1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R.K.Jain

An Interactive Fuzzy Satisficing Method for Multiobjective
Integer Programming Problems through Genetic Algorithms

tMasatoshi SAKAWA*!, ¥Toshihiro SHIBANO*? and Kosuke KATO*!
*1 Department of Industrial and Systems Engineering, Hiroshima University, JAPAN
*2System Products Division, Shinryo Corporation, JAPAN

Abstract — This paper deals with multiobjec-
tive integer programming problems by consid-
ering fuzzy goals of the decision maker for ob-
Jjective functions. After determining the fuzzy
goals of the decision maker, if the decision maker
specifies the reference membership values, the
corresponding Pareto optimal solution can be
obtained by solving the augmented minimax
problem which becomes an integer program-
ming problem. For solving the problem, de-
coding algorithms for 0-1 programming prob-
lems are revised and ringed double strings are
also introduced. Then an interactive fuzzy sat-
isficing method is presented together with an
illustrative numerical example.

KeyW ords — Multiobjective integer program-
ming problem, fuzzy goals, genetic algorithms,
ringed double strings, interactive methods

1. Introduction

In the 1970s, genetic algorithms (GAs) were
proposed by Holland, his colleagues and his stu-
dents at the University of Michigan as a new learn-
ing paradigm that models a natural evolution mech-
anism [2]. Although GAs were not much known at
the beginning, after the publication of Goldberg’s
book {3], GAs have recently attracted consider-
able attention in a number of fields as a method-
ology for optimization, adaptation and learning.
As we look at recent applications of GAs to op-
timization problems, especially to various kind of
single-objective combinatorial optimization prob-
lems and/or to other difficult optimization prob-
lems with nonlinear multimodal functions, we can
see continuing advances 1}, [4], [8]. In recent years,
Sakawa et al. have formulated multiobjective 0-
1 programming problems incorporating the fuzzy
goals of the decision maker (DM) and introduced a
genetic algorithm with double strings for deriving
a compromise solutions for the DM by adopting
the fuzzy decision for combining the fuzzy goals
of the DM [5]. Furthermore, Sakawa et al. incor-
porated interactive techniques into the proposed
method [6], {7].

Under these circumstances, in this paper, we

t Corresponding author
Tel:+81-824-24-7694, Fax:+81-824-24-7694
E-mail: sakawa@msl.sys.hiroshima-u.ac.jp

! Presenter, 2-2-1-1 Minato-Mirai, Nishi-Ku,
Yokohama, 220-81, JAPAN
E-mail: shibano@shinryo.super-nova.co.jp

0-7803-4316-6/98/$10.00 ©1998 IEEE 94

focus on multiobjective integer programming prob-
lems and propose an interactive fuzzy satisficing
method. In the proposed method, after deter-
mining the linear membership functions for the
fuzzy goals of the DM, a satisficing solution for
the DM can be derived from (M-)Pareto optimal
solutions which are close to reference points in
the membership function space through interac-
tive updates of reference points. As a method
to obtain (M-)Pareto optimal solutions, we adopt
GAs with double string representation [5-7]. For
the GAs, we propose unbiased partially matched
crossover (PMX) by looping double strings (ringed
double strings) and a new decoding algorithm of
double strings that can deal with integer decision
variables. Moreover, for the purpose of more effi-
cient search, individuals corresponding to optimal
solution for each objective function are introduced
into population.

2. Problem formulation

Consider a multiobjective integer programming
problem formulated as:

minimize z(z) =1

minimize zr(z) = crx 1)
subject to Az <b
zZj € {01"'7”1'}; i=Ll...,n

where ¢; = (ci1,-.-,¢Cin), € = (T1,...,2n)T, b=
(b1,-..,bm)T, A = (a;;) is an m x n matrix and
v;’s are positive integers. In this paper, it is sup-
posed that each element of the matrix A and the
vector b is positive, i.e., we focus on multiobjective
multidimensional integer knapsack problems.
In general, however, for multiobjective program-

ming problems, a complete optimal solution which
simultaneously minimizes all of the multiple ob-

jective functions does not always exist when the

objective functions conflict with each other. Thus,
instead of a complete optimal solution, Pareto op-
timality is introduced in multiobjective program-
ming problems [9].

