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SUMMARY


The multiobjective 0-1 programming problem with


fuzzy numbers is a formalization designed to represent


expert judgment. Using the non-fuzzy a-multiobjective


programming problem, in which the membership degrees


of components of the coefficient vector are set in accord-


ance with the decision maker�s objectives, the concept of


an a-Pareto optimal solution with respect to the fuzzy


parameters of the problem and the decision maker�s fuzzy


objectives is introduced. An interactive fuzzy satisficing


method is proposed in which a-Pareto optimal solutions are


found by the expanded minimax method, the evaluation


membership function and the fuzziness are interactively


updated if the decision maker is not satisfied, and a solution


acceptable to the decision maker is derived from the set of


a-Pareto optimal solutions. A character string-coded ge-


netic algorithm is used in solving the expanded minimax


problem. The validity of the method is demonstrated by


means of numerical examples. © 1998 Scripta Technica,


Electron Comm Jpn Pt 3, 81(8): 64�72, 1998
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1. Introduction


During the seventies, Professor John Holland, his


colleagues, and students from Michigan University pro-


posed genetic algorithms (GA) as a new learning paradigm


that modeled the natural evolution mechanism [1], although


this concept was not known initially by that name. After the


publication of a book by Goldberg [2] GAs have attracted


attention in various fields as a methodology for optimiza-


tion adaptation and learning. Furthermore, since Michale-


wicz book [3] was published in 1992, research concerning
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applications to optimization problems has increased. The


second edition [3] was published in 1994, and further


developments are expected in this field. Vector evaluated


genetic algorithms (VEGA), proposed by Schaffer [4] for


multiobjective optimization problems are based on an ex-


tension of the traditional fitness function of genetic algo-


rithms from a scalar to a vector function. Further


developments followed as a result of this idea [5]. However,


in all of these multiple evaluation genetic algorithm tech-


niques, the focus has been on how to determine efficiently


the (sub)set of (locally) Pareto optimal solutions to multiple


objective problems. However, the important problem in


multiple decision making tasks is that of choosing a solu-


tion or a compromise, from among the set of Pareto optimal


solutions that satisfies the decision maker (DM). This as-


pect of multiple objection problem solving has absolutely


not been considered.


Recently, Sakawa and coworkers have formalized


multiobjective 0-1 programming problems that consider


fuzzy goals of the DM. They introduced two string genetic


algorithms [6] in the extraction of cooperative solutions ac-


cording to fuzzy decision rules that reflect the DM fuzzy goals.


They also extended the method to interactive techniques [7].


In this context, the focus in this paper is on multiob-


jective 0-1 programming problems. In order to better rep-


resent the human judgment of experts concerned with


problem formalization where several parameters are in-


volved, the ambiguity of these parameters is a characteristic


that is treated as a fuzzy number. By formalizing multiple


objective 0-1 programming problems involving fuzzy num-


bers it is possible to approximate very well the actual


decision making conditions. In a coefficient vector for


which the degrees of membership of all the membership


functions of the fuzzy numbers in the problem are greater


or equal to a, there are some that are particularly good for


the DM. We introduce a nonfuzzy a- 0-1 programming


problem that establishes this a value. Furthermore, we


propose an interactive decision making method in which


we introduce the concept of an extended a-Pareto optimal


solution that considers the ambiguity involved in the prob-


lem. We determine quasi a-Pareto extended mini-max op-


timal solutions for the base membership values and a degree


of ambiguity a, subjectively established by the DM. If the


solutions do not satisfy the DM, then a solution that satisfies


the DM is extracted from the set of a-Pareto optimal


solutions through interactive upgrading of the base mem-


bership values and the degree of ambiguity. Since the


extended mini-max problem used to determine the a-Pareto


optimal solutions becomes a 0-1 programming problem, we


show that the solutions can be very easily determined by


application of the two-string coded genetic algorithm pro-


posed by Sakawa and others [6]. Finally, we demonstrate


the feasibility of the proposed method by means of a


numerical example.


