solutions and go to Step 8.
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Step 8: If the attainment levels of the present mem-

bership functions and objective functions of the a-Pareto

optimal solution satisfy the a value, stop. Otherwise up-

grade the base membership values and the a value consid-

ering the present membership values, the objective function

achievement levels, and the a value and go back to Step 3.

The DM should pay attention to (1) given a fixed a value,

do not sacrifice the satisfaction degree of membership

functions in order to improve the satisfaction degree of

some specific membership functions of the a-Pareto opti-

mal solution; and (2) for a fixed base membership value, do

not sacrifice the objective function and the membership

function achievement level by enhancement of the a-value

that shows the realizability of the problem.

With respect to the generation method used here for

the initial group of individuals in each interactive iteration,

part of the quasi a-Pareto optimal solution obtained in an

interaction is retained as part of the initial group of indi-

viduals of the subsequent interaction and the rest of the

individuals in the group are generated randomly. By intro-

ducing a method that generates initial groups keeping a

quasi a-Pareto optimal solution into a GA that uses both

the expected value selection and the elitist selection as

reproduction models, we expect to determine at least one

solution that is not governed by the previous interactive

solution.

When introducing genetic algorithms into an interac-

tive fuzzy programming method, it is necessary to obtain

an approximate solution within an adequate time interval.

Therefore, we introduce the following convergence condi-

tion algorithm that uses the so-called lowest generation

searching index Imin and maximum generation searching

index value Imax.

Step 1: Let t = 1 and use a convergence error e.

Step 2: Carry out a series of GA searches (regenera-

tion, crossover, mutation).

Step 3: Determine the average and maximum fitness,

fmean and fmax, of the group of individuals.

Step 4: If t > Imin and (fmax - fmean) / fmax × <e, discon-

tinue the search.

Step 5: If t > Imax, discontinue the search. Otherwise,

set t = t + 1 and go back to Step 2.

6. Numerical Example

To provide a numerical example we take a three-ob-

jective 0-1 programming problem with 30 variables and two

constraints involving fuzzy numbers, assuming that all

fuzzy numbers membership functions are triangular and

generating the problem coefficients randomly as follows:

(1) Using random numbers of the type 0.1000 (real

numbers equal or up to one rank less than the small number

points), we generate the coefficients aij. Similarly, we gen-

erate the negative coefficients c1j, half of the c2j negative

and the other half positive, and the positive coefficients

c3j.

(2) The value bi is created by multiplying the value

of Sj=1
n aij by a random number generated in the interval

[0.25, 0.75].

(3) Use fuzzy numbers statistically with a 90% ratio

from among the aij, bi, and cij determined in (1) and (2). Set

the left extreme points cij0
L , ci0

L  > 0 by multiplying the re-

spective aij and cij by random numbers in [0.9, 1.0], the

right extreme points bi0
R  and left extreme points ci0

L  < 0 by

multiplying the respective bi, and by random numbers in

the interval [1.0, 1.1].

As an example of a problem executed in this way, we

solved the extended mini-max problem for each interactive

iteration for the values shown in Table 1 by means of 30

simulations using genetical algorithms and determined the

a-Pareto optimal solutions. With respect to the parameters

for the GA, we set 50 individuals, a crossover probability

of pc = 0.9, a mutation probability pm = 0.02, a convergence

condition error e = 0.05, a lowest generation searching

index Imin = 300 and maximum generation searching index

value Imax = 500. We also set the coefficient of the extended

mini-max problem to r = 0.0001.