Definition 1 Pareto optimal solution

A feasible solution z* in the feasible region X is
said to be a Pareto optimal solution if and only
if there does not exist another z € X such that
zi(z) < zi(z*),i=1,...,k and z(z) < z/(z*) for
somel, 1 <I<k.

1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R.K.Jain

As immediately understood from Definition 1,
in general, there exist a lot of Pareto optimal so-
lutions to a multiobjective integer programming
problem. Thus, the DM must select a compromise
or satisficing solution from the Pareto optimal so-
lution set according to his subjective judgements.

For the problem (1), in order to consider the
ambiguity of the DM’s judgements as a human,
fuzzy goals for objective functions such as “z;(x)
should be substantially less than or equal to a cer-
tain value.” are incorporated.

Linear membership function such that the ob-
jective function value 29 and 2} where the mem-
bership values are equal to 0 and 1 respectively in
the range from the individual minimum and maxi-
mum for each objective function are connected by
a straight line segment is often used (Fig. 1).

0 szi(z) > 22
(z) — 20
wa@) = EDE <o) <8
1 szi(x) < 22
pi(z(z))

1.0

])
|
|
|
|
|
1

0 2} 2? zi(x)

Figure 1. Linear membership function.

As one of the possible ways to help the DM de-
termine z? and 2}, it is convenient to calculate the
minimal value z™® and the maximal value 22
of each objective function under the given con-
straints. Then by taking account of the calculated
individual minimum and maximum of each objec-
tive function, the DM is asked to assess 2z? and 2}
in the interval [2® 2P%] {=1,.., k.

Zmunerma,nn suggested a way to determine
the linear membership function p;(z;(x)). To be
more specific, using the individual minimum

min __ {0\ _ 3) ; —
220 = zi(x2*) = argxg)r}z,(m), i=1,...,k, (2)
together with
7P = max(z(2'),. .., z(z""°), (3)
zi(mz—kl,o)’ sees zi($kc))7

he determined the linear membership function by
choosing 2} = z™® and 2 = 2.

Having elicited the linear membership func-
tions pi(z;(x)) from the DM for each of the objec-
tive functions z;(x), ¢ = 1,...,k, in the multiob-
jective integer programming problem (1), by using

95

an aggregation function up(-) the decision mak-
ing problem considering & conflicting membership
functions can be formally defined as[9], [10]:

s ue(ze(x))) (4)

where the aggregation function up(-) is supposed
to be strictly monotone increasing and continu-
ous in general. If the form of the function pp(-)
can be identified explicitly, this problem can be
reduced to an ordinary single-objective program-
ming problem. However, it is so difficult to iden-
tify up(-) globally that the DM is required to se-
lect a satisficing solution from a Pareto optimal
solution set through interactions.

maximize(y (21(2)), ---

3. Augmented minimax problems
Assume that the reference membership levels
mi, 4 = 1,...,k, reflecting the aspiration level of
the DM for each membership function u;(x) is
subjectively specified by the DM. Then, if the ref-
erence membership levels are attainable, a better
Pareto optimal solution than the reference mem-
bership levels is obtained. While, if not, it is desir-
able to obtain a Pareto optimal solution which is
nearest to the reference membership levels in the
minimax sense.

Such a Pareto optimal solution can be obtained
by solving the following minimax problem [9], [10]:

minimize _xrlla.xk{ﬁi — pi(zi(x))}
subject to Az _<_ b
zj €{0,...,s5}, j=1,...,n

It must be noted here that, for generating Pareto
optimal solutions by solving the minimax prob-
lem, if the uniqueness of the optimal solution is
not guaranteed, it is necessary to perform the Pareto
optimality test. To circumvent the necessity to
perform the Pareto optimality test in the minimax
problems, it is reasonable to use the following aug-
mented minimax problem instead of the minimax
problem (5):

(5)

minimize .nfaxk{('- - p(2:(x)))

-wz i~ mi(=(@)) |

subject to Ax < b
z; €{0,...,v;},i=1,...,n

where p is a sufficiently small positive number.
By solving the above augmented minimax problem
(6), a Pareto optimal solution which is nearest to
the reference membership levels in the minimax
sense can be obtained regardless of its uniqueness
91, [10].