2. Multiobjective 0-1 Programming


Problem with Fuzzy Numbers


In order to adequately represent the human judgment


of experts concerned with formalizing the problem, rather


than setting up immediately a traditional heuristic or sub-


jective method, in this paper we adopt a method in which


parameters of the type �number approximately equal to m�


are taken as fuzzy numbers for the purpose of more conven-


iently reflecting the actual multiobjective decision condi-


tions. We formalize a 0-1 multiobjective programming


problem with fuzzy numbers, by using fuzzy numbers to


denote the ambiguity of the parameters involved in the


objective functions and constraints of the problem,


Here, A
__


 is an m ´ n matrix with fuzzy coefficients, c
_


and b
_
 are, respectively, n and m dimensional vectors of


fuzzy numbers. For the sake of simplification in this paper,


we assume that all the fuzzy number components of A
__


 and


b
_
 are positive, and we can then regard the problem as a


multiobjective multidimensional knapsack problem.


Since the coefficients in the objective functions and


the constraints in the problem, Eq. (1), have the charac-


teristics of fuzzy numbers, we cannot apply directly the


concept of a Pareto optimal solution to a conventional


multiobjective 0-1 programming problem. Therefore, we


first introduce an a-level set [8, 9] in which the membership


value of each fuzzy number is greater than or equal to a.


Definition 1. The set of all triplets (A, b, c) of values


of the fuzzy number membership functions contained in the


fuzzy parameters A
__


, b
_
, and c


_
 that are greater than or equal


to a is called the a-level set and is denoted as (A
__


, b
_
, c
_
)a.


Assuming that the Decision Maker (DM) for the


problem in Eq. (1) judges a solution correct if the values of


the membership functions of the fuzzy numbers involved


in the objective funct ion and constraints


(A, b, c)Î(A
__


, b
_
, c
_
)a for some value greater than or equal to


a, then we can introduce a nonfuzzy a-multiobjective 0-1


programming problem as follows,


The DM selects the most desirable value that is


greater than or equal to a, which determines the degree of


realizability of the problem out of the (A, b, c)Î(A
__


, b
_
, c
_
)a.


(1)


(2)
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We must pay attention to the fact that for the problem


in Eq. (2), the coefficient vectors (A, b, c) are no longer


regarded as coefficients but as variables. Thus, we define


the a-Pareto optimal solution concept, that takes into ac-


count the vagueness involved in the problem by extending


the ordinary Pareto optimal solution concept to Eq. (2).


Definition 2.  x*ÎX(A*, b*) is called an a-Pareto


optimal solution for the problem in Eq. (2) and the corre-


sponding set of coefficients (A*, b*, c*) are called a-level


optimal coefficients, if there does not exist an


x Î X(A, b), (A, b, c)Î(A
__


, b
_
, c
_
)a such that cix £ cix


*,
i = 1, . . . , k, with at least one j satisfying cjx <cjx


*.


Let us consider in a little more detail the meaning of


a-Pareto optimal solution and a-level Pareto coefficients


for Eq. (2). Since the fuzzy number coefficients included in


the problem are decision variables that can move freely over


an a-level set in which the membership function value is


greater than or equal to the a value in Eq. (2), it is possible


to obtain a solution that reflects the vagueness created in


the problem formalization. In this case the value a, which


expresses a degree of realizability of all the fuzzy numbers


involved in Eq. (1), can be set subjectively to the most


desirable value according to the DM. It is, therefore, obvi-


ous that in Eq. (2) the a Pareto optimal solution x* and


a-level Pareto coefficients (A*, b*, c*) correspond to a


Pareto optimal solution (x*, A*, b* , c*) when the decision


variables, considered as (x, A, b, c), have the ordinary


meaning.


Now, considering the vagueness of judgment by hu-


man decision makers, we might consider that the DM has


an ambiguous goal with respect to each objective function


of the a-multiobjective 0-1 programming problem [8�10]


and that the fuzzy goals for the minimization problem are


something like �I want the objective function cix most of


the time less than or equal to pi.� The linear membership


function


illustrated in Fig. 1 is frequently used as a membership


function for such fuzzy objective characteristics within the


range of individual minimum and maximum for each ob-


jective function. Here the straight line from 1 to 0 joins at


the corresponding values zi
0 and zi


1 of the objective function.


The DM subjectively evaluates the zi
0 and zi


1.