In this problem, the values of (m
__

1, m
__

2, m
__

3; a) are up-

graded according to an imaginary DM as shown in Table 2,

from (1.0, 1.0, 1.0; 1.0) to (0.9, 1.0, 1.0; 1.0), (0.9, 0.95,

1.0; 1.0), and (0.9, 0.95, 1.0; 0.9). Here, the objective

functions values (z1
1, z1

0) (z2
1, z2

0) (z3
1, z3

0) whose membership

function degree of satisfaction becomes 1 or 0, are deter-

mined by means of the Zimmermann technique [10], but

depending here on the value of a. When a = 1.0 they are

given as (�10836.6, 0), (�10177.7, 0), (0, 8481.6), and

when a = 0.9 they become (�0890.38, 0) (�10242.74, 0),

(0, 8435.05). Also, the number of a-Pareto optimal solu-

tions obtained for each interactive session in the 30 GA

simulations were respectively 23, 24, 28, and 30. Clearly,

good results were obtained.

In the interactive stages of Table 2, the a-Pareto

optimal solutions were first determined for initial standard

membership values of 1 with respect to an ambiguity level

a = 1.0 established by the imaginary DM. However, the DM

of this example is not satisfied with the attainment levels

(0.6356, 0.6304, 0.6300) of the membership functions in

the a-Pareto optimal solutions obtained and considers that

if m1 is sacrificed, m2 and m3 will improve. For this reason,

keeping the ambiguity level constant at 1, the DM decreases

the base membership value of m1 from 1.0 to 0.9 and

upgrades the base membership values to (0.9, 1.0, 1.0).

With this DM option, the attainment levels of the member-
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ship levels in the a-Pareto optimal solutions obtained in the

second interactive iteration are reflected as (0.6248, 0.6548,

0.6612) and we see that m2 and m3 are ameliorated by

sacrificing m1. As seen in Table 2, the hypothetical DM of

this example thinks that an additional third interactive

iteration m3 will be ameliorated by sacrificing m2 a little, and

upgrades the base membership values to (0.9, 0.95, 1.0).

The attainment levels of the membership levels in the

a-Pareto optimal solutions obtained in the third interactive

iteration are (0.5848, 0.6313, 0.6927), ameliorating the

degrees of satisfaction of the sequence m1, m2, m3, and re-

flecting the DM choice. The hypothetical DM of this exam-

ple is for the moment satisfied with the balance between the

attainment levels of the membership functions as they have

been obtained, but thinks that by further sacrificing the a

value in a fourth interactive iteration the objective functions

and the attainment values of the membership functions can

be ameliorated, and thus diminishes the a value from 1.0

to 0.9. Satisfied with the a-Pareto optimal solutions ob-

tained in the fourth interactive iteration for a = 0.9 and

respective membership attainment levels of (0.5852,

0.6313, 0.6933), the imaginary DM of this example stops

the iterations. In this example, an a-Pareto optimal solution

satisfying the DM was obtained at the fourth interactive

stage, after two upgrades for the base membership and one

upgrade of a. It is clear however that if the a-Pareto optimal

solution obtained with such interactions do not satisfy the

DM, similar interactions are continued until a satisfactory

solution is obtained.

7. Conclusions

Focusing on multiobjective 0-1 programming prob-

lems involving fuzzy numbers, we introduced in this paper

a nonfuzzy multiobjective 0-1 programming problem. Fur-

thermore, we proposed a method called an interactive fuzzy

satisfaction method which, once the fuzzy objectives of the

Decision Maker are described by membership functions,

determines an approximate a-Pareto optimal solution in the

Table 1. Numerical example of three-objective 0-1 programming problem with 30 variables 

and 2 constraints involving fuzzy numbers
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extended mini-max sense for base membership functions

and an ambiguity fitness level a subjectively established by

the DM. The method then draws out a solution that satisfies

the DM from the set of the a-Pareto optimal solutions, by

interactively upgrading the base membership functions and

the ambiguity fitness level a that satisfy the DM. Concern-

ing the extended mini-max problem used to determine the

a-Pareto optimal solutions, we showed here that it can be

solved statistically by application of two-string genetic

algorithms. Further, by using the simulation results from a

numerical example, it was shown that DM satisfying solu-

tions are relatively easily obtained by upgrading the base

membership functions and the a value interactively.

In the future, we expect to extend the proposed

method and to obtain a more general interactive fuzzy

method for multiobjective integer programming problems

involving fuzzy numbers.
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