Since the augmented minimax problem (6) is
an integer programming problem whose objective
function and constraints are linear and all coeffi-
cients in the constraints are positive, we attempt

(6)

1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R.K.Jain

to develop genetic algorithms using double string
representation for multidimensional 0-1 knapsack
problems proposed by Sakawa et al. [5-8].

4. Genetic algorithms using double string
representation
4.1. coding

For multiobjective 0-1 programming problems
where all elements of coefficients A and b in the
linear constraints Az < b are positive, coding by
double string in which each element in the upper
string denotes the index of a variable and each el-
ement in the lower string denotes the value of a
variable as shown in Fig. 2 have been proposed
[5], (6], [10]. where s(¢) corresponds to the index j

s(n)
Zs(n)

s(1)

Ts(1)

s(2)
T5(2)

s(2)

Ts(i)

Indices
Values

Figure 2. Double string.

of a variable z; and z,(;) denotes the value of the
variable z;. In the decoding algorithm for double
strings proposed by M. Sakawa et al. [5],[6],[10]
for 0-1 programming problems where all coeffi-
cients in the linear constraints are positive, start-
ing from the left edge of the string, the value of a
variable corresponding to each index s(%) is fixed
t0 z4(;) until the constraints are broken. For re-
maining variables, if the constraints are broken
when z,(;) = 1, the value of the variable with the
index s(z) is fixed to 0 by force. By doing so, only
feasible solutions will be generated.

Now the following decoding algorithm for inte-
ger programming problems is proposed by devel-
oping the decoding algorithm mentioned above.

Decoding algorithm for double strings

Step1l Leti=1, sum; =0(j=1,...,m).
Step 2 The value of the variable with the index
s(i) is fixed to p,(;) determined by
min [u‘ﬂ] ,zsw)
{ilaja:)#0} Qjs(s)

where a;s(;)’s are coefficients in the constraints.
Step 3 Let sum; = sum; + a;s(5)Ps(i) § = 1,
..,mandi=1+1.
Step 4 If i > n, stop. Otherwise, return to step
2.

Note that, according to the above decoding al-
gorithms for double strings, a gene has less influ-
ence on phenotype with progression of . In order
to consider the imbalance of the influence between
genes, ringed double strings illustrated in Fig. 3
are introduced.

Ps(iy = min (

9%

3141]|512¢{6
2 4 7 3
2|3(0|1]|5]2 3 1
0 5 2
Double stri
ouble string Ringed double string

Figure 3. Double string and ringed double string.
4.2. Fitness

The fitness f(8) for each individual s is defined
as

£(s) = 1.0+ kp— _max {(5: - pi((2))
k

+0) (i - pi(s(2) }.
=1

As a way of scaling of fitness, the linear scaling
f,f = a- f; + b is adopted, where the constants q,
b are determined so that the mean fitness of the
population will be the fixed point and the max
fitness will be mapped to the twice value of the
mean fitness.

4.8. Reproduction

Various kinds of reproduction methods have
been proposed. Among them, the authors have
already investigated the performance of each of
six reproduction operators, i.e., ranking selection,
elitist ranking selection, expected value selection,
elitist expected value selection, roulette wheel se-
lection and elitist roulette wheel selection, and as a
result, it was confirmed that elitist expected value
selection is relatively efficient for multiobjective 0-
1 programming problems incorporating the fuzzy
goals of the decision maker [5],[6],{8]. In this pa-
per, based mainly on our experience, as a repro-
duction operator, elitist expected value selection,
elitism and expected value selection are combined
together, is adopted.

4.4. Crossover

If a single-point crossover or multi-point crossover
is directly applied to individuals of double string
type, the index s(i) in the ith gene of an off-
spring may take the same number that an index
s(i") (i # ¢') takes. The same violation occurs
in solving traveling salesman problem or schedul-
ing problem through genetic algorithm as well. In
order to avoid this violation, a crossover method
called partially matched crossover (PMX) is mod-
ified to be suitable for double strings as follows."

PMX for double strings

Step 1 Choose two parent strings X and Y and
let the ith column of X and ¥ be (sx (i), Zs (5))7

1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R K Jain

and (sy (§), Zsy(1))T respectively. Then, deter-
mine two crossover points h and k randomly
and let ¢ = h. :

Step 2 According to the following procedures
(1) and (2), make a new string X' by rearrang-
ing X so that the upper row of the substring of
X between h and k will be identical with that
of Y between h and k.