A concrete decision method with linear membership


functions of this kind is found in Zimmermann [10]. He


used zi
min = cix


i0 and


where xi0 is the optimal solution to the particular optimiza-


tion problem for each objective function under the given


constraint  condit ions.  Zimmerman proposed


zi
1 = zi


min, zi
0 = zi


m, i = 1, . . . , k in the linear membership


functions of Eq. (3).


Having determined the membership functions for


each objective function, the decision problem for the mul-


tiobjective 0-1 programming problem with fuzzy parame-


ters consists of trying to maximize all of the membership


functions and, simultaneously, to maximize the degree of


realizability of the problem. The decision problem that


considers simultaneously the k + 1 competing objective


functions of the DM can be formalized by means of the


following definition, assuming the existence of an aggrega-


tion function that expresses the DM�s selected structure.


Here, P(a) is the set of a-level optimal coefficients corre-


sponding to the a-Pareto optimal solutions. We assume also


that the aggregation function mD(×) is usually strictly mono-


tonically increasing with respect to mi(×) and a. If we could


identify directly the function form for mD(×) then the prob-


lem would become an ordinary single objective optimiza-


tion problem. However, since it is difficult to identify


mD(×) globally, it is necessary to determine a self satisfying


solution from among the ordinarily infinite point set of


a-Pareto solutions by means of interaction with the DM.


3. Extended Mini-Max Problem


Let us now assume that the DM has subjectively set


up the base membership functions m
__


i, i = 1, . . . , k that re-


flect the DM reference levels for each of the membership


functions mi(cix). In this case, if the establishment of the


(3)


(4)


Fig. 1. Linear membership function.


(5)
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base membership value is moderately attainable, we look


for a desirable a-Pareto optimal solution that is better than


the membership values. If the determination of the base


membership values is not attainable, than it is desirable to


determine an a-Pareto optimal solution as close as possible


to the membership value. Such a-optimal solutions can be


obtained as the solution to the following mini-max problem


[8, 9].


However, if the uniqueness of the optimal solution


obtained by solving the mini-max problem is to be guaran-


teed, then one is not limited to a-Pareto optimal solutions.


Hence, we encounter the problem of having to do tests for


common a-Pareto optimality. In order to circumvent this


problem it is recommended to search for an a-Pareto opti-


mal solution close to the meaning of a mini-max in the base


membership values by using the following extended mini-


max problem instead.


Here, r is a sufficiently small positive number.


We should observe that, since in Eqs. (6) and (7) A,


b, and c are treated as variables, the constraint conditions


in this situation also become nonlinear.


Fortunately, because of the properties of the a-level


set for the matrix A
__


 of fuzzy coefficients and the vectors c
_


and b
_
 of fuzzy numbers, the domain of realizability of


A
__


, b
_
, and c


_
 can be expressed by closed intervals


[Aa
L, Aa


R], [bja
L , bja


R ], and [cia
L , cia


R ] by means of the left and


right end points of the a-level sets. Thus, obtaining an


optimal solution for the extended mini-max problem is


equivalent to solving the following problem:


Since the constraints of this 0-1 programming prob-


lem are linear and all the coefficients are positive, we try to


apply the two-string coded genetic algorithms proposed by


Sakawa and others [6, 7].


4. Double String Genetic Algorithms


4.1. Double string coding


The double string coding as shown in Fig. 2 has been


proposed for multiobjective 0-1 programming with linear


constraints Ax2b, with all the components of A and b posi-


tive [6, 7]. The elements in the upper part are the variable


indices and those in the lower part the values of the vari-


ables. Here, s(i) corresponds to the index j of the variable xj,


and xs(i) is the value of the variable xj, corresponding to


s(i).
If we decode the double string according to the fol-


lowing algorithm, we generate only realizable solutions.


Here, the length of the string is n, the position of a string is


i, the index of the variable s(i), the value of the variable


xs(i), the coefficient of the constraint formula as(i), and the


constraint condition Si=1
n as(i)xs(i) £ b. Denote by ps(i) the


decoded value of xs(i).


Step 1: Make i =1, sum = 0


Step 2: If xs(i) = 0 take ps(i) = 0, i = i + 1 and go to step


4; if xs(i) = 1, go to step 3.


Step 3:  If  sum + as(i) £ b,  take


ps(i) = 1, å = å + as(i), i = i + 1 and go to step 4; otherwise


take ps(i) = 0, i = i + 1 and go to step 4.


Step 4: If i > n, stop. Otherwise, go back to step 2.


In this algorithm, the elements for which the variable


xs(i) is 1 satisfy the constraints and are sequentially fixed


starting from the left-hand side of the strings within the


range, all other variables are fixed to 0.


4.2. Fitness


It is natural to set the fitness function f(s) of the string


s as


(6)


(7)


(8)
Fig. 2. Double string.
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In addition, we use a linear scaling fi
g = a × f + b to scale the


fitness. The coefficients a and b here become the invariant


points of the average fitness of the group of individuals and


the optimal fitness is set up so as to linearly reflect on the


squared value of the average fitness.


4.3. Reproduction


Sakawa and coworkers [6] investigated six types of


reproduction operators (ranking selection, elitist ranking


selection, expected value selection, elitist expected value


selection, roulette selection, and elitist roulette selection).


The results showed that the elitist expected value selection


is relatively more efficient. Therefore, in this paper we use


the elitist expected value selection that includes in the


expected value selection the so-called elitist preserving


selection. The expected value selection carries out repro-


duction by the expected value of the individuals remaining


in the following generation. The elitist preserving selection


unconditionally retains individuals with maximum fitness


out of the present generation individuals.


4.4. Crossover


Since in two-string coding there are letters other than


0 and 1 in the upper subset of indices, it is possible when


doing the traditional one point and multiple point cross-


overs that similar index variable numbers of the variables


emerge in the upper part of indices. To avoid this inconven-


ience, in this paper we use the partially matched crossover


PMX [5]. The PMX for two strings is given by the following


sequence.


Step 1: Set two 2-strings X and Y. Let the elements


of index i in the strings X and Y be sX(i), sY(i), and let


xsX(i), xsY(i) be the corresponding values of the variables.


Select two crossover points at random and determine the


substrings to be exchanged.


Step 2: Taking the indices of the substring of Y that


changes to be identical to the indices of the substring of X


that changes, use the operations (1), (2), and (3) below and


let X¢ be the result of changing the values of the indices and


variables of X.


(1) Make h and k ( > h) the first and last ends of the


changing substring and make i = h.


(2) Determine j such that sY(i) = sX(j) and exchange


the i-th column (sX(i), xs
X
(i))T of X with the j-th column


(sX( j), xs
X
( j))T of X, and set i = i + 1.


(3) If i > k, stop. Otherwise, go to (2).


Step 3: Let X* be the string that results when substi-


tuting the transformed substring of Y into the respective X¢.


Similarly, determine Y*. Having obtained X* and Y* by


crossover, stop.


4.5. Mutations and inversions


In individuals coded by single strings, mutations are


carried out by exchanging the elements at two arbitrary


positions in the string. However, in the representation of


individuals by double strings, decoding is achieved by


giving preference in a sequence from the left hand elements,


so it becomes difficult to yield a better individual if only


elements of the indices in the upper subset are exchanged.


In order to deal with this problem, it is convenient to append


a so-called inversion genetic operator that reverses the order


of a substring of some length. The inversion for double


strings is expressed by the following steps:


Step 1: Select two positions in the double string, k


and h, (k > h), and in the upper index section select the


substring going from position h to position k.


Step 2: Rearrange the substring between positions h


and k in reverse order.


Step 3: Replace the original substring in the upper


index section of the double string with the reversed sub-


string and stop.


5. Interactive Fuzzy Method


The basic algorithm that introduces into interactive


fuzzy programming [8, 9] a GA which generates only


realizable solutions [7] is as follows.


Step 0: For a = 0.1, determine the respective maxi-


mum and minimum values of each objective function in the


given constraint domains.


Step 1: The DM subjectively defines the linear mem-


bership functions taking into consideration the different


maximum and minimum values of each objective function.


Step 2: The DM sets the initial value of a(0 £ a £ 1)


and sets the initial membership values to 1.


Step 3: Randomly create N double string coded indi-


viduals and generate the initial group of individuals.