(1) After finding j satisfying sy () = sx (J), ex-
change the ith column (sx (z), Ts ()7 of X for
the jth column (sx(j),Zs,(;))T of X and let
t=t¢+ 1

(2) If i > k, stop. Otherwise return to (1).
Then, make Y’ by rearranging Y according to
the same procedures as above.

Step 3 Make an offspring X* by exchanging the
substring of X’ between h and % for the corre-
sponding substring of Y. Then, make another
offspring Y* by the same operation for Y’ as
that for X'.

Figure 4 illustrates an example of PMX for double
strings. Note the probability that the middle part

h=5 k=3
fe= =
x 315(11{6(217]4 X*3 1j]5(4167|2
412{0{1]8{3]0 4/0f6{2]0 8
-
v 71215(4(6(113 Y*7 4(1{6]|2 3
7141612 114 210 81614

Figure 4. An example of PMX for double strings.

of a string will be exchanged is higher than other
parts of a string. In this paper, the following PMX
using ringed double strings, where every part of
a string will be exchanged equally, is proposed.

PMX for ringed double strings

Step 1 Choose two parent strings X and Y and
let the ith column of X and Y be (sx (i), Zs, (3)) T
and (sy (§), %y (5)) 7 respectively.

Step 2 Determine two crossover points k and %
randomly and let ¢ = h.

Step 3 If i > length (length denotes the length
of the string), let n = ¢ — length. Otherwise, let
n=i.

Step 4 After finding j satisfying sy (n) = sx(4)
and exchange the ith column (s x(i),zsx(i))T
of X for the jth column (sx(§), sy ()7 of X.
Then exchanging the substring of X between h
and k for the corresponding substring of Y. Let
1=1+1.

Step 5 If ¢ > k, stop. Otherwise, return to step
3.

Step 6 Perform the same operation for Y. The
obtained strings X* and Y* are regarded as off-
springs.

97

Figure 4 illustrates an example of PMX for ringed
double strings.

h=5 k=3
= k=
Tsls]1]e]2]7]4 w712]4]6]s]1]3
“Talzlo]1]e]3]0 7lalo[1]2]1]4
——s
J1]2]s]4]6[1]3 Jd3ls5|2]1]e]7]a
T7iale]2]0]1]4 R ARDAD

Figure 5. An example of PMX for ringed double
strings.

4.5. Mutation and inversion

In the mutation operation, after choosing the
mutation point randomly, determine the value of
the variable z(; randomly. Here, 0 < z,(;) < vg(3)
(v4(i) denotes the maximal value of z,(;y which sat-
isfies all constraints). Furthermore, the inversion
operation defined by the following algorithms is
adopted in this paper.

Algorithm of mutation

Step 1 For each column of a double string, gen-
erate a real random number rand () € [0, 1].
Step 2 I p,, > rand (), determine the value of
the lower element of the column. Here, 0 <
To(i) < Vs(s) (Vo(s) denotes the maximal value of
T4(;) satisfies all constraints).

Step 3 Perform the procedures (1), (2) to all
strings in the population.

Algorithm of inversion

Step 1 After determining two inversion points
h and k (for ordinary double strings, the con-
dition A < k is added), pick out the part of the
string from h to k.

Step 2 Arrange the substring in reverse order.

Step 3 Put the arranged substring back in the
string.

5. An interactive fuzzy satisficing method

In general, the search space for an integer pro-
gramming problem is much larger than that for
a 0-1 programming problem. For example, if the
number of variables is 20, the search space for 0-
1 decision variables is 22C while that for integer
decision variables € {0,1,...,9} is 10?°. In ap-
plying genetic algorithms to integer programming
problems with so large search space, more efficient
techniques are required than in case of 0-1 pro-
gramming problems for genetic algorithms to work
well. In this paper, the corresponding individual
with the optimal solution for each objective func-
tion is forced to be included the population before

1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R K Jain

crossover after reproduction in every generation.
The fundamental algorithm incorporating the
proposed genetic algorithm with double string rep-

resentation into interactive fuzzy programming meth-

ods [9], [10] is summarized as follows.

Step 1 Set initial reference membership levels
(if it is difficult to determine these values, set
them to 1.0).

Step 2 Generate the initial population involv-
ing N individuals of (ringed) double string type
at random.

Step 3 Calculate the fitness for each individual
and apply reproduction operator based on the
fitness.

Step 4 Insert the corresponding individual with
the optimal solution for each objective function
into the current population.

Step 5 Apply crossover operator according to
the probability of crossover p..

Step 6 Apply mutation operator according to
the probability of mutation p,,.

Step 7 Repeat a series of procedures from step
3 to step 6 until the termination condition is
satisfied. If it is satisfied, regard the individual
with the maximal fitness as the optimal indi-
vidual and go to step 8.

Step 8 If the DM is satisfied with the current
values of membership functions and objective
functions given by the current optimal individ-
ual, stop. Otherwise, ask the DM to update
reference membership levels by taking account
of the current values of membership functions
and objective functions and return to step 2.

Here, in the generation of the initial popula-
tion at each interaction, the (approximate) opti-
mal individual in the previous interaction is incor-
porated into the initial population. By using both
the elitist expected value selection and the way of
generating the initial population mentioned above,
it is expected that the (approximate) optimal so-
lution obtained in the current interaction will not
be dominated by that in the previous interaction.

6. Comparison between double string and
ringed double string
6.1. The way of generating numerical ezamples

As numerical examples, 15 dimensional integer
knapsack problems with 20 variables were gener-
ated through the following procedures.

(1) Determine each of a;;s by a random num-
ber according to Gaussian distribution with the
mean p = 300 and the standard deviation o =
50.

(2) Let each of b;s be a real number by multiply-

ing a random number in [1.25,1.75] by 37, as;.

(3) Determine ¢;;s in the same manner as a;;s,
where ¢ ;5 and cy;s are supposed to be all pos-

98

itive and negative respectively while c;;s are
supposed to be positive and negative half-and-
half.

An example of problems generated by the above
procedures is shown in Table 1.

6.2. Results of simulations

For the numerical example shown in Table 1,
simulations were performed twenty times for both
cases using the ordinary double string representa-
tion and the ringed double string representation.
Here, the number of individuals 100, the prob-
ability of crossover p. = 0.8, the probability of
mutation p,, = 0.02, the maximal generation 300
and the maximal value of each integer decision
variable is 10. The couples of objective function
values (29, 21), (29,23), (23, 23) such as the linear
membership function value becomes 0 or 1 were
determined as (9200, 0), (0, —9600), (3000, —9200)
respectively on the basis of the Zimmermann’s
method [11].

Table 2 shows the best value, the worst value
and the mean value of min(y;(z;(x))) obtained by
two methods of twenty trails. As known from Ta-
ble 2, the performance of the method using the
ringed double string representation was better with
respect to the worst value and the mean value.

Table 2. Results of 20 trials.

Best ‘Worst Mean
Ordinary DS | 0.575521 | 0.563804 | 0.571542
Ringed DS | 0.575521 | 0.567717 | 0.572829

(DS: double string)

6.8. Interactive processes

Based on the simulation results as shown in Ta-
ble 2, an interactive method through genetic algo-
rithms using the ringed double string representa-
tion was applied to the above problem. The same
values of parameters in genetic algorithms and the
same membership functions in the previous ex-
periment were used. In this experiment, the hy-
pothetical DM updated the reference membership
levels (2, B2, fis) as (1.0,1.0,1.0) — {0.8,1.0,1.0)
~— (0.8,1.0,0.9). Table 3 shows the (approximate)
optimal solution for each interaction. In the first
interaction, the membership values (0.5773, 0.5755,
0.5917) of the (approximate) optimal solution for
the reference membership levels (1.0,1.0, 1.0) were
obtained, but the DM was not satisfied with the
solution. Then the DM considered that the mem-
bership function values uz and u3 should be im-
proved at the sacrifice of the membership func-
tion value p; and updated the reference mem-
bership levels from (1.0,1.0,1.0) to (0.8,1.0,1.0).
In the second interaction, the membership values

1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R.K.Jain

Table 1. An example of integer programming problems with 3 objectives and 15 constraints.