Step 4: Determine the fitness of each individual and


carry out reproductions corresponding to each fitness under


fixed rules.


Step 5: Carry out crossover with a predefined cross-


over probability pc and generate new individuals.


Step 6: Carry out mutations with a predefined muta-


tion probability pm and generate new individuals.


Step 7: Repeat steps 4 to 6 until the final conditions


are satisfied. Take then the individuals with maximum


fitness as optimal solutions and go to Step 8.
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Step 8: If the attainment levels of the present mem-


bership functions and objective functions of the a-Pareto


optimal solution satisfy the a value, stop. Otherwise up-


grade the base membership values and the a value consid-


ering the present membership values, the objective function


achievement levels, and the a value and go back to Step 3.


The DM should pay attention to (1) given a fixed a value,


do not sacrifice the satisfaction degree of membership


functions in order to improve the satisfaction degree of


some specific membership functions of the a-Pareto opti-


mal solution; and (2) for a fixed base membership value, do


not sacrifice the objective function and the membership


function achievement level by enhancement of the a-value


that shows the realizability of the problem.


With respect to the generation method used here for


the initial group of individuals in each interactive iteration,


part of the quasi a-Pareto optimal solution obtained in an


interaction is retained as part of the initial group of indi-


viduals of the subsequent interaction and the rest of the


individuals in the group are generated randomly. By intro-


ducing a method that generates initial groups keeping a


quasi a-Pareto optimal solution into a GA that uses both


the expected value selection and the elitist selection as


reproduction models, we expect to determine at least one


solution that is not governed by the previous interactive


solution.


When introducing genetic algorithms into an interac-


tive fuzzy programming method, it is necessary to obtain


an approximate solution within an adequate time interval.


Therefore, we introduce the following convergence condi-


tion algorithm that uses the so-called lowest generation


searching index Imin and maximum generation searching


index value Imax.


Step 1: Let t = 1 and use a convergence error e.


Step 2: Carry out a series of GA searches (regenera-


tion, crossover, mutation).


Step 3: Determine the average and maximum fitness,


fmean and fmax, of the group of individuals.


Step 4: If t > Imin and (fmax - fmean) / fmax × <e, discon-


tinue the search.


Step 5: If t > Imax, discontinue the search. Otherwise,


set t = t + 1 and go back to Step 2.


6. Numerical Example


To provide a numerical example we take a three-ob-


jective 0-1 programming problem with 30 variables and two


constraints involving fuzzy numbers, assuming that all


fuzzy numbers membership functions are triangular and


generating the problem coefficients randomly as follows:


(1) Using random numbers of the type 0.1000 (real


numbers equal or up to one rank less than the small number


points), we generate the coefficients aij. Similarly, we gen-


erate the negative coefficients c1j, half of the c2j negative


and the other half positive, and the positive coefficients


c3j.


(2) The value bi is created by multiplying the value


of Sj=1
n aij by a random number generated in the interval


[0.25, 0.75].


(3) Use fuzzy numbers statistically with a 90% ratio


from among the aij, bi, and cij determined in (1) and (2). Set


the left extreme points cij0
L , ci0


L  > 0 by multiplying the re-


spective aij and cij by random numbers in [0.9, 1.0], the


right extreme points bi0
R  and left extreme points ci0


L  < 0 by


multiplying the respective bi, and by random numbers in


the interval [1.0, 1.1].


As an example of a problem executed in this way, we


solved the extended mini-max problem for each interactive


iteration for the values shown in Table 1 by means of 30


simulations using genetical algorithms and determined the


a-Pareto optimal solutions. With respect to the parameters


for the GA, we set 50 individuals, a crossover probability


of pc = 0.9, a mutation probability pm = 0.02, a convergence


condition error e = 0.05, a lowest generation searching


index Imin = 300 and maximum generation searching index


value Imax = 500. We also set the coefficient of the extended


mini-max problem to r = 0.0001.