a1 271 331 300 314 256 369 306 226 285 284

333 379 307 182 312 323 264 288 325 192

a2 | 316 202 324 346 328 348 286 263 362 311

359 340 223 276 376 291 325 296 342 263

az | 252 265 319 276 158 314 276 277 364 246

240 316 311 395 371 339 411 300 266 360

as 188 288 285 313 306 227 284 273 317 254

279 340 312 285 286 285 240 399 293 353

as | 339 252 314 328 269 392 268 367 220 249

281 295 323 283 286 242 295 270 313 312

as | 302 267 340 239 377 287 279 282 215 264

302 421 374 293 227 313 339 353 315 315

ar | 188 260 299 344 352 321 234 317 280 287

374 353 330 272 297 227 332 291 311 273

ag | 246 349 350 230 297 370 252 265 290 276

321 237 242 300 260 243 247 411 310 326

ag | 245 299 318 299 307 266 314 301 309 333

341 315 324 297 344 327 250 367 309 296

ao | 211 361 248 217 197 249 300 231 373 320

256 261 301 302 324 286 391 276 273 298

a1 | 303 330 328 328 356 284 298 321 269 274

301 346 289 239 403 252 230 315 192 391

a2 | 232 277 315 331 262 286 314 369 434 290

247 318 353 331 - 315 292 323 250 279 318

aiz | 198 326 376 289 191 253 239 354 251 298

315 329 272 255 293 368 320 371 396 293

ais | 248 264 275 225 353 310 329 423 306 248

264 307 251 242 305 274 398 230 204 207

as | 274 335 376 299 334 198 318 305 251 288

286 273 310 293 226 344 352 236 305 306

c1 281 327 305 344 371 247 335 336 364 392

263 280 370 292 231 352 297 254 293 320

c2 | —271 —338 -—282 -267 -—319 -—379 —245 -215 —187 —419

-360 -302 -266 —324 -315 -—-307 -322 -366 —332 -273

c3 | -3156 =293 —245 -291 282 316 226 297 360 182

—330 394 345 276 —321 -219 341 -372 250 324

b | 8012 7871 8660 8297 9144 10289 8200 7670 10091 8522
9934 10432 7959 9623 10108

(0.4917,0.6872,0.7373) of the (approximate) op- required.

timal solution for the reference membership lev-
els (0.8,1.0,1.0) were obtained. Since the DM
hoped more improvement of u,, he updated the
reference membership levels from (0.8,1.0,1.0) to
(0.8,1.0,0.9). The DM was satisfied with the mem-
bership values (0.4927, 0.6966, 0.6310) obtained in
the third interaction and the interactive procedure
was finished.

In this example, after updating the reference
membership levels twice, at the third interaction,
the satisficing solution which is also Pareto op-
timal was derived. Here, since it took about 69
seconds to solve the augmented minimax problem
for each of reference membership levels, the pro-
posed method is considered to be sufficiently fast
as an interactive method.

Unfortunately, however, at each interaction,
(approximate) Pareto optimal solutions were ob-
tained about 2 times out of 10 trials. Concerning
this point, further refinements of individual repre-
sentation, decoding algorithm and so forth will be -

99

7. Conclusions

In this paper, we have proposed an interac-
tive fuzzy satisficing method through genetic al-
gorithms for multiobjective integer programming
problems. With respect to genetic algorithms, a
decoding algorithm to deal with integer variables
and a new PMX (partially matched crossover) op-
erations using ringed double string representation
were proposed. Furthermore, by inserting the in-
dividuals corresponding to the optimal solution for
each objectives into the population, we gave a clue
to solve an integer programming problem whose
solution space may be much larger than that of
a 0-1 programming problem. In interaction pro-
cesses, however, since (approximate) Pareto opti-
mal solutions were obtained about 2 times out of
10 trials, further refinements of individual repre-
sentation, decoding algorithm and so forth will be
expected.

1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 April 1998, Adelaide, Australia. Editors, L.C. Jain and R.X.Jain

Table 3. Results of interactions.