In this problem, the values of (m
__


1, m
__


2, m
__


3; a) are up-


graded according to an imaginary DM as shown in Table 2,


from (1.0, 1.0, 1.0; 1.0) to (0.9, 1.0, 1.0; 1.0), (0.9, 0.95,


1.0; 1.0), and (0.9, 0.95, 1.0; 0.9). Here, the objective


functions values (z1
1, z1


0) (z2
1, z2


0) (z3
1, z3


0) whose membership


function degree of satisfaction becomes 1 or 0, are deter-


mined by means of the Zimmermann technique [10], but


depending here on the value of a. When a = 1.0 they are


given as (�10836.6, 0), (�10177.7, 0), (0, 8481.6), and


when a = 0.9 they become (�0890.38, 0) (�10242.74, 0),


(0, 8435.05). Also, the number of a-Pareto optimal solu-


tions obtained for each interactive session in the 30 GA


simulations were respectively 23, 24, 28, and 30. Clearly,


good results were obtained.


In the interactive stages of Table 2, the a-Pareto


optimal solutions were first determined for initial standard


membership values of 1 with respect to an ambiguity level


a = 1.0 established by the imaginary DM. However, the DM


of this example is not satisfied with the attainment levels


(0.6356, 0.6304, 0.6300) of the membership functions in


the a-Pareto optimal solutions obtained and considers that


if m1 is sacrificed, m2 and m3 will improve. For this reason,


keeping the ambiguity level constant at 1, the DM decreases


the base membership value of m1 from 1.0 to 0.9 and


upgrades the base membership values to (0.9, 1.0, 1.0).


With this DM option, the attainment levels of the member-
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ship levels in the a-Pareto optimal solutions obtained in the


second interactive iteration are reflected as (0.6248, 0.6548,


0.6612) and we see that m2 and m3 are ameliorated by


sacrificing m1. As seen in Table 2, the hypothetical DM of


this example thinks that an additional third interactive


iteration m3 will be ameliorated by sacrificing m2 a little, and


upgrades the base membership values to (0.9, 0.95, 1.0).


The attainment levels of the membership levels in the


a-Pareto optimal solutions obtained in the third interactive


iteration are (0.5848, 0.6313, 0.6927), ameliorating the


degrees of satisfaction of the sequence m1, m2, m3, and re-


flecting the DM choice. The hypothetical DM of this exam-


ple is for the moment satisfied with the balance between the


attainment levels of the membership functions as they have


been obtained, but thinks that by further sacrificing the a


value in a fourth interactive iteration the objective functions


and the attainment values of the membership functions can


be ameliorated, and thus diminishes the a value from 1.0


to 0.9. Satisfied with the a-Pareto optimal solutions ob-


tained in the fourth interactive iteration for a = 0.9 and


respective membership attainment levels of (0.5852,


0.6313, 0.6933), the imaginary DM of this example stops


the iterations. In this example, an a-Pareto optimal solution


satisfying the DM was obtained at the fourth interactive


stage, after two upgrades for the base membership and one


upgrade of a. It is clear however that if the a-Pareto optimal


solution obtained with such interactions do not satisfy the


DM, similar interactions are continued until a satisfactory


solution is obtained.


7. Conclusions


Focusing on multiobjective 0-1 programming prob-


lems involving fuzzy numbers, we introduced in this paper


a nonfuzzy multiobjective 0-1 programming problem. Fur-


thermore, we proposed a method called an interactive fuzzy


satisfaction method which, once the fuzzy objectives of the


Decision Maker are described by membership functions,


determines an approximate a-Pareto optimal solution in the


Table 1. Numerical example of three-objective 0-1 programming problem with 30 variables 


and 2 constraints involving fuzzy numbers
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extended mini-max sense for base membership functions


and an ambiguity fitness level a subjectively established by


the DM. The method then draws out a solution that satisfies


the DM from the set of the a-Pareto optimal solutions, by


interactively upgrading the base membership functions and


the ambiguity fitness level a that satisfy the DM. Concern-


ing the extended mini-max problem used to determine the


a-Pareto optimal solutions, we showed here that it can be


solved statistically by application of two-string genetic


algorithms. Further, by using the simulation results from a


numerical example, it was shown that DM satisfying solu-


tions are relatively easily obtained by upgrading the base


membership functions and the a value interactively.


In the future, we expect to extend the proposed


method and to obtain a more general interactive fuzzy


method for multiobjective integer programming problems


involving fuzzy numbers.
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