First interaction I L2 /3 z1(z) z2(z) 23(z) | Number of solutions
¥, =1.0 0.5773 0.5755 0.5917 | 3889 —5525 —4219 2
o, = 1.0 0.5763 0.5749 0.5882 | 3898 ~5519 —4177 2
B = 1.0 0.5757 0.5742 0.5848 | 3907 —5513 —4135 1
0.5740 0.5795 0.6522 | 3919 5563 —4958 2
0.5722 0.6378 0.5736 | 3923 —5494 -—4781 1
0.5827 0.5707 0.6331 | 3839 —5479 —4724 1
0.5677 0.5762 0.5877 | 3977 -—5532 —4170 1

Second interaction | L2 13 z1(x) 22(z) z3(x) | Number of solutions
By, =038 0.4917 0.6872 0.7373 | 4676 —6598 —5939 2
T, =10 0.4908 0.6867 0.7292 | 4685 —6592 —5897 1
B =1.0 0.4945 0.6899 0.6832 | 4651 —6623 —5335 2
0.4829 0.6821 0.7422 | 4757 —6548 —6055 1
0.4849 0.6768 0.7169 | 4727 —6497 -—5746 1
0.4753 0.6734 0.7488 | 4827 —6465 —6135 1
0.4701 0.7227 0.6884 | 4875 —6938 —5398 1
0.4824 0.6673 0.7579 | 4762 —6406 —6246 1

Third interaction 11 723 us | z1(z) 2z(z) =z3(z) | Number of solutions
7, =08 0.4927 0.6966 0.6310 | 4667 —6687 —4698 2
B, =10 0.4933 0.6900 0.6199 | 4622 —6624 —4563 2
B2 =0.9 0.4945 0.6899 0.6832 | 4651 —6623 —5335 1
0.4892 0.6926 0.7369 | 4699 —6649 —5990 1
0.4908 0.6867 0.7293 | 4685 ~—6592 5897 1
0.4836 0.6845 0.6108 | 4751 —6571 —4452 1
0.4827 0.6828 0.6824 | 4759 —6555 —5325 1
0.4799 0.6935 0.7170 | 4785 —6658 —5747 1

References lutionary Computation, Kluwer Academic
Publishers, Boston, pp. 155-177, 1997.

1. M. Gen and R. Cheng, “Genetic Algo- 8. M. Sakawa and M. Tanaka, “Genetic algo-
rithms and Engineering Design,” John Wi- rithms,” Asakura Publishing, Tokyo, 1995
ley & Sons, New York, 1997. (in Japanese).

2. J.H. Holland, “Adaptation in Natural and 9. M. Sakawa, “Fuzzy Sets and Interac-
Artificial Systems,” University of Michigan tive Multiobjective Optimization,” Plenum
Press, 1975, MIT Press, Cambridge, 1992. Press , New York, 1993.

3. D.E. Goldberg, “Genetic Algorithms in 10. M. Sakawa, H. Ishii and I. Nishizaki,

' Search, Optimization, and Machine Learn- “Soft Optimization,” Asakura Publishing,
ing,” Addison Wesley, Massachusetts, Tokyo, 1995 (in Japanese).

1989. 11. H.-J. Zimmermann, “Fuzzy programming

4. 7. Michalewicz, “Genetic Algorithms + and linear programming with several ob-
Data Structures = Ewolution Programs,” jective functions,” Fuzzy Sets and Systems,
Springer-Verlag, Berlin, 1992, Second, ex- Vol. 1, No. 1, pp. 45-55, 1978.
tended edition, 1994, Third, revised and
extended edition, 1996.

5. M. Sakawa, K. Kato, H. Sunada and
T. Shibano, “Fuzzy programming for
multiobjective 0-1 programming problems
through revised genetic algorithms,” Euro-
pean Journal of Operational Research, Vol.

8, No. 6, pp. 149-158, 1997.

6. M. Sakawa and T. Shibano, “Interactive
fuzzy programming for multiobjective 0-1
programming problems through genetic al-
gorithms with double strings”, in Da Ruan
(ed.) Fuzzy Logic Foundations and Indus-
trial Applications, Kluwer Academic Pub-
lishers, Boston, pp. 111-128, 1996.

7. M. Sakawa and T. Shibano, “Multiob-

jective fuzzy satisficing methods for 0-1
knapsack problems through genetic algo-
rithms”, in W. Pedrycz (ed.) Fuzzy Evo-

